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We solve the problem of two discrete quantum levels which are coupled by a time-dependent radio-
frequency pulse 8'(t) = V(t) e'", where the envelope function is of a form suggested by Rosen and Zener:
V(t) = Vosech(n t/T). When a level damping constant y is included, in the manner of Bethe-Lamb theory,
the solutions show new features which are not expected on the basis of a sudden-approximation theory,
where V(t) = const over the pulse duration T. Various transient effects such as "ringing" are not present in

the extended Rosen-Zener solution; these effects are related to the large impulsive forces af, the step
discontinuities in the sudden approximation. The final-state level amplitudes can be quite different depending
on the size of the pulse rise time T as compared with the system Bohr period 1/co. Our results allow a
continuous and quantitatively exact comparison between the extremes of the sudden (co T &1) and adiabatic
(coT &) 1) approximations. A model of a "quasisudden" step function is also constructed, and remarks are
made on the validity of a certain conjecture by Rosen and Zener.

I. INTRODUCTION: TWO-LEVEL PROBLEM

Solutions to the two-level problem of quantum
mechanics, where two discrete quantum levels
are coupled to one another by a time-dependent
interaction with an external field, have been used
in the approximate analysis of many different
quantum-m'echanical systems. For example, two-
level models have been used as a starting point
to analyze problems in radiative decay and level
shifts for excited states, ' level-'crossing and col-
lision phenomena, ' methods of magnetic reso-
nance, ' radio-frequency spectroscopy, 4 laser
physics and quantum optics, ' and genera, 1 principles
of quantum mechanics. ' This list is by no means
complete, and undoubtedly the reader can cite
additional examples from his own specialty.

In its simplest form, a solution to the two-level
problem requires a solution to a system of two
coupled differential equations of the type

i8's = V*(t)pe' ', ihp= V(t)se ' '.
Here the two quantum levels are represented by
time-dependent amplitudes s(t) and p(t), with the
s level separated in energy from the p level by
h~. The s level is coupled to the p level by an
off-diagonal matrix element of intera, ction with a,n
external field —we have denoted this by V(t), stres-
sing that the coupling interaction is time depen-
dent in general. If one or both of the levels exhi-
bits spontaneous radiative decay, this may be
accounted for (at least approximately) by adding
appropriate damping terms to the right-hand side
of the equations', a simple transformation of s(t)
and p(t) then allows the damping to be incorporated
as an imaginary term added to &, and the trans-
formed equations are of the same form as Eqs'.
(1), with (u a complex constant.

A solution to Eqs. (1) normally proceeds by first
decoupling the equations, which leads to second-
order differential equations for s(t) and P(t) alone.
The coefficients of the various derivatives in
these second-order equations are functions of the
coupling V(t) and its first derivative, so that exact
solutions to Eqs. (1) are possible only for rather
specific choices of coupling. One frequently used
choice,"which leads to exact solutions for the
amplitudes s(t) and p(t), is to represent .the cou-
pling as a monochromatic, rotating field of con-
stant amplitude over a finite time interval, that is,
V(t)=constxe'"', where the constant is Vo over,
say, -2T& t&2, T, and is zero otherwise. For
such a "rectangular pulse, " the frequency v of
the applied field combines simply with &u (as ~ —v)
in Eqs. (1), and the decoupled second-order equa-
tions for s(t) and p(t) have constant coefficients.
Such equations can be solved exactly and in all
generality, with arbitrary initial conditions and
arbitrary variation of all relevant parameters.
It is for these reasons that the "rectangular pulse"
solutions are widely applied.

Although the rectangular pulse solutions are
mathematically exact, they can be at best only
approximations to the effects of a physically real-
izable coupling V(t). The reason is simple: a
physical V(t) cannot be turned on and off instan-
taneously. Even if "instantaneously" is taken to
mean "in a time interval which is small compared
to the Bohr period 1/&," it is rarely possible to
arrange this experimentally, except perhaps in
collisions at sufficiently high energy. In this
sense, the rectangular pulse solutions are a kind
of sudden approximation' for many situations in
which they are applied. We can expect that at
least the transient behavior of the two-level sys-
tem of interest will be quite different for a, rec-
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tangular pulse than for a more physical V(t) which
varies smoothly in time and which has a sort of
"fringe field" characteristic, in that it is turned
on and off over time intervals which are not small
compared to 1/&o.

A coupling pulse shape which varies smoothly
in time, and for which the two-level problem is
exactly solvable, was suggested some time ago by
Rosen and Zener. ' The pulse shape is

7t t
V(t) = V, sech —, V(t) dt= V,T.

This pulse rises exponentially from zero at, .time
t- —~ to a maximum of V, at t = 0, and then falls,
off symmetrically to zero as t-+ ~, exhibiting
a full width at half maximum of 0.8384T, and a
total pulse "area" of V,T as shown. Rosen and
Zener used this pulse shape to analyze the results
of a Stern-Gerlach type experiment which mea, —

' sured "spin flips" induced when a beam of initially
oriented spin-& particles passed through a region
of magnetic field where the field was constant in
magnitude but rotated in direction. They showed
that the spin-flip probability (i.e. , spin-up to spin-
down transition probability) corresponding to this
smoothly varying pulse shape was quite different
than that which had been calculated for a rectangu-
lar pulse model of the field rotation, and they
explained an experimental result which had been
considered anomalous i;n terms of rectangula. r
pulse theory.

The Rosen-Zener solution —that is, the solution
for the level amplitudes s(t) and P (t) of Eqs. (1).
for the coupling pulse V(t) of Eq. (2)—may be of
considerable interest in more recent work, "to
the extent that a. smoothly varying pulse represents
(more realistically than a rectangular pulse) the
interaction of a two-level system with an actual
laboratory field having a "fringing" characteristic.
Our purpose in this paper is (i) to extend the Ro-
sen-Zener solution to include a simple rotating
field time dependence for the coupling, and to in-
clude decaying levels (in the manner of Bethe-
Lamb theory'); and then (ii) to compa. re the ex-
tended Rosen-Zener solution to the well-known
results of the rectangular pulse approximation.
We anticipate rather different results for the level
amplitudes.

In Sec. II, we solve the two-level problem, in-
cluding damping terms, for a coupling pulse which
has V(t) of Eq. (2) as an envelope, arid in addition .

has a simple rotating field time dependence. We
find exact solutions in terms of hypergeometric
functions for initial conditions corresponding to
full occupation of the s level at early times. The
extended Rosen-Zener solution for the final-state
P-level population reduces to their previous re-

II. ROSEN-ZENER SOLUTION

We represent the coupled tw'o-level system by
equations similar to Eqs. (1), namely

Rs = W*(t)Pe'"»' ,ihy, —s,—

ing= W(t)se "8&' —2ihy~p
(3)

Here the two levels. have time-dependent ampli-
tudes s(t) and P(t), are separated in energy by
I&,~, and are coupled by a time-dependent off-
diagonal matrix element W(t) of interaction with
an external field. The terms in W(t) are present
as an exact equivalent of the time-dependent
Schrodinger equation. ' In addition, in the manner
of Bethe-Lamb theory, ' we have introduced damp-
ing terms which represent the spontaneous decay
of the s and p levels at rates y, and y~, respec-
tively.

