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A theory is developed to describe the interplay of vibrational relaxation and luminescence occurring
simultaneously in a molecule, in terms of a master equation involving true sinks of probability, Specifically,
the basic equation is the Montroll-Shuler equation augmented by the addition of sink terms which can be
nonlinear as well as linear in the vibrational energy. These terms describe radiative and nonradiative decay
and expressions for the former are derived explicitly in terms of Franck-Condon factors. Exact solutions in

terms of known functions are obtained in the linear case for several physically motivated initia] vibrational
distributions, viz. , 5-function, Boltzmann, Poisson, and Laguerre, Two perturbation schemes are developed
to analyze the nonlinear case, one of which is useful for small nonlinearities and the other for arbitrarily
large nonlinearities but for low temperatures. Illustrative applications of the theory include the exact
calculation of time- and frequency-resolved emission spectra (linear decay calculation) and the perturbation
analysis of quantum yields in the presence of strongly energy-dependent nonradiative transitions (nonlinear
decay calculation).

I. INTRODUCTION

Optical absorption by a molecule results in its
acquiring an electronic and a vibrational excita-
tion, the latter due to the electron. -phonon cou-
pling. The ensuing deexcitation processes may
or may not have comparable characteristic times.
If they do not, they can be analyzed separately.
If they do, they must be analyzed as a single com-
plex process. A typical characteristic time for
radiative emission (which causes electronic de-
excitation) is 10 ' sec, whereas vibrational re-
laxation has generally been assumed to take less
than 10 " sec in the condensed phase. The four-
orders-of-magnitude difference clearly justifies
a, decoupled description. Indeed the traditional
theory' of luminescence deals only with the pro-
cess of radiative emission and, in the analysis,
takes the emitting state to be fully relaxed vi-
brationally. It has already been emphasized' that
such a sequential picture of the combined process
may not have universal applicability. Further-
more many observations of slow vibrational re-
laxation have been recentj. y reported. ' That sys-
tems exist in which luminescence and relaxation
take place on comparable time scales is no longer
under doubt. A theory of the combined process
is therefore required.

Such a theory of simultaneous i elaxation and
luminescence should ideally consist of an exact
calculation from the microscopics of the system.
The complexity of the problem makes such a pro-
gram impossible in practice and two types of the-
ory naturally suggest themselves: microscopic
analysis' ' involving plausible but uncontrollable'
approximations, and exact analysis~' based on

dP "+et„P =Q y „P„—y„„P„, (1.2)

which is the basis of the master equation theory of

macroscopic or semimicroscopic equations which
are plausible but whose derivation from the micro-
scopics may not be completely satisfactory. Both
approaches are important and they complement
each other. In this paper we develop the second
approach.

In the context of pure vibrational relaxa, tion,
this semimicroscopic approach"" is based on
the master equation

dP
dt

- Q &..Pn &n. P.-v
wherein P (t) is the probability that the rnth vi-
brational site is occupied at a time t, and y „ is
the transition rate from the nth to the mth state.
The simplest extension of the traditional theory of
luminescence to include relaxation effects is to
substitute the relaxed probabilities P (~) in the
usual calculations by the time-dependent solutions
P (t) of Eq. (1.1). Such a program ha, s been fol-
lowed earlier. ' The reverse effect viz. that of
luminescence on relaxation is, however, neglected
in such an analysis since Eq. (1.1) describes pure
relaxation.

Luminescence involves the depletion of the ex-
citation on the molecule and a natural way to de-
scribe its full interplay with relaxation is there-
fore to extend Eq. (1.1) to include a term describ-
ing the true decay of the probability. 'This term
represents radiative emission from individual
vibrational levels and should therefore be level
dependent. One thus arrives at
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simultaneous luminescence and relaxation to be
presented in this paper. The method of excitation
and the molecular properties related to the elec-
tron-phonon coupling (such as Franck-Condon fac-
tors) determine the initial condition P (0) A. cal-
culation from microscopic parameters yields the
n's and the Z's. We then solve Eq. (1.2) for P„(t)
and thus obtain the distribution of the excitation
a,mong the vibrational levels of the molecule at
all times. Any quantity depending on the P (t)'s
can then be calculated. For instance the quantum
yield )t), the total fluorescence intensity I(t) (also
known as the differential photon rate) and the fre-
quency-resolved intensity I(~, t), are given by

