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Spectral classification using pattern-recognition techniques.
I. Feasibility with hydrogen as a model system
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Pattern-recognition techniques are applied to the classification of atomic spectral transitions using hydrogen
as a model system. Certain of the transitions have been randomly selected and treated as unclassified lines.

Training of the known data at the 100% level has been achieved. Prediction of n, is 95.8%, while

predictions of transitions of the type n„ I, —+ l2 and nl ll~ l2 Jj~ J2 are 83.4% and 66.67%, respectively.

Using similar techniques, two unknown transitions in neutral atomic sodium have been classified.

I. INTRODUCTION

!
The classification of atomic spectra is primarily

accomplished by searching for regularities in ener-
gy-level differences. Typically, this involves
searching for constant inter val s among transitions
of two low levels (i.e., high wavelength) and transi-
tions of one highand one low level (i.e., low wave-
length}. Low-wavelength lines should combine with
low levels, and by initiating searches for these low
levels, it is often possible to determine the lowest
levels of the atom in question. Using these levels as a .
basis for further searches produces more levels.
Relative intensities of transitions, isotope shifts,
and Zeeman-effect data are all utilized in attempt-
ing to assign configurations and/or terms to the
levels of the transitions in question. These classi-
fications are also assisted by the use of various
theoretical calculations such as Hartree-Fock
methods. This combination of techniques is in
many cases sufficient to obtain a fairly complete
classification of spectra. However, one notes that
of all observed lines which are listed in, for ex-
ample, the NBS tables only about 85% are classi-
fied, and many of these classifications must be
considered tentative. In view of this, it is impor-
tant Co utilize new procedures to assist in the clas-
sification scheme based on pattern-recognition
techniques.

This is a new and unique application of pattern
recognition. The feasibility' of the process will be
demonstrated using atomic hydrogen a.s a model

, system. Later, it will be applied to atomic sodium
in an attempt to classify two unknown transitions.

Pattern recognition has been applied successfully
to a variety of chemical problems including struc-
ture-reactivity prediction as well as generation and
prediction of mass spectra. "

Pattern recognition is a form of artificial intelli-
gence which is capable of aiding the scient'ist in
making a systematic analysis of multidimensional
data. Thus, an interaction is possible between the

investigator, who can supply intuition and intelli-
gence, and the computer, which by utilizing pat-
tern-recognition techniques can recognize relation: —.

ships between data in a multidimensional space.
A general statement of the pattern-recognition pro-
blem is. "Given a set of objects and a set of mea-
surements made on those objects is it possible to
find and/or predict a property of the objects that is
not measurable but is known to be related to the
measurements via some unknown relationships"
A property is the information implicit in the data
set in question.

In our work each type of atomic transition is de-
signated as a category. For example, the transi-

1 1 1 3 5tions 3s-n, p 2-&, 3s-n p 2-~, a,nd 4p-n~d &- ~

would be considered three different categories
and identified as categories 1, 2, and 3. A given
atomic transition can be represented by its wave-
lenth A. , energy-level difference &E, relative in-
tensity RI, and two sets of quantum numbers n, l,
and J, corresponding to the initial and final states
of the, transition. Thus, each transition can be
thought of as a vector in nine-dimensional space,
each of the above parameters being a coordinate
axis. In pattern-recognition terminology each
parameter is called a feature. Each transition, as
represented by a nine-dimensional vector, is
called a pattern.

To predict the classification of an unknown tran-
sition, ' lines with known features are used to
"train" the computer to recognize the categories
represented by the classified transitions. These
classified lines are referred to as the training set.
The unclassified transitions represented by the
same known features are then assigned to a cate-
gory (i.e., classification} on the basis of the train-
ing results. For the hydrogen example, an unclas-
sified line has only three known features, A. , AE,
and RI. Thus, the training set must be represented
by only these three features. As more features are
obtained, . they may be used in the training set.