We assume that the coupling W(t). depends on
time in two distinct ways: (i) it has a simple ro-
ta, ting fieM time factor e'", where v is the a,ngular
frequency of the applied field; (ii) it has an "en-
velope" factor V(t), which represents the shape
of the applied ac pulse. Thus we write

Evidently the rotating field time factor here will
combine simply with the e""~~' factors in Eqs. (3),
producing a frequency difference &= &,~ —v, which
may be interpreted as the distance "off resonance"

suit in the limit of zero damping. In Sec. III, we

compa. re the extended Bosen-Zener solution to
the results for an equivalent rectangular pulse
coupling. This is done for pulses of duration T
both short and long compared to the system damp-
ing time scale, and for cases where the rotating
field is both on and off resonance (&o= 0, &uW 0).
Next, in Sec. IV, we employ the extended Bosen-
Zener solution to construct a model where an
initially pure level is subjected to a coupling U(t)
which is turned on smoothly, that is, U(t) rises
smoothly from zero to a constant value Vo in a
time which is arbitrary compared to any natural
time scale for the two-level system. In all cases
of interest, exact or nearly exact results for the
final-state level amplitudes can be obtained. These
results for the extended Hosen-Zener solution
quantitatively span the full range from the limit
of the adiabatic approximation (&oT» 1) to the
sudden approximation (&uT«1). Finally, in Sec.
V, we close with som'e rema, rks concerningacer-
tain conjecture made by Bosen and Zener which
allows the final-state induced level population to
be calculated for a quite general class of coupling
pulses, namely those for which a Fourier-trans-
form integral exists.
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then, with W(t) of Eq. (4), Eqs. (3) become

ihs = V*(t)Pe' "' i' = V(t)Se '"' (6)

in frequency units. If we now transform the physi-
cal amplitudes s(t) and P(t) to new amplitudes S(t)
and P(t) defined by

s(t) =S(t)e~~' ', p(t) =P(t)e~&' ' (5)

The minus sign in c corresponds to f(z) =S(t),
while the plus sign corresponds to f(z) =P(t). The
range of variation of the variable z in Eq. (12) is
0 —z —1, which corresponds to the time variation
—~~t~+~. The general solution to Eq. (12) de-
fined in this range is

f(z)=nE(a, b c z)

where +Pz' 'E(a —c+ 1, b —c+ 1; 2 —c;z), (14)

0= ++ziy, &a= &u,~
—v, y=y~-y, . (7)

Equations (6) are identical in form to those solved
by Bosen and Zener for the pulse V(t) of Eq. (2),
except that here the frequency 0 is complex rather
than real, and the amplitudes S(t) and P(t) measure
the amount of level mixing due to V(t) in the other-
wise freely decaying physical amplitudes of Eq.
(5). We shall solve Eqs. (6) for the initial condi-
tions

1 —c=-,'+ (yT/4m) —i((uT/2w) = P, (15)

we note that as t - -~, z = exp(2m t/T) - 0, so that

P (t - -~) = o. + Pz'

where E is the hypergeometric function, ' and n
and P are integration constants.

We now want to impose the initial conditions of
Eqs. (8) on the solutions of Eq. (14). Working on

P(t), for which

ls(t-- )I =i, P(t-- )=o, (8) = n+ P exp[(n /T+ ,'y —i&a)t-]. (i6)

which represent full occupation of the (freely de-
caying) s level at early times.

It is worth noting that because of the damping
terms, probability is not conserved for either
Eqs. (3) or Eqs. (6). Starting from Eqs. (3), it
is easy to show that for the total level population

= -(y. l' I'+ y. I p I'). (9)

This means that it is not correct to solve Eqs. (6)
for say IP I

' and then set
the decay rates are nonzero, each amplitude must
be solved for by itself. Of course we can stiQ use
the interrelations of Eqs. (6)—for example, it is
sufficient to solve for P(t), and then calculate
S(t) ~P(t) from the second of Eqs. (6).

Decoupling Eqs. (6) straightforwardly, we find

s -[(f /v)++ tn]s+
I
v/el's-o,

P -[(0/v) -itl]P+ IV/al'P=o.
(io)

We now make the specific choice of the Hosen-
Zener pulse of Eq. (2) for the envelope function
V(t). Following Bosen and Zener, we also make a
change of variables from time t to

z(t) =-.'[tanh(~t/T)+ i].
Equations (10) are then transformed to the hyper-
geometric equation, which takes the form [where
f(z)=S(t) or P(t)]

z(1 z)f"+[c—(1+a+ b)z-]f' —abf=0, (12)

where

c=&+i(QT/2m), a= b= VoT/mK. -

We assume that the s level is the longer lived
level, so that y = y~ —y, is positive. Then the
second term here goes to zero as t- -~, and
P(t- -~)= 0 only if we choose the constant n = 0.
The solution for P then involves only the second
of the two hypergeometric functions in Eq. (14).
To fix the constant P, we first calculate S(t) fron.
thesecondof Eqs. (6), andthenimpose IS(t-- )

I

=1. ln this way, we find IPI = la/P I
Thus

the desired solutions to Eqs. (6) for the coupling
pulse of Eq. (2), which obey the initial conditions
of Eq. (8), are

P(t) =(a/I yI )z'E(y+a, y -a; y+ i;z),

s(t) = (iy/I y I
)z' exp[-(~/T+-'y —i~)t]

x E(Q+ a, P —a; P;z). (i7)

Here the connection between time t and the vari-
able z is given by Eq. (11), a= V,T/mh is propor-'
tional to the integrated pulse "area" V,T, and &f

is defined by Eq. (15).
The solutions of Eq. (17) appear to be identical

in all i'mportant respects to the previous Hosen-
Zener solution, ' except that now the effects of
damping are accounted for by the terms in y, and
the frequency ~ may be interpreted as the frequen-
cy deviation from the expected transition reso-
nance at an applied frequency v= u,~. The change
in the interpretation of ~ is of no great conse-
quence, except that we will be mainly interested
in the near-resonant condition & —~y. The inclu-
sion of the damping terms in y have a substantial-
ly greater effect in altering the nature of the
previous Rosen-Zener solution, as we shall see.

The final-state amplitudes are found in the be-
havior of the functions P(t) and S(t) of Eqs. (17)



250 R. T. 8, OBIS COE

as t -+ , i;e. , at times t » T, where T is the
approximate duration of the coupling pulse. This
corresponds to z-1, and here we must be careful
in handling the hypergeometric functions. It is
known" that E(A, B;C;z) is absolutely convergent
as ~z

~

—1 only if Re(C —A —B)&0. For the func-
tions of Eqs. (17}, this condition translates to

p(t» T) = —exp(=, y t) sinza csex(t)
i(bl

r'(0)
+ a)r(

17 jx exp ——+ &y, +i ~ t (22)
for P(t): He(l —(t)) =-,' —(yT/4~)& 0,

i.e. , yT& 2n',

for S(t): Re(-P) = -z —(yT/4~)& 0.
The first condition can be met for short pulses,
T& 27)/y, but the second condition cannot be satis-
fied as long as y=y~ -y, &0, as we have assumed.
The lack of convergence in this case is more ap-
parent than real, however, as the physical ampli-
tudes [Eqs. (5)] are both well behaved for t » T.