(1.3a)

II. THE MODEL

The basic model of the molecule used for lum-
inescence calculations' consists of two electronic
states and harmonic-oscil'lator vibrational states.
If the electron-phonon coupling is linear in the
molecule displacement (or, more generally, in
the configuration coordinate), the "electronically
excited" oscillator is merely displaced with re-
spect to the ' ground" oscillator. If the coupling
is nonlinear, the frequency of the excited oscilla-
tor is different from that of the ground oscillator.
Expressions for the decay rates a can be obtained
within the Franck-Condon framework in a, straight-
forward if tedious manner. " For linear coupling
resulting in a Stokes shift a'@v, where ~ is the
(ground or excited) oscillator frequency, the de-
cay rate is exa.ctly linear in the energy.

I(t) = g a P„(t), (1.3b)

(1.3c)

=&+em,

b =M[ED —~EOAura + ~ED''v (a + 2a )

——,' I'a'(4a'+ 6a'+ a')j,

(2.1)

(2.2)

An expression for A (e) will be given in Sec. V.
Generally the excitation on the molecule is de-
pleted not only radiatively but also through other
processes. These may be intermolecular as in
the case of excitation transfer, or intramolecular
as in the ca.se of internal conversion and inter-
system crossing. The transfer problem cannot
be treated exactly in terms of Eq. (1.2), requires
the solution of "interlocking" master equations
(one for the relaxation and one for the transfer),
and has been analyzed earlier by Kenkre. " In this
paper we are concerned with intxamolecular pro-
cesses coexisting with relaxation, and, although
our primary interest is in luminescence, some
comments concerning nonradiative intramolecular
decay will be found in Sec. V.

Previous work on this problem is due to Dexter, '
Hizhnyakov and Tehver, ' Fischer, ' Lin, ' Freed
and collaborators' and the present authors. " Rubin
and Shuler" analyzed the problem with level-in-
dependent luminescence decay rates. Related
work" in unimolecular dissociation is due to Buff
and Wilson, and Matthews et al.

This paper is organized as follows. We intro-
duce the model and give expressions for the decay
and transition rates in Sec. II. Exact solutions for
the case of linear decay rates for several physi-
cally motivated initial distributions, viz. 5-func-
tion, Boltzmann, Poisson and Laguerre, are pre-
sented in Sec. III. Two separate approximation
schemes for nonlinear decay rates are constructed
in Sec. IV. Applications of the forma, lism are dis-
cussed in Sec. V where optical line shapes and
fluorescence quantum yields are calculated.

c = M(3E,I'aFa' —,'5'u)'a'), (2.3)

(2.4)

a =b, +c,m+d, m'+f, m', (2.5)

('d

, (15&' —72&'+ 136&'
64 1 —&'

—128&+64) (2.6)

c = M E'S&u E,h '~'
2(l —&) ' 8(1 6)'

—40&+ 32), (2.7)

d =M E5'e'-
8(l —&)'

3K 'td'a'(6' 124+ 16))—
32(1 —&)' (2.8)

(2 9)

M = (4e /3N c )
~
( (

r
I ) ~

where E, and (~ r ~) denote the zero-phonon energy
difference and the pure electronic dipole matrix
element between the excited and ground states,
respectively. Quadratic and cubic terms appear
in the case. of nonlinear coupling characterized
by a ground-oscillator frequency co and excited
oscillator frequency e(1 —&) and no Stokes shift:



THEORY OF THE INTERPLAY OF LUMINESCENCE AND. . . 225

An important conclusion to be drawn from Eqs.
(2.2)-(2.10) is that the linear expression for a„
is an exact consequence of the Franck-Condon
principle when the electron-phonon coupling does
not result in frequency changes and that in the
general case n is given by a polynomial

3

r=o
b„rn" . (2.10)

The form of the relaxation rates y „ is deter-
mined by the interaction of the oscillator (mole-
cule) with the heat bath which causes the relaxa-
tion. The Landau- Teller prescription" for these
rates takes into account the harmonic-oscillator
selection rules and the principle of detailed balance
and can be shown to yield

where

x[(r' g)+(g r )e "')] v

x G,([r-(r e)+ r'(e r-) e-"']

x [(I"—g)+(z —I' )e "] '}, (3.1)

I+= —'(e~+ I+ 5) +[-,'(e + 1+ 5)' —e~]' ',
5=eac/0, v=ke 8(I"—1" ), v'=Re 8(r —1).