%e have used a collection of pattern-recognition
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techniques in a computer package obtained from
Kowalski. ' These te chnique s have be en r eviewed
in detail elsewhere, "' however, brief descrip-
tions of the methods available in this package are
included in Appendix A.

For hydrogen, data were included only for those
lines with n, =1, 2, 3, 4, 5." For each n„n., was
taken up to either 19 or 20'since this included all
obser ved transitions. Lines are also obser ved with

n, =6, 7, etc. ,' however, this cutoff was used be-
cause it provided a large data set and because it
includes all representative transitions. After n, = 5

all observed transitions are unresolved doublets of
the type in which l, =n, —1. For example, for n, =6
the only observed transitions are 6h-n, i. -

Energy-level differences were calculated directly
from wavelengths and are, therefore, consistent
with wavelengths although no corrections for air
wavelengths to vacuum wavelengths were applied in
this study. During the classification process the
training data are immediately split up into two
groups in accordance with the initial pattern-recog-
nition procedure. One group contains those transi-
tions for which ny: 1 2 whose wavelengths are all
observed in the vacuum UV, and one contains those
transitions for which n, = 3,4,5, whose wavelengths
are in the UV and visible region. Thus, for almost
the entire process, vacuum wavelengths are sepa-
rated from air wavelengths. In either case &E, is
consistent with the wavelengths as measured.

Because of the differences in measurement tech-
niques in these spectral regions, a consistent set
of relative line intensities for hydrogen was not
available. Therefore, we have used the quantity

(g, ) (A»&), where g» is the statistical weight of the
upper state, and A~,. is the transition probability
of emission from upper state k to lower state i.
The relative line intensity is a function of this

~ quantity. &„, values were taken from the NBS
tables. ' No &„, values are given for fine-structure
transitions. To obtain estimates for these transi-
tions a table of line factors was used. " Thus, for
example, the Is-2p transition has (g, ) (A»;)
= (6)(6.625 x 10') = 37.590 x 10'. From the line-fac-
tor table the transition J= —,

' to J= —,
' should be about

twice as intense as the transition J= —,
' to J= 2.

Therefore, the —,'-—,
' transition will have (g») (A„,.)

= (—', )(37.590 x 10') = 25.060 x 10', and the —,'-—,
' tran-

sition will have (g,).(A„)= (-,') (37.590 x'10') = 12.530
x 10'. The sum of the two numbers is of course
equal to 37.590 x 10'.

For unresolved doublets in the training data J,
and J, were taken to be those J values correspond-
ing to the component of the multiplet which theoret-
i.cally should have the largest transition probabil-
ity. For the unresolved doublet 5g-6h, J, = —,'and
J ll

2 2

An initial experiment was performed in order to
demonstrate the potential for the pattern-recogni-
tion approach. Using nine features the data" were
investigated by the "minimal spanning tree tech-
nique. " It was found that each category obtained by
this unsupervised approach contained a unique type
of transition, ' that is, each transition in a given
category had a unique n] ly l2 Jyp and J,. Using
these categories it was possible to separate the
data using the multihyperplane separation technique
(i.e. , 100% training). Furthermore, it was found

that when the data were categorized according to

n, (5 categories, each category having a unique n, ),
the data could be separated using four features' . A. ,
bE, gA, and n, . (See Appendix 8 for justification
of the use of X and bE )The. same also held true
when the data were categorized according to n„
I,- l, (each category having a unique n„and I„I,
pair), and the six features, X, bE, gA, n„ I„I,
used. Separation was also achieved for categories
according to ny l] l gy J] J2 with nine features
used.

Therefore, each type or category of transition
was separable from all other categories, if the
features defining these categories were included.
This indicated a strong potential for pattern recog-
nition in classifying transitions.

For an unknown transition in this model system,
three features will be known. ' X, AE, and gA. . The
general procedure for the classification process
is to train the computer to predict n, from these
three features, ' train and predict l] l2 from the
four features, A, ~F. , g&, and n» and finally,
train and predict Jy J2 using A. , 4E, g&, ny ly and

l, . The test/prediction data. set" was selected
using a random number generator. A total of 24
transitions out of an original 130 were used as un-
knowns. There were 12 transitions originating
from rs, = 1,2; and 12 transitions originating from

3 4 5 This leave s 106 transitions in the train-
ing set.