To better see what happens for t» T, or z - 1,
we use the transformation formula for hypergeo-
metric functions"

I (C)I'(C —A —B)
I"(C —A) I'(C —B)

x E(A, B;A+B —C+ 1; 1 —z)

I (C )I (A + B C)
r(A)r(B)

Now both terms in P(t» T) vanish exponentially as
f-+ ~, so P(t) is well behaved, and this expression
for the induced-state amplitude should be correct
for all values of y~, y„and T. It vanishes as it
must when the pulse "area" parameter a-0 (zero
coupling). The first'term on the right-hand side
of Eq. (22} is dominant for (y~ -y, )T& 2)), while the
second term is dominant for (y&-y, )T& 27). For
(y~ —y, )T«2m, Eq. (22) gives the induced-level
population

~
p(t » T)

~

' = 8 "()' sin+a
I
sech-;((d T+ 'Zy(T)

I

'-. (23)

This is identical to the previous Hosen-Zener solu-
tion in the limit of nondecaying levels, y~ and

y -0
If we treat S(t) of Eq. (17) similarly, applying

the transformation of Eq. (19), forming the physi-
cal amplitude s(t) = S(t)e"'8'~', and letting t become
large compared to the pulse duration T, we find

P(t) = z~ E(Q+ a, (t) —a; P; 1 -z)a, I'(1+ P)r(1 —P)
I (t) I

I" 1+ a I' 1 —a

r(4'+ 1)r(4 1)
( p' r(y+ a)r g

x E(( - a, (+x;1—(; (-x)). (20)
I

For t» T, z~ goes uniformly to one, but the (1 -z)
factor goes as

(1-z)' '=exp[(-.'y -7)'/T —ie)t], t»T.

This diverges exponentially for y T& 2~. But the
physical amplitude is P(t) =P(t)e~~'~', which is
well behaved as t-+ ~. Forming P(t) from Eq.
($0), ' letting z -1 (or t)- T), and doing some y-
function algebra, we find

)'y'(C A, C B;C A —8+1;1—z),

(19)

where the I"s denote the y function. " The E func-
tions on the right-hand side of Eq. (19) are well
behaved as z - I, and we need only worry about
the factor, in (1-z). Applying this transformation
to P(t) of Eqs. (17), we find

a
+ —(sinma csex(I))

77 ]xexp ——+ &y —iu t
T (24)

Again, both terms in s(t » T) vanish exponentially
as t-+ ~, so s(t) is well-behaved in this limit,
and this expression for s(t » T) should be correct
for all values of y~, y„and T. It shows the cor-
rect behavior that

~

s(t » T)
~

= e "~'~' in the limit of
zero coupling, a-O. The first term on the right-
hand side of Eq. (24) is always dominant if y~&y, .
The limit of Eq. (24) as y~ and y, - 0 is not easy
to get, nor particularly enlightening here; we

shall deal with it in Sec. III.
To summarize this section, we have solved the

two-level problem including damping terms, Eqs.
(3), for a coupling pulse which has a simple ro-
tating fieM time dependence e'"' times a bell-
shaped envelope function V(t) of the form of the
Hosen-Zener pulse of Eq. (2). Exact solutions for
the level-mixing amplitudes P(t) and S(t) are given
in terms of hypergeometric functionS in Eqs. (17),
for a choice of initial conditions corresponding to
fuQ occupation of the s level at early times. The
physical (Schr'odinger) amplitudes, given by Eqs.
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(5), are expressed at times well after the cou-
pling pulse has died away by Eqs. (22) and (24).
These amplitudes are well behaved as t-+ ~, and

appear to be correct for all values of the pulse
durati. on T and choice of damping constants y~
and y,. In the limit that the damping constants go
to zero, the induced level population of Eq. (23)
reduces to the previous Rosen-Zener solution.
As we shall see, however, the inclusion of non-
negligible damping considerably changes the previ-
ous Rosen-Zener solution.

we shall add a subscript ~ to the amplitudes cor-
responding to the Rosen-Zener bell-shaped pulse.
The final-state physical amplitudes, after the R
pulse is over, mill be

p„(t» T)=P „(,'T)e-
s (t»T)=S (-'T)e~" '

(29)

(30)

These are to be compared with the Z-pulse ampli-
tudes of Eqs. (22) and (24).

S~(t) = [(Q+ 1)/2Q J exp[- p,,(t+-,'T)]

+ [(Q —1)/2Q] exp[- p,,(t+-, T)]. (27)

The parameters ~= ~,~ —v, and y=y~ —y„have
the same meaning as before [Eqs. (7)]. The new
parameters are"

III. COMPARI'SON WITH THE RECTANGULAR PULSE
SOLUTION

In this section we wish to compare the extended
Rosen-Zener solutions of Eqs. (22) and (24) with
the solutions for an equivalent rectangular pulse.
By the rectangular pulse, we mean a coupling
with the same rotating field dependence e'"' as in
Eq. (4), but with a rectangular envelope function
V(t) of the form

1
V, for ,T&t&+ , T,---

(25)0 otherwise.

This pulse has the same time-integrated "area"
V,T as the Rosen-Zener pulse of Eq. (2), but dif-
fers from the Rosen-Zener pulse in that it is
turned on and off effectively instantaneously.

Thus we are interested in the solutions to Eqs.
(6) for the pulse shape of Eq. (25). The solution is
straightforward and we merely quote the results.
We choose the initial conditions: S(t) = 1,P(t) = 0
for t& -& T, which represents full occupation of the
s level before the pulse is applied; this is equiva-
lent to the choice of initial conditions in Eq. (8)
for the Rosen-Zener pulse. Then, for —~ T &t
&+~T, we find

Ps(t) = ie~"'[q/(-1 —iK)Q]e"' '
x (exp [-p, (t+ —,

'
T)] —exp[- p, (t+-,' T)]J,

(26)

A, Short pulses

Perhaps the simplest comparison between the
Z (Rosen-Zener) pulse solutions and the 8 (rec-
tangular) pulse solutions is in the case where the
detailed pulse shape should be of no consequence,
that is, the 5 function limit, where the pulse amp-
litude Vo- ~ while the pulse duration T -0 in such
a way that the pulse area V,7.' is constant. In this
limit, the Z-pulse amplitude of Eqs. (22) and (24)
reduce to

pe(t » T) = e~n't' sin( V, TK/),

se(t » T) =ie~~'t'cos(V, T/h).
( 31)

In the same limit, the R-pulse a'mplitudes of Eqs.
(29) and (30) reduce to

Ps(t» T)= -ie "t' 'sin(V, T/I'),

s„(t» T)= e~~'t' oc(sV, TI/).
(32).

p.(t"T) =(e/I el)e """
x sin(V, T5/) sech(g (uT),

s,(t»T)=(iy/l yl)e-" ~

x [r'(y)/r (@+a)1"{y a)],

As expected, the Z-pulse and B-pulse results are
the same, except for the physically unimportant
relative phase factor i.