III. LINEAR DECAY RATES: EXACT SOLUTION

For the linear decay case, exact solutions are
possible. Setting b, = b, b, = c, and b„=0 for x» 2,
Eq. (2.15) is solved by the method of characteris-
tics, "to yield the following solution for G

y„„=k(m+ 1)5„„„+he~m5„„ (2.11) From Eq. (2.15) it can be seen that

where k characterizes the molecule-bath interac-
tion and P is the dimensionless inverse tempera-
ture Nv/kaT, u, ks, and T being, respectively,
the oscillator frequency, the Boltzmann constant,
and the temperature. 'The density of states in a
harmonic oscillator is constant, but that in a real
molecule increases with increasing energy. To
represent such an increasing density of states
Kassel and also Buff and Wilson" considered a
D-fold degenerate oscillator for which Eq. (2.11)
is replaced by

p„„=k(m+1)5„„„+k(m+D—1)e+5„„„. (2.12)

Substituting Eqs. (2.10) and (2.12) in (1.2) one has
the extended Montroll-Shuler equation"""

G, (e) -=G (e, 0) = Q z P„(0).
m=o

(3.2)

(3 3)

The general gth factorial moment of the distribu-
tion is defined as

(m (m —1) (m n+ 1))—
= g m(m —I) ~ ~ ~ (m —n+ I)P„(t)

The time-dependent probabilities P„(t) can be ob-
tained from Eq. (3.1) by expanding G(z, t) in pow-
ers of z and setting z = 1 or equivalently as

N " +& P„=k/(m+D —1)e ~P„,+(m+I)P„„
dt

gn
= lim „G(z, t) .

8-+1
(3.4)

—[m+ (m+D)e ']P„], (2.13)

which is the basic equation to be analyzed in this
paper. The tr ansf or mation

'The zeroth moment Q is the total probability,
and the first moment (n) is proportional to the
energy of the system. These quantities, defined
as special cases of Eq. (3.4),

G(.) = g.-P„,
m=o

reduces (2.13) to

(2.14) Q = lim G(e, t),

9
(n) = lim G(e, t),

g~l

(3.5)

1 &G 8G

ge &t
=D(s —1)G+ [e' —z(e + 1)+e~]

~8

(2.15)

are particularly useful because they are shown
to be simply related to the fluorescence intensity
and the quantum yield.

We shall now obtain from Eqs. (3.1) and (3.2),
the explicit solutions for three initial distributions
which are motivated by physical considerations.

Exact solutions of (2.15) and therefore of (2.13)
can be obtained by generalizing the methods of
Montroll and Shuler" if b„= 0 for x~ 2. U the latter
condition is not met, approximate solutions must
be sought. The two kinds of analysis are given
respectively in Secs. GI and IV.

A. 6-function distribution

'The importance of this initial distribution stems
from the fact that, by superposing solutions of
appropriately weighted 5-function distributions, one
can, in principle, solve the problem for any initial
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G, (e) =g 5,„e"=e'. (3.6)

From Eqs. (3.1) and (3.6) we obtain

G(z l) = e&-P.» &t(r r-)D

x {[r-(r' e)+r'(e r-)e-"']'

x[(r'-~)+(s —r )e "'] " 'j.
Using the following expansion, '"

(3 7)

(1-y)' '(1-y+sy) '= y"
& &

' I''(-n;a; c;s),„(c+n)!
ntc&

y I ly(1 —s) (3.6)

distribution. The generating function for a 5-func-
tion distribution at m = l, which represents the ex-
citation being localized at /, is

f th —g e(-Q+DV') t(I+ p 5!De &~~™S~C-(m+ l+y)
1 1

x F(-l, -m, D, s),
where E is the hypergeometric function and

A,' = e 8(1 —e "'), B,' = (r' —I' e "'),
QCCC

c, =(r- r 0- ), s = (1
1

g —(m +D —1)!/m! (D —1)!