II. CLASSIFICATION PROCEDURE FOR H&DROWN

An outline of the classification procedure is given
in Table I. Several points merit further explana-
tion. The training and test-set data are immediate-
ly split into two groups: one containing transitions
originating from n, = 1, 2; .the other containing tran-
sitions originating from ny: 3 4 5 This second
test group is not linearly separable when catego-
rized according to n, . As indicated in parts I(C)
and I(D) of Table I, we have utilized the Karhunen-
Loeve transformation in order to effect the sepa-
ration. The first two of the Karhunen-Loeve trans-
form features contain approximately 93% of the
total information or variance originally present in
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TABI E I. Outline of hydrogen classification procedure.

I. Prediction of n ~

A. Categorize training data according to n&. Run multi- and binary-hyperplane separa-
tion of data with three features (&, , &&) to determine separability of categories.

B. Remove those categories which are separable from all other categories. A'. so re-
move any and all test patterns (data used as unknowns) which are predicted to lie in
these categories. End result is two data sets: (1) categories which are separable
from all other categories, (2) all remaining data. Da.ta in (1) are already trained and
classified (i.e. predicted) according to n& ——1,2. Data in (2) contain all n& ——3—5 data.

C. All n ~
=3—5 data are treated as follows. Obtain a Karhunen-I oeve transformation of

the three-feature data (A. , gA, &&}. Eliminate the third transformed feature for ease
of visualization and plot the data using first and second transformed features as axes.

r

D. Define new categories such that each category has a unique n~ (each n~ does not nec-
essarily have a unique category) and such that they will be linearly separable.

E. Run multi- and binary-hyperplane separations on data set to train and then classify
(predict) unknown transitions according to n&. All unknown n&'s are now predicted.

II. Prediction of /~ l 2

Treat the two data sets from part I(B) in the manner described below. Treat them
separately.

B. Redefine categories according to n&, l~ —l2. For example, 2s-P is distinct from
2P-s, 2P-d, and 3S-P.

C. Add n& as a fourth feature. The four features are now ~, g4, &&, e~. For training
data n~ is known. For the test-prediction patterns nf„will be that predicted in part I.

D. Run multi- and binary-hyperplane separations to train and predict lq- l 2.

III. Prediction of J~ and &2

A. Treat the two data sets from part I(B) in the manner described below. Treat them
separately.

B. Redefine categories according to n ~, l ~ l &, J~

C. Add l ~ and l2 as fifth and sixth features. The six features are now &, g&, ~, n&,

l~, l~. For training data, l ~ and l2 are known. For the test-prediction patterns, l
&

and
l2 will be values predicted in part II.

D. Run multi- and binary-hyperplane separations to train and predict 4& —~2. AH data
are autoscaled before any other mathematical operations are performed.

the three features, A, &F., and gA. Therefore, a
two-dimensional representation of the data is a
very good approximation to the original training
set. This makes it visually convenient to define
new categories so that the n, =3, 4, 5 transitions
will become linearly separable. The new catego-
ries are shown in Fig. 1. By using these new cate-
gories, it is possible to train 100/p the n, = 3, 4, 5

transitions. Each category has a unique value of

fly al though each n, do es not have a unique catego-
ry. Thus, prediction of any number of categories
will still predict the correct ~,. In effect, we
have utilized a stepwise linear classifier, in which
the separating lines are approximations to curves
of high order.