The next simplest comparison between the Z-
pulse and R-pulse results appears to be in the case
where the pulse duration T is short compared to
the decay rate time scale 1/y, but not short com-
pared to the Bohr period 1/e. For the Z-pulse
results, this may be interpreted as yT «2n, but
~T not necessarily small. Then Eqs. (22) and (24)
reduce to '

q = 2V, /ey, ~= 2(u/y;

Q =[1—[4g /(1 —iK) p (28)

where

a= V,T/nh; Q=-, —i(&uT/2w) for yT«2n. (34)

p„,= 4y(l —i~)(1v Q).

We have added a subscript A to these expres-
sions for the leve1-mixing amplitudes to distinguish
them as rectangular pulse amplitudes; hereafter,

For comparison with the equivalent B-pulse re-
sults, it is easiest to look at the level-mixing
populations, that is, the above lpz l' and

l
szl'

with the free decay factors e~& 8' factored out.
These are
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where
(36)

Q -"[1+(2V /h&u)']'

Again, when y=0, IP~I'+ IS„I'=1, so that the
level mixing probability is conserved, as it must
be.

It is not easy to directly compare the Z-pulse re-
sults of Eq. (35) with the R-pulse results of Eqs.
(36), because the functions involved have rather
different arguments. In any event, it is sufficient
to look at the induced level populations IP I' alone,
since we have IS I'= 1 —IP I', when y-0 in both
cases. The most immediate difference between
IPe I' and IP„I' is that, considered as functions of
the coupling amplitude V„ they are modulated by
sine factors with quite different arguments: IPe I'
is always modulated by sin'(VoT/h), no matter
what the value of the off-resonance frequency (d,
while IP„I' is modulated by sin'( —,Q&uT), which
depends on the value of (d. The two expressions
are equivalent only when &-0, i.e. ,

IPz(t» T) I'= sin'(VoT/h)

= IP (t= ,'T)I' for &u-0. —(37)
This result is consistent with the results of Eqs.
(31) and (32) in that here we have let both y -0
and - 0, which is equivalent to choosing a pulse
(any pulse) whose duration T is short compared
to both system time scales I/p and I/&u.

When w4 0, the situation is quite different. If
we assume we are sufficiently far off resonance
so that ~T» 1, then the Z-pulse result of Eqs.

I
Pe(t » T)

I

' = sin'(V, T/h) sech'( —aT),

S,(t& T) I'=
I
cos[(V.T«)+ t'(-'~T)] I'

&& sech'(-,'~T).

We note that IPeI'+ IS~ I'=1 here, as we would

expect when the decay rate time scale 1/y is large
compared to the pulse duration T. This will be
true for sufficiently short pulses (yT «2w), or
when the decay rates are equal (p =p/, —p, = 0), »
when neither state decays (p/, =y, = 0). In the last
case here, Eqs. (35) are identical to the previous
chosen-Zener results' for the final level popula-
tions, and probability is conserved as it must be.

The 8-pulse results which are comparable to
Eqs. (35) can be found from Eqs. (26) and (27)
evaluated at t = ~ T and approximated in the limit
that y - 0. We find the usual quaritum beat re.-
sults, "namely

IP„(t=—,'T) I'= ( 2V, /8 Q(o)' e" /'sin'(-'Q(uT)

2

(t T)
I

2 +
e foe&r/2+ -e&Q~1'/2

2Q 2Q

(35) becomes

IPs(t»T)I'=4e "-'sin'/I,

where A. is the pulse "area" as defined by Bosen
and Zener

(38)

yt dt 0 (39)

~2' T /2

IP~(t gT)I
( )2 2 ~ (40)

This result is rather dramatically different than
that of Eq, (38) for the Z pulse, as was noted by
chosen and Zener. Here the modulation factor has
disappeared, and for +T» 1, IPzIj is substantial-
ly larger than IPe I'. We can conclude, therefore,
that for sho~t pulses (yT «2v) the Z-pulse and
B-pulse results are similar only near resonance
(~T«1), and they differ substantially off reso-
nance (a&T» 1). Experiinentally, if we were mea-
suring an s-level to p-level transition resonance,
i.e. , P

I

' as a function of co, we would see differ-
ent line shapes depending on whether the applied
coupling pulse was more nearly rectangular or
bell shaped. The differences could become sub-
stantial at off-resonance frequencies (d-&y."

B. Longer pulses

When the reduced decay rate y = y~ —y, and
pulse duration T are such that yT is not small,
comparison between the Z -pulse and R-pulse re-
sults becomes more difficult. One choice of pulse
duration which leads to a reasonably simple ana-
lytic result for the Z pulse is

yT=2n, /=1 —i~T/2m. (41)

In this case, the induced level amplitude of Eq.
(22) is

~.(t»T)=( e/IeI) """
&& [(2A/vT)G —sinA csch(2 eT)], (42)

where 4 =7/a= VOT/K is the pulse area of Eq. (39),
and

& = T'(0)e *"'/I'(4+ e)1'(4 —e) (43)

Forming the induced level-mixed population
I
P~ I

'
by factoring the free decay multipliei e "~' out of

IP, I', we find

In the same limit, the R-pulse result of Eqs. (36)
may be approximated by replacing the sine squared
factor with its average value of &, so that
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IPz(t» T)I'=A'csch'(-,'~T)

sina ' sin4 '
tion of the coupling, while Ipz I' has the charac-
teristic Rosen-Zener sin'A modulation factor.
Again, for weak coupling, Eqs. (49) and (50) can
be written

where

slQB SlIL4

(44)
Ipz(t» T) I'=4a'(«/T)'e "",
Ip„(t» T)I'=4a'e &'sinh'[2z(I —2a')],

B=A+ —,'i(d T, 8= arg. (45)

We shall be interested in the behavior of IPz I

' of
Eq. (44) for the case of near resonance (&uT= 2m~/
y«1), and far off resonance (2m~/y» 1).

For the near resonance case, &u«y/2~, but
e40, it is necessary to expand IPzI' and retain
terms of order (—,

' &uT)' as well as order (—,
' orT)'.

This leads to extremely messy algebra and is not
particularly enlightening, so we shall do only the
order (z &aT)' expansion, which is sufficient to
isplay the behavior of IPz I' on resonance, ~=0.

First, we note that 8 of Eq. (45) is of order ~t at
least, because of the e '"' factor in G of Eq. (43).
Then, to order ~', it is sufficient to take

IPz(t» T)
I

'= 4(2/eT)'sin'2 sin'( —,
' 8).