The use of the multi- and binary-hyperplane
separation technique to train and predict J,-J, is

a multistep procedure (See Table I, part III D).
For n, =3, 4, 5 the procedure is as follows. With
the data categorized according to nj& 3y l2y Jy J2
the transitions 3p-n, s —,'- —,', cannot be separated
from 3p-B2s 2 —2~. and the transrtzons, 4~ +2s 2-2

&

1 1

cannot be separated from 4p-n, s 2-2. The two 3p-n2s
categories are combined as are the two 4P-n, s
categories, making the training data 100/p separa-
ble. Prediction of J,, can then be made since each
category will have only one value of J, J, can then
be used as a seventh feature (I, AE, gA. , n„ l„ l„d2).
The two previously combined categories are then
split into their original categories (i.e., four cate-

1 1 3 1 1 1
ggriCS~ 3p-B2S g

—g, p'-'fl~S o —g, 4a-fE2S p
—g, and

4p n, s,--;). W-ith I, as a seventh feature, 100/q

training can be achieved and J, can be predicted.
For n, = 1, 2 transitions the same reasoning is



264 KEITIC L. PETERSON AND M. L. PARSONS

used. In this case the two categories 2P-~,s 2-2
and 2p-n, s 2--,' are combined as are the two catego-
ries 2s-n, p -—', and 2s n, p -—,'-- —,'. 100% training can
be achieved with this categori'zation. Next, all
2p-n, s —,'- —,

' and 2p-n, s 2- —,
' transitions are removed

from the data set, so that 8, is known. (All catego-
ries will have only one value of J, which is known
from the first training run. ) J~ is then used as a
seventh feature and J, is predicted. At this point
the only J values which are not known are the J,'s
belonging to 2p-n, s transitions. J, may be either
2 or —,

' for this ease and could be assigned on the
basis of relative intensity or g& data. Alternative-

1 1 1 1 3ly, the 2p-n, s 2- —„2&-n,s —,——„2s-n,p 2-2, and

Rs np —,--—,
' transitions may be removed from the

data set, and the resulting two data sets trained
to the 100% level.

Predictions and actual values are given in Table
II, along with percentage correct for each step of
the procedure. The n, term can be determined from
the wavelength and originating level for each transi-
tion. By far the worst performance is on prediction
of J values. It should be noted that in actual prac-
tice the assignment of J values could probably be
done more accurately if a consistent set ofrelative-
intensity data alone were used. Other potentially
obtainable data such as observations of the Zeeman
effect would further facilitate assignment of J's.
Part of the problem for predicting J may be due to

Y
Y

Y
X
X
X
X

1s- 6p

1s-10p

1s-13p

1s -15p

1s-17p

2s- 4p

2p- 6d

2p- gd

2p-16d

3s- 5p

3d- 7f
3d- 10f

3d-17f

4f- 8g

.4f-18g

5g-15k

1 3
2 2

1
2 2

1 ' 3
2 2

1 3
2 2

1 3
2 2

1
2 2

3 5
2 2

3 5
2 2

3 5
2 2

1 3
2 2

5 7
2 2

5
2 2

5 7
2 2

7 9
Y 2

(b) Incorrect predictions

True classification Predicted classification

2s -3p
' 2p-3s

2p-4d

3s-5p

3s-6p

3p-5s

4s -6p

4p-6s

1 1
2 2

1 1
2 2

3 5
2 2

1 1
2 2

1 1
. 2 2

3 1
2 2

1 3
2 2

3 1
2 2

2s -n2p 1
2 2

2p-n2d . 2 -2 or 2p-n2s1 1

2p-n2d

3s -n2p

3p -n 2S

3p —n 2s

5g-n 2h

4s -n2-p

1
2 2

1
2 2

1
2 2

1 1 1 3
2 2 or 3sn2p2 2

9
2 2

1 1
2 2

(c) Summary of percent correct

Quantum numbers predicted Percent correct

TABLE II. Summary of predictions for hydrogen.
I

(a) Correct predictions

m

Q
m
X
C
m
O

O
37

nf

lg l2

95.8

83.4

66.7

EIGE NVECTOR 1

FIG. 1. Plot of the first two eigenvectors obtained
from the Karhunen- Loeve trans formation for the n

&
= 3—5

data set of hydrogen: 1 (~) and 5 (Q) correspond to
n f = 3,. 2 {+), 3(+), 6 (t ), and 7 (X) correspond to n&

=4; 4(X), 8(Z), and 9(F) correspond to n&-—5. The orig-
inal three features were X, ~, and gA.

the ambiguity discussed previously in assigniIig J
valu. es to unresolved multiplets.