We now expand 8 in powers of (2 &T), discarding
terms of order (2+T)' and higher. We find

(46)

8= -~T[C (a)+ (t/T)],

4'(a) = P(1) —z[g(1+ a)+ g(1 -a)],
(47)

where &a=A is the pulse area and the g's are di-
gamma functions. " Thus, on resonance, we get

IPz(t» T)I'=4[4'(a)+ (t/T)]'sin'A. . (46)

This result diverges for t-+ ~, but the physical
induced amplitude is Ipz I'= IPz I'e "&', so that

Ipz(t » T) I'= 4e &'[0'(a)+ (t/T)]'sin'2 (49)

remains finite. This result is similar to that for
the square of the amplitude of a critically damped
oscillator. "

The R-pulse result comparable to Eq. (49) is
found from Eq. (26) by forming the physical ampli-
tude of Eq. (29) and then setting ~=0 (or v=0).
The induced level population for an R pulse with
yT= 2m and on-resonance is then

I p„(t » T)
I

'= [4a'e~&'/(I —4a')]

x sinh2[ —
7f (1 4a2)& ~2]

which is exact. Unlike the result for short pulses
(yT«2z) where the Z-pulse and R-pulse results
were identical on resonance, Eq. (37), it is clear
by comparison of Eqs. (49) and (50) that the on-
resonance results for a longer pulse (yT= 2m) are
very much different. For weak coupling (i.e. , a
«1), IPs I' shows no modulation at all as a func-

to order a'. For an observation time t» T, IpzI'
will be much larger than Ip„ I

', which is some-
what surprising. The appearance of the multipli-
cative factor {mt/T)' in Ipz I

' indicates that pz(t)
carries with it a physically important relative

.phase factor between the s and P levels which is
not present as such in Ps(t). In fact, a relative
phase factor such as e ' ' cannot be factored out
of the exact &-pulse result of Eq. (22), while it
does factor out of Eq. (26).

Another point of comparison between the Z- and
R-pulse results of Eqs. (49) and (50) is that al-
though the Rosen-Zener modulation factor sin'A is
not present in Ip„I' for weak coupling, it does
appear in the strong-coupling limit. From Eq.
(50), we have (for y T = 2~, ~ = 0)

a=-,': Ip„(t» T)
I

2= (-'z)' e-"u'

a&-,':
I p~(t » T)

I

'= [4a'e~~'/(4a' 1)]

x sin'[ —,'z(4a' —1)' ']

a»,'- Ip„(t» T)
I

'= e "&' sin'A,

(52)

The parameter a= z translates to a coupling
strength V, = 4@y for the present pulse. As has
been discussed by Lamb, "this is a critical cou-
pling strength at resonance for the rotating field
R-pulse theory with decaying states: for Vp~ 4hy,
such a system is overdamped; for V, = 4hy, it is
critically damped; for Vp& 48y, it is underdamped.
In.the last case only, we can expect to see a modu-
lation of the induced level population at sin'A,
where A = V,T/h is the usual result of perturba-
tion theory for degenerate levels. The appearance
of the modulation factor sin'A in Ipz I' of Eq. (49)
for a/l relative values of the coupling strength V,
and damping constant y is thus somewhat sur-
prising, as is the fact that Ipz I' shows the charac-
ter of a critically damped oscillation with time t
for all relative values of V, and y. The Z-pulse
theory is thus sort of a hybrid version of B-pulse
theory with respect to oscillatory modulation at
resonance.

Far off resonance (~T» 1), the comparison be-
tween the Bosen-Zener solution and rectangular
pulse theory again shows quite different results
for the induced level population (for a yT= 2m

pulse). If we neglect terms of order (I/eT)', Eq.
(44) becomes
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~ =q/a= V, /8(u=A/(uT'. (55)

This result is good for any value of yT and any
coupling strength &. It is clear here that, unlike
Z-pulse theory, the off-resonance behavior in R-
pulse theory is controlled by both the 1/&u and 1/y
time scales relative to T. To put lP~l' of Eq.
(54) at the same order of approximation as lP~ l"
of Eq. (53), we include only terms up to order &',
and so obtain

l
P„(f=-.' T)

l

' = 2~'&cosh(-'. y T) —cos[~T(1+ 2e')]], '

(56)

where y 7= 2& for the pa, rticular pulse in question.
As in the case of short pulses [yT «2~, Eqs. (38)
and (40)] lPz I' '»ubstantiaLLy Larger than lPz

l

'
off resonance. Aswell, lP„t'showsanosciLLatory
behavior as a function of the off-resonance frequency
~, while lP~ l'apparentlydoes not. This wasalso
true for short pulses [compare Eqs. (56) with (36),
and Eqs. (53) with (40)], and it indicates a kind of
"ringing" behavior present in B-pulse theory which
does not appear in + -pulse theory. Such ringing
can be expected in B, -pulse theory as a consequence
of the large impulsive forces generated when a
sudden perturbation is applied to the system.

We can multiply examples of the differences be-
tween the Z- (Hosen-Zener) pulse solutions and
R- (rectangular) pulse solutions for the final-state
level amplitudes for long pulses. However, it
seems sufficient to consider briefly just one more
example, namely the case of a very long pulse
(y T» 1), at resonance (~= 0), for weak coupling
(A«yT). We find the induced level populations
given, to terms of order (A/yT)', by

(t» 7) ~

a (4A/&T)2e y~l e artlr
(57)

P~(t» T) I'= (4A/yT)'e~~'sinh'(-, 'yT).

Although these results depend upon the relative

lP.(t»T)l =4e "-s;nA.

This is the same as the off-resonance result of
Eq. (38) for short pulses (yT«2m), which indi-
cates that in Z-pulse theory it is the system time
scale 1/& rather than 1/y which controls the off-
resonance behavior. The corresponding result
from R-pulse theory is found from Eq. (26) by
evaluating P~(t) at time t = 2 T, and taking the
limit v= 2&v/y» 1 (i.e. , wT»v for a. yT= 2~ pulse).
Neglecting terms of order 1/z', we find"

lP (t =-,'T)
l

'= [2~'/(1+ 4~')]

x [cosh[~yT (1+4e') '~']

—cos[cuT(L+ 4e')'~']),

coupling strength A/yT= V, /hy in the same man-
ner, they may be of quite different sizes depend-
ing on the relative values of the decay rates y~
and y, .

We can summarize this section very briefly by
concluding that for coupling pulse durations T both
short and long compared to the system decay rate
time scale 1/y, there are substantial quantitative
and qualitative differences between the final-state
level amplitudes predicted by the theory for the
Hosen-Zener pulse [Eq. (2)] and the rectangular
pulse [Eq. (25)]. The results for the two pulses
are similar only for very short pulses, &T«1;
for longer pulses, the final-state level amplitudes
are quite different (particularly off resonance)
in both magnitude and phase, indicating substan-
tial differences in transient behavior of the cou-
pled two-level system. Although some of the dif-
ferences (e.g. , "ringing") can be expected quali-
tatively on general principles, in that the solutions
for the Rosen-Zener pulse bear the same general
relationship to the adiabatic approximation as do
the solutions for the rectangular pulse to the sud-
den approximation, the present comparison al-
lows exact quantitative differences to be calculated.
This is potentially of value in those types of preci-
sion experiments'4 where a, quantitative theory
of resonance line shapes is required, and in which
a coupling pulse with a "fringing" characteristic
is present.

1V. "QUASISUBBEN" SOLUTION

In some applications, the two-level system of
Eqs. (3) may be coupled by a. pulse W(t) which

rises from zero at early times to a, maximum
magnitude of Vo, say at time t = 0, and then re-
ma, ins at V, indefinitely for t& 0. If we allow a
rotating field time dependence for W(t) during this
time, i.e. , a multiplicative factor of e'"~ as in Eq.
(4), we may model such a coupling pulse by the
envelope function

[V, sech(wt/T), -~ & t ~ 0,' ='IV„ t=o.
The overall coupling is W(f) =U(t)e'"', where v

may be zero for application of a, "static" field.
The envelope function U(t) rises smoothly (quasi-
exponentially) from zero for t- -~ to the constant
value Vo at t= 0, having achieved its half-maximum
value at time t = -&t, where

&t = (T/&) ln(2+ M3) = 0.4192T

may be taken as a sort of pulse rise time. For
T-O, this rise time vanishes, and U(t) then rep-
resents a step function of magnitude V, at time
t=0.
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For T-O, or the application of a step function
coupling, we expect that the sudden approximation
will wor k well; this is equivalent for a two-level
system to expressing the level-mixing amplitudes
by solutions for the leading edge of a rectangular
pulse as in Eqs. (26) and (27). But when T is com-
parable to the system's natural time scales, either
the effective Bohr period 1/&u or the characteristic
damping time 1/y, the sudden approximation breaks
down, becoming successively worse as &T or yT
increases. The adiabatic approximation should be
used for long rise times, (dT» 1, but even this
will not work near resonance, (d- 0. And for (dT
-1, neither the sudden nor the adiabatic approxi-
mation to the actual coupling pulse shape can be
expected to give reliable results for the level
amplitudes at times t& T. Among other things, this
means that for rise times T such that yT- I one
can expect to see a breakdown in the step-function
theory of a resonance transition line shape (i.e.,
a calculation of the final-state level populations as
a function of cu) at off-resonance frequencies
~-y, which is near the line half maximum.
Effects of this sort are of potential importance in
certain types of atomic beam experiments where
the beam enters an interaction region which may
have a "fringe field" characteristic, i.e. , a region
of gradually increasing coupling strength with a
rise time 7' of the order of 1/~ and/or 1/y."

An evident improvement over a. step-function
(or sudden approximation) theory of the final-state
level amplitudes for the coupled two-level system
would be to solve the amplitude Eqs. (3) for the
coupling U(t) of Eq. (58), where the pulse rise time
T may be varied arbitrarily from T -0 to T-
"large" (as compared with 1/~ and/or 1/y). That
is what we will do in this section, simply by eval-
uating the Rosen-Zener solutions of Sec. II at time
t= 0, which accounts for the system coupling over
-~ & t —0, and then using the t = 0 Hosen-Zener
solutions for the amplitudes as the "initial condi-
tions" for the well-known step-function solutions
at t «0. This works precisely because we have
exact solutions for the level amplitudes, namely
Eqs. (17), in a region such as -~(f~ 0 for U(t),
where the system coupling is represented by the
envelope function Vosech(~t/T). One can expect,
as shown in Sec. III, that there will be significant
new features (as compared with step-function
theory) in both the magnitude and relative phase
of the final-state level amplitudes for pulse rise
times T comparable to the system's damping time
1/y and for off-resonance frequencies ~ —y. We
shall call these modified step-function type solu-
tions the "quasisudden" solutions, since for arbi-
trary T neither the sudden nor the adiabatic ap-
proximation is involved as such; we have a sort

of intermediate case.
The solutions to the amplitude Eqs. (3}for the

coupling pulse envelope of Eq. (58) are given by
the level-mixing amplitudes of Eqs. (17) for
—~& t —0. The physical amplitudes are those of
Eqs. (5). Since the variable z of Eq. (11) is equal
to one-half when t= 0, the physical amplitudes are
then (exactly)

p(0) = (a/l Q l
)2 ~E(&f&+ a, Q —a; Q+ 1;—,

'
),

s(»=(ie/l&I)2'&(&+n & ne-l)
where E is the hypergeometric function, "and

ma= V,T/8 =A, P = —,'+ (yT/4v) i(+-T/2v),

(60)

( 61)

(62)

The expression for s(0) is more complicated.
After some algebra, "we find

iy JirI'(p) ~ /+a ~, 0 —
a)
'

lgl 2ez . 2

—iP (0). (63)

Equations (62) and (63) are exact. They behave
correctly in the limit of zero coupling, Vo-0 or
a- 0 (but T O 0) as

IP(O)l-0 ls(0}l-1 f» ~-0.
These are the usual initial conditions used for the
solution to the step-function pulse. An interesting
change occurs in the limit that T-0 but ra = V,T/8
=A. ~ 0, i.e. , a sort of "rounded off" step function.
We find (for P=&)

p(0) = sin(~A), s(0) =i cos(2A), for T —0. (65)

These results are similar to those for the 5 func-
tion limit of the Rosen-Zener pulse calculated in

with y = y~ —y, the system damping constant and
&= +,~ —v the off-resona. nce frequency as defined
in Eqs. (7). The parameter A is now twice the
pulse "area" over —~&t~ 0 as it was defined in
Eq. (39). Let us assume that the pulse maximum
magnitude V, is a real parameter; a more general
treatment would allow V, to be complex, say

l
Vo e'~ for a pulse whose rotating field factor had

an initial phase 5." Finally, the amplitudes of
Eqs. (60) satisfy the initial conditions of Eqs. (8),
namely the (freely decaying) s level is fully occu-
pied and the P level is unoccupied as t- -~.

The E functions of Eqs. (60) can be expressed
in terms of y functions: for example, "

vw 1"(Q} /+a, P —a'
I@I 2' 2

'
2
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Eqs. (31) of Sec. III A; in fact we may quote those
results as

~=-'y(l-f~)Q, Q=(I-[4~q~'/(I-f~)'P".
y=y& -y„e=e,&

—v; (69)

p~.(0+ ) = sinA, s~(0+ ) = i cosA, (66) q = 2v,e"/8y, ~= 2(u/y.

where 0+ means that P~ and s~ are evaluated at a
time t infinitesimally greater than zero. The be-
havior of the initial amplitudes p(0) and s(0) of
Eq. (65) for our smoothly varying step function
(T-O, but 8 40), which is —in a manner of speak-
ing —intermediate between that for an instantane-
ous step (V, finite and dV/dt-~) and a true 5 func-
tion, indicates that, any degree of rounding off at
the leading edge of a step function has a critical
effect on what initial conditions should be em-
ployed. The critical parameter is the effective
area of the leading edge of the step

—A. =1
2 U(f) df =

2k
(67)

P(t) = exp[- —,'i(dt ——,'(y~+ y, )t)

&& ([coshXt —(1/Q) sinhM] p(0)

—e"[(1 —Q 'P ~' sinhzt]s(0)],

s (t) = exp[ ,' f,(dt - 4 (y~+ y—,)t]

&& ([coshXt+ (1/Q) sinh&t]s(0)

-e ' [(1—Q ')'~'sinhkt]P(0)),

where

It is only when &4 is truly zero that the usual step-
function initial conditions of Eq. (64) are valid.