Kith the exception of J prediction, performance
is quite good. In fact, it is probably better than
most initial classifications of new atomic spectral
systems which appear in the literature. Remember,
however, that this method makes use of data ob-
tained in the classical manner.
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III. APPLICATION TO NEUTRAL SODIUM

Af ter a thorough investigation of the liter atur e,
it was determined that sodium would provide a
suitable test element. It posesses two unclassified
transitions and a suitable number of known transi-
tions for training purposes. Assuming tPat the un-
known transitions are outer-shell one-electron
transitions, the energy-level differences indicate
that the transitions must originate from either a 3s
or 3P level. Any level greater than 3p would result
in a final state having an energy greater than the
ionization potential. Therefore, training data con-
sisted only of transitions originating from the 3s
and 3p levels. Self-consistent relative intensities
for these lines were found in the MIT wavelength
tables. " Figure 2 shows the training and test data
plotted with the first two Karhunen-Loeve trans-
formed features as axes. This is a reduction of
the original three features, A. , &E, and RI. Although

n, is known, it is constant for all transitions and
therefore has no classification value. The plots
clearly show that transitions originating from a 3s
level are separable from those originating from a
3p level. Furthermore, both unknowns fall into the
3p cluster. This is verified by multi- and binary-
hyperplane separation. Unknown number 1 is very
likely a 3P-s or 3p-d transition, while unknown
number 2 is close to a forbidden transition.

The use of pattern-recognition techniques has
provided us with g. high probability of predicting
the lower level for each of these transitions.
Whereas further analysis by this technique was in-
clusive without additional features for training,
this information is sufficient to allow us to predict
these transitions. The 3P level must have either

Z
C
A

O

EIGF NVECTOR 1

FIG. 2. Plot of the first two eigenvectors from the
Karhunen- Loeve tranformation for Na. The original
three features were X, AE, and gI. 1 (Q) corresponds
to a transition whose ground level is 3s. 2 (6) corres-
ponds to a transition whose ground level is 3p.

1 3J = —, or J = &. The energy-level difference may be
calculated from the wavelength (corrected to vacu-
um)" and added to the energy of the two 3p levels,
These data are summarized in Table III. The re-
sulting final energy level (3P -', +DE) is closest to a
14s ~ state. Thus, the probable assignment is 3jt)-
14s - —,'. In reality, this line is probably an unre-
solved doublet consisting of 3p-14s —,'- —,

' and 3p-14s
3 The latter component of this doublet should

TABLE III. . Summary of calculations for unclassified sodium transitions.

4198.3-A lipe, ~&=23 812 cm 5532.0-A line, &&=18 071 cm

3p 2: 16 956.183cm

3p 2: 16973.379 cm

Possible lower levels

3p 2: 16 956..183 cm

3p 2: 16 973.379 cm

Sum of lower level and &E

14s 2: 40 769.5

13d 2, 2.. 40798.8

3p -14s

cm ~

cm

Pr'obable assignment

3p 2+4E=40769 cm '

3p 23+ ~E=40 786 cm

Nearest energy levels

13p 2 2. 40705.68 cm

3p ~~ + DE=35028 cm

3p —;+DE=35045 cm-'

5p —': 35 040.27

5P 2. 35042.79 cm

3P-5P ~ -a3 3
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be the more intense.
In a similar manner, the final state of the second

unknown is nearest to a 5p-,' level, although it is
also very close to a 5p2 level. Again, this line
may be an unresolved doublet, the components
of which have upper levels of 5p2 and 5p —,'.

We feel that with a second self-consistent set of
relative intensities or other experimentally obtain-
able features, a classification procedure similar
to the one used for hydrogen could be developed.

To test; this idea, Lande g values were calculated
for the lower and upper levels of all Na, 3s and 3p
transitions. (We have assumed 100% LS coupling
which should be a very good appr'oximation for so-
dium. ) Using the five features, X, bE, RI, g» and

g„ the training data were linearly separable when
categorized according to ny l y l p Jy J2 These
five features are all potentially obtainable experi-
mentally. The success of this experiment implies
an even stronger potential for pattern-recognition
techniques in classifying transitions.

all quantum numbers would be greatly improved if
data which is potentially obtainable, but not always
readily available from the literature, could be
used. Such data includes the consistent relative-
intensity and Zeeman-effect data mentioned above,
as well as isotope shifts and perhaps even Stark-
effect data. With this additional data, we could
initiate the classification procedure using six or
more features (assuming two or more self-consis-
tent sets of relative intensities) which are all ex-
perimentally obtainable. These ideas are confirmed
by our experiment with sodium.

As a logical extension of this work, we have ap-
plied pattern-recognition techniques to the classi-
fication of curium energy levels. " Used in con-
junction with the conventional methods, pattern
recognition has been shown to be a useful tool for
atomic transition classification. Finally, we feel
that pattern-recognition techniques are generally
applicable to classification of spectral transitions,
whether molecular or atomic.

IV. CONCLUSION

We have shown pattern recognition to be a useful
tool in classifying atomic transitions. It is capable
of high performance in predicting n and l values.
Prediction of J's is not as good, but should be sub-
stantially improved by considering self- consistent
sets of relative intensities from different excitation
sources. Also, it is very often possible to deter-
mine J values experimentally utilizing Zeeman-ef-
fect data. We feel that training and prediction of
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APPENDIX A: PATTERN- RECOGNITION TECHNIQUES

Although we have not made use of all the techniques available in the pattern-recognition package, the

following concise summary of all the techniques are given for the sake of completeness. '

METHOD

Preprocessing

Change

Karhunen- Loeve transformation

DE SCRIP TION

Provides a variety of feature category and pattern alterations
which provide flexibilty in data utilization.

Performs the Karhunen-Loeve transformation. The transfor-
mation is an orthogonal rotation of the n-dimensional coordi-
nate system in question, such that the first new coordinate is
in the direction of largest variance and thus contains the most
separating information of the data set. The second coordinate
chosen is orthogonal to the first and is in the direction of the
second largest variance of the data set. This process is con-
tinued until n new coordinate axes have been chosen. The
transformation affords a convenient means of feature reduction
if the first several coordinates chosen contain most of the vari-
ance or information of the data set. '
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METHOD DESCRIPTION

Auto scale

Correlation-to-property selection

Autoscales data. The process is similar to that used when one
plots data on a two-dimensional graph. Such a process is nec-
essary to avoid biasing results by data which may be expressed
in small (or large) units and therefore be numerically quite
large (small). The process transforms each feature to a mean
of zero and a standard derivation of one without destroying sep-
arating information.

Produces weighted features which are linearly independent and
ordered according to correlation-to-property weight, variance
weight, or Fisher weight. It provides information for. selecting
the best features for separation. ""
Generates all linear, quadratic and ratio combinations of orig-
inal features.

%eighting Evaluates the individual importance of each feature for the de-
scription of the property associated with the training-set pat-
terns. Three weighting functions are available '. correlation-
to-property weight, variance weight, and Fisher weight. ""

Utility and measurement analysis

Cor r elation

Distance matrix

Generates all feature-to-feature and feature-to-property corre-
lations with their corresponding confidence intervals. Inter-
feature covariances are also given. "'"
Calculates all interpattern distances. The following distance
metrics are available. 'Mahalanobis, city block, and the ratio.
distance of Anders. ""

Unsupervised learning

Hierarchical clustering

ivIinimal spanning tree

Super vis ed learning

Hayes classification rule

K nearest neighbors

Least- squares regression

Produces a dendrogram describing the hierarchical clustering
(also known as Q-mode clustering) of the training-set patterns.
The patterns are grouped at levels of similarity, where simi-
larity is defined from the interpattern distances.