When the rise-time of the leading edge of the
pulse is not negligible compared to the natural
time scales of the coupled two-level system (i.e. ,
T not "small" compared to the effective Bohr
period I/&u or damping time I/y), then the be-
havior of the initial amplitudes p(0) and s(0) is
given by the much more complicated expressions
in Eqs. (62) and (63). We shall deal with the com-
plexities of P(0) and s(0) later (see Appendix A);
here we wish to write down the final-state level
amplitudes for the pulse U(t) of Eq. (58). We have
the results for the coupling from t& -~ up to t = 0
as expressed by p(0) and s(0) of Eqs. (62) and
(63); we will now use these as the input amplitudes
for the solution to the U(f) = Vo problem for f 0.

The general solutions to Eqs. (3) for the coupling
pulse magnitude Vp const have been calculated by
Lamb, "Ramsey, "and most recently by Fabjan
and Pipkin. " If the amplitudes of the p and s
levels are P(0) and s(0) upon application of a con-
stant pulse of amplitude Voe', then at time t~ 0
the level amplitudes are

p(0) = (Q/~ P
~
)[&P(Q)+ @(&')],

s(0) = (iy/~ y
~

)[1+e(a')],
(7o)

p(()=l (( 2
)-:((-*'(),

with P(Q) the digamma function. " Details are

(71)

These results are the same as Eqs. (9b) and (9a)
of the Fabjan-Pipkin paper"; they have been
transformed to our notation [see Eqs. (28)] for
convenience. We note that y is the same system
damping constant and + the same off-resonance
frequency as we have previously used [see Eq.
(7)]. We have previously chosen the initial ro-
tating field phase" 6 = 0; to be consistent with the
p(0) and s(0) results of Eqs. (62) and (63) we must
choose 5=0 here also. Equations (68) yield re-
sults identical to the rectangular pulse results of
Eqs. (26) and (27) when p(0)=0 and s(0) = 1, and
when the free decay terms e "&' ' and e~&' ' are
factored out.

Equations (68) are the desired "quasisudden"
solutions to the problem discussed at the begin-
ning of this section, i.e. , they are general and
exact solutions to the coupled two-level problem
of Eqs. (3) for a coupling pulse W(f) = U(f)e'"', with
U(t) being the quasi-step-function of Eq. (58). We
need only substitute the exact values of p(0) and
s(0) from Eqs. (62) and (63). The critical param-
eters y, (d, T, and A. = V,T/h may be varied arbi-
trarily since the solutions are exact. Evidently
the complete expressions for p(t) and s(t) are
quite complicated. However, we can expect quite
different results for the quasisudden solutions
with P(0) and s(0) given by Eqs. (62) and (63), as
compared with the step-function solutions with
much simpler initial conditions such as P(0)= 0,
and s(0) = 1, in Eq. (64). Evidence for this is
already apparent in the discussion above on
"rounding" in Eqs. (65)-(67).

We shall not discuss in detail the differences
between the quasisudden solution and step-func-
tion solution which arise because of the different
boundary conditions chosen. We shall make a few
general remarks, however. If we look at the
weak-coupling limit, where we expect the dif-
ferences between the two solutions should be mini-
mal, even then these differences may not be neg-
ligible. For if we expand P(0) and s(0) of Eqs.
(62) and (63) in a series of powers of the coupling
parameter a= V,T/mK, we find
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I
e(t) I'= exp[-k(y, + y, )t]

(72)

where

x(IX.e(0)
I

'+
I
Zp(0)

I

' —2Re[X,*Zs *(0)p(0)]],

X,= coshXt + (1/Q)sinhkt,

Z =(1-Q ')' 'sinhV
(73)

we can see that the cross terms will be quite dif-
ferent, even in lowest or.der in a, depending on
the choice of P(0) and s(0). If we take P(0) of order
a and s(0) of order unity as in the quasisudden in-
put amplitudes of Eqs. (70), the cross terms will
be of order a' (since Z is of order a). Such cross
terms vanish in the step-function solution when we
choose p(0)=0, s(0)= 1. Since Ip(t) I' itself is of
order a', then clearly the inclusion or exclusion
of the cross term is critical.

In this section, we have solved the two-level
problem of Eqs. (3) for an applied coupling W(t)
= U(t)e'", where U(t) is the envelope function of
Eq. (58). This W(t) represents a modified radio-
frequeiicy step function where the pulse rise time
T is arbitrary. The solutions, which we have
termed the "quasisudden" solutions, are the final-
state amplitudes of Eqs. (68), where p(0) and s(0)
are the input amplitudes of Eqs. (62) and (63). We
have shown that the choice of input amplitudes
depends critically on the structure of the leading
edge of the pulse, depending in this specific exam-
ple on the integrated "area" from t& -~ up to the
point in time (t = 0) where the pulse actually
achieves constant amplitude; see Eqs. (65)-(67).
Finally, we have reinarked that generally the in-
duced level population

I p(t) I

' will depend rather
critically on.the choice of input amplitudes p(0)
and s(0), so that substantial differences in Ip(t) I

'
may be seen depending on whether the "quasisud-
den" or sudden approximation solutions are used.

V. DISCUSSION: ROSEN-ZENER CONJECTURE

The detailed conclusions regarding the present
calculation are set forth in the final paragraphs of
Secs. II-IV. They are therefore not repeated here.
However, we can remark that the general program
set forth in the last paragraph of Sec. I has been

given in Appendix A, where the higher-order
terms are also calculated. Now if we use these
as input amplitudes in the final-state level popula-
tions corresponding to the amplitudes of Eqs. (68),
namely

I
p(t)

I

'= exp[-k(y, + y,)t]
!'

x[IX-p(o)l'+ IZe(o) I' 2Re[X*Zp*(0)s(0)]],

(74)

I -z[V (t)/a]Se-'"',

could be written in the form

IS (final) I'=
I
(siW/A)S(T; n) I', (75)

where A is the pulse area as defined in Eq. (39),
and F(T;0) is the Fourier trarisform of the pulse

+dO

F(T; t1) = — V(t)e'"'dt.I (76)

Rosen arid Zener showed that this rather general
formulation was correct for their choice of cou-
pling pulse, i.e. , V(t)= Vo sech(vt/T), and for 0 a
real variable. They speculated that the result of
Eq. (75) held "for all nonsingular (coupling pulses),
i.e. , all functions which are continuous and whose
first derivatives are continuous. " To the extent

accomplished. Namely, the quantum-mechanical
two-level problem has been solved for a new type
.of coupling, by extension of the previous solution
of Rosen and Zener' to include a rotating field
dependence for the coupling pulse and to include
spontaneous decay for the coupled levels. This
new type of coupling pulse leads to exact solutions
for the final-state level amplitudes in which all
relevant parameters can be varied arbitrarily. In
particular, the duration or rise -time T of the ap-
plied pulse can be continuously varied from the
regime of the sudden approximation (where T «
either the system Bohr period I/&o or characteris-
tic damping time 1/y) to the regime of the adia-
batic solution (where T» I/&u or 1/y)." Over this
range of variation in T, rather substantial differ-
ences occur between our "quasisudden" solutions
for the final-state level amplitudes and the well-
known solutions for a rectangular or step-function
coupling pulse. At least some of the differences
are nonphysical in that they are traceable to the
nonphysical step discontinuity or infinite force
impulse connected with the rectangular pulse. Al-
though this is expected from the general principles
characterizing sudden versus adiabatic approxima-

. tions, our quasisudden solutions aiiow exact or
nearly exact comparisons between thyrse extremes,
and they also quantitatively cover the intermediate
case (&uT or yT- 1). The quasisudden solutions
are thus of potential value for a more complete and
accurate version of the theory of resonance transi-
tion line shapes in those cases where the coupling
pulse has a fringe-field characteristic.

We close with some remarks on an interestirig
conjecture made by Rosen and Zener. ' They ob-
served that the solution for the final-state induced
level population for the coupled two-level system
of Eqs. (6), namely

S = -i[V *(t)/h]Pe'"'
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this conjecture is valid, '4 we can use Eq. (75} to
handle a quite general class of couplings, namely
those for which a Fourier-transform exists.

First, we note that Eq. (75) as stated cannot be
generally valid for coupling pulses V(t) which are
odd functions of time, for then the Fourier trans-
form vanishes when 0= 0, so that on resonance
we would have IP(final) I'=—0, which does not make
sense. Perhaps one could patch up Eq. (75) for
such pulses by replacing the Fourier integral over
-~~t~~ by twice the integral over O~t&

Second, one can ask whether Eq. (75) is valid
when 0 is a complex variable as in Eq. (7), i.e. ,
when a nonzero damping constant y = y~ —y, is in-
cluded. The first response to this question is to
see whether Eq. (75}holds for the Hosen-Zener
pulse V(t)= V, se ch(7)t /T), when y40. In this case,
the Fourier integral becomes

+ OO

'I':(T &u y)= —o e~' 'sech —e'"'dt (77)

vided some experimental evidence suggesting the
limitations of the rectangular pulse approxima-
tion.

APPENDIX A: INPUT AMPLITUDES FOR THE
"QUASISUDDEN" SOLUTION

In Sec. IV, we used the amplitudes P(0) and s(0)
of Eqs. (62} and (63), which result after applica-
tion of the leading edge of a Vosech(7)'t/T) coupling,
as the input amplitudes for our modified step-function
or "quasisudden" solution of Eqs. (68) for the two-
level problem. Evidently P(0) and s(0) are quite
complicated functions of the coupling parameter
a and time scale parameter (t), which are

a = V,T/mtf, (t) = —,
' + (y T/4m) —i((()T/2))'), ( Al)

[from Eqs. (61)]. Here we wish to expand P(0) and

s(0) for the case of weak coupling, —,'a « l.
First note that if one defines a function f by

v mr((t)) (j)ia, (t) —a)}
where tl= ~+ ,iy as -in Eqs. (7). ,As is shown in
Appendix B, this integral exists and is tabulated
for IyTI &2))', and moreover

l(»~/&)6'(T'" y)I'=»n'&Isech(-'»}I' (78)
then p(0) and s(0) of Eqs. (62) and (63) can be
written

(A2)

This is identical with the approximate result of
Eq. (23), Sec. II, which is (in the same terms)

I
(t» ) I'= sin'&

I
sech'(~+sty)T I',

for yT«2))'. If IP(t» T)I is identified with

IP(final) I of Eq. (75), we see that the Hosen-Zener
conjecture works even when nonzer'o damping is
included. More precisely, Eq. (75) is approxi-
mately correct for the coupling pulse V(t)

V, eshc(wt /T), and for damping such that IyTI
& 2n Evident. ly the validity of Eq. (75) in general
will depend on the way in which V(t) goes to zero
as It l -~, as compared with the behavior of
e " t'. the product V(t)e~'t' must vanish as

I
t

I-~ in order for the Fourier transform to exist.
We conclude, with these reservations, that the
Hosen-Zener conjecture is at least approximately
correct for well-behaved coupling pulses even
with a, (small) amount of damping present in the
two-level system.
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P(o) =f(4, a) f(4, —a), -
s(o) =t[f(4, a)+f(A, -a)].

(As)

r(x+ e) = r(x)[l+ e)i)(x)+-,'e'(). (x)+ —', e'$(x)], (A4)

where (t (x) is the digamma function, "and the co-
efficients (x(x) and $(x) are

o.(x) = r"(x)/r(x) = g'(x)+ (j (x),

$(x) = r'"(x)«(x) = 0"(x)+ 8P'(x)4(x)+ 0'(x).
(A5)

The derivatives of )t (x) are the polygamma func-
tions "

With the help of Eq. (A4), we can expand f(P, a)
of Eq. (A2) in a series of powers of c=-,'a. It is
convenient to define two additjonal functions,
namely

(A6)

Evidently, if we expand f(Q, a) as a Taylor series
in powers of the coupling parameter a, P(0) will
have a leading term of order a and will contain
only odd powers of a, while s(0) will have a leading
term of order unity and will contain only even
powers of a. We shall carry out such an expan-
sion to terms of order a'. I

To expand f(Q, a), one needs a Taylor series for .

the y function. " Straightforwardly, to third order
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The properties of P(Q) are discussed in Grad-
shteyn and Ryzhik"; we have not been able to find
such a tabulation for B(&f ). After some algebra,
we find that f(Q; a) may be written .

f(» ~) = (e/2 I @
I»l+ 2&tl(e)

+ eC,($)+ e'C, (Q)], (A7)
I

where &=~a, and

C,(P) = 2P'(P) —B(Q),

C,(0)= :&'(0-)+ '0"(-0) —2ti (4)&(A).

The amplitudes of Eq. (A3) are then

p(O) = (e/I e I )I 2&I'(p)+ &'c,(P)],

s(o) = (it/I 0 I
)[1+e 'c,(Q)].

In the absence of coupling, a-o, we have p(0)=0
and Is(O)I =1, as must be.

(AS)

(A9)

APPENDIX B: FOURIER TRANSFORM OF THE
ROSEN-ZENER PULSE

%'e wish to evaluate the Fourier transform of
the Hosen-Zener pulse of Eq. (77), namely

+00

5'(& to y) = —' e "'"sech —e'"'dt
T (B1)

Here & is the system effective Bohr frequency and
is real, and y is the system damping constant and
is also real. We find a general class of similar
tabulated integrals in Gradshteyn and Ryzhik, "

where = &+-, iy is the exponential coefficient in
Eq. (Bl). The integral exists for yT& -2x. Using
this result in Eq. (Bl), we find

4k ~ k sin(&km)
~k (nr/) (B4)

where A = V,T/h is the pulse area as defined in

Eq. (39), and the integral exists if IyTI &2'. The
sum is proportional to the Fourier series for"
sech(s&T); we get

(sink/A)5'(T; to, y) = sink sech(s QT) (B5)

for A=to+-, ty, and IyTI &2x. This result approxi-
mately agrees with the Rosen-Zener conjecture
of Eq. (75) for such short pulses, for then

I
P(final)

I

' should be given by the absolute square
of Eq. (B5)

I~(fill) I'= »n'« Is«h(-'&T) I'

which is approximately the same as Eq. (23) of
Sec. II.

(B5)

namely
OO oo e

dx= 2csc7 g ", (B2
() c0811K —c087 a.x ~+& '

good for Rep& —1, and 7&2n~. If we take ~=&TJ,
and make appropriate changes of variables, we
find

e'"' sech —dt = —g .. &, (B3)
mt 27' " sin( —,'kx)
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