Generates a minimal spanning tree among all training-set pat-
terns. A spanning t;ree is a connected graph containing all the
training-set patterns and having no closed loops. A minimal
spanning tree is a spanning tree whose total length is a minimum
among all posSible spanning trees. Clusters (or categories) are
defined by breaking links between two points which are longer
than specified. Any two adjacent broken links define a cluster. '

Performs an approximate multivariate Bayes-rule classifica-
tion. True probability distributions over each category for
each feature are presumed to be unknown. Frequency histo-
grams of the training set are used as approximationtotheprob-
ability distributions. The routine is mo, t suitable for very
large data bases. "
Predicts categories on the basis of K nearest neighbors, where
K is 1, 3 —10. A pattern belongs to that category which is rep-
resented most often among its E nearest neighbors. '

Performs a least-squares multilinear regression using all fea-
tures, utilizing the generalized inverse method.
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"METHOD DESCRIPTION

Multihyperplane separation

Binary-hyperplane separation

Percentage nearest neighbors

Iteratively develops (n —1)-dimensional hyperplanes separating
given clusters (categories) of patterns, represented in an n-
dimensional space. 'The routine uses riegative-feedback try, in-
ing to develop the separating surfaces. This is referred to as
a linear separator. "
Essentially the same as the multihyperplane separation method
except that it is a binary classifier. It develops separating
hyperplanes between two given categories at a time. "'"
Predicts categories on the basis of a given percentage of near-
est neighbors. The routine is very similar to K nearest neigh-
bors.

Stepwise multilinear regression Performs a stepwise multilinear regression. Features use& in
the regression are determined by their contribution to the total
variance of the data set."

DISP I AY -ME THODS

Nonlinear mapping Performs a nonlinear mapping of the training set from its orig-
inal n-dimensional space to two or three dimensional space.
The routine minimizes an error function (which is a function of
interpattern distances) in an attempt to preserve interpattern
di stance s.'

Plotting Provides line-printer or Cplcomp plots of feature versus fea-
ture or feature versus category. It may be used to obtain plots
of scaled data, Karhunen-Loeve transformation projections,
weighted features or nonlinear mapping.

APpENDIX 8

The use of both X and hE as features may require some justification since they are universally thought

be redundant parameters. It is true that there is a mathematical expression relating the two, namely,

DELTA E WA VE L E NGTH

FIG. 3. Hypothetical data set showing that A, and ~ are not redundant. In (a) a plot of feature x (where x may be any
feature) versus ~ shows category 1 jC» cannot be separated from category 2 (4, ) unless two separating lines are used.
In (b) the data becomes separable when using both A, and ~.
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AE = I/A.

Obviously, this is an inverse relationship, and a
plot of hE versus A. will be a hyperbola. All meth-
ods used in our pattern-recognition computer pack-
age are linear, ' that is, all separating surfaces are
fir st- degree equations. In such a linear sy ste m,
a I/x relation cannot be redundant. This is borne
out by the fact that the two features, A. and &E,
have different correlation to category values. If X

and 4E were related in a linear fashion, they would
be redundant.

This argument may be better understood in geo-
metrical terms. An idealized hypothetical example
will be considered. Figure 3(a.) is a plot of x

versus ~E where x may be any feature and may be
considered analogous to BI used above. The points
are denoted by 0 and L corresponding to their re-
spective (hypothetical) categories. It will be noted
that no single linear separating surface can sepa-
rate category one I00% from category two. Figure
3(b) is a plot of 4E versus A for the same points.
Note that on the basis of these tuo features alone
it is possible to seParate Ne tzoo categories linear-
ly By visualizing the data in three dimensions
(&E, x, and A as features), it is seen that the data
are also linearly. separable in this case. Thus,
the addition of y as a third featzzre has added one
dimension azzd made the data set 100% linearly
separable.
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