(3.9)

From (3.9) or otherwise, the particular derived
quantities, the total probability (II and the first
moment (n}, are shown to be

/

I

and Eq. (3.7), we obtain the required (exact) solu-
tions for P (l):

Q, =e " '(I" —I' ) {[I'(I"—1)+I"(1—I )e "']'[(I"—1)+(1—r )e "'] (" ~j,

(n}={-l(I' —I"e "')[I' (I"' —1)+r'(1- r )e "'] '+(l+D)(1-e "')[(I"-1)+(1—I' )e "'] ']Qt (3 10)

8. Boltzmann distribution

P (0) =g' (1 —e ) (3.11)

Combining Eqs. (3.6), (3.7), and (3.11), we obtain

Gp(e) =(1-e BP) (1- ee sP)

G(e l) e( pt Dv't)(+r+ r--) D(1 e- Bp)Q

(3.12a)

x {I—e Sp[r (I" —e ) + r'(s - I' )e "']

x [(r' —&)+(g —r )e "'] ']
x [(I ' g) +(e I -)e-"']-8 (3.12b)

Excited- state distributions immediately following
optical excitation have often been treated as having
a Boltzmann form with a characteristic tempera-
ture that is different (in general) from the environ-
ment temperature and consistent with the'initial
energy. Examples may be found in the analysis of
situations involving the fast intramolecular relaxa-
tion of large molecules in the gaseous phase due to
anharmonic interactions'followed by a slower col-
lision-induced relaxation process. Such an analy-
sis is justified if there does indeed exist a fast
prelimiriary process leading to equilibration at a
nonenvironment temperature. In any case initial
Boltzmann distributions introduce considerable
algebraic simplicity in the calculations and, by a
suitable choice of the temperature, can be used
to represent the actual distributions.

An initial Boltzmann distribution at a temperature
Tp = It pt/kttjsp is given by the expression

where
tit+Dv't-(I+ r-)D(1 e-Bp)D

x [(r+ r-e pt) es-8p(I pt)] D--
pt+Dv't-[(1 —

Sp)(1 r— —8p)-t]&

I- — ( )) (3.13b)

q = a(l)(1 —e-'('&) -D,

(n} =D[expP(t) —1] 'Q.
(3.14a)

(3.14b)

C. Poisson and Laguerre distributions

The Poisson and Laguerre polynomial distribu-
tions occur naturally in single oscillator radiative
transitions. It is shown in Appendix A that, when
under a uniform wide-band excitation an optical
transition occurs from a Boltzmann ground-state
distribution, the distribution in the excited state
is given by a weighted I.aguerre polynomial

r"(1 —r-e-") —r-(1 —r"e-8 )
e-"'

(1 —I' e sp) —(1 —I"e sp)e "'

(3.13c)

Note that the solution (3.13a) for the probabilities
retains the form invariance under linear decay.
This and other interesting properties of this distri-
bution have been discussed earlier. ' ' This form
invariance will be utilized in obtaining closed an-
alytic expressions for quantities such as optical
line shapes in Secs. IV and V. The moments in
this case are given by

Expanding G(e, t) as a power series in &, we obtain

P (t) =g a(t)exp[-mP(l)], (3.13a)

P =(1 —e 8) exp[- —,a'(1 —e 8) —mp]

I. (-2a'sinh'(p/2)). (3.15)
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The zero-temperature limit of this expression
yields the familiar Poisson distribution in the ex-
cited state:

P =(e ' '/m! )(—,'a') (3.16)

Hence, it is instructive to obtain solutions for both
these initial distributions. Using the following ex-
pressions" for the series expansion and the gen-
erating function of Laguerre polynom&als,

B.(t) =(r' —r )[D,'1 '(1 — ')

x exp[-bt+ U't —a'e ' sinh(P/2) +B,'[D,'] '],
=A'[C'j ~B'[D']

Qr [Dr] 1

A,' =-2a'sinh'(P/2}e 8(F'e "' —I' ),
B,' = -2a' sinh'(P/2)(1 —e "'),

C,' =(1 —e ")+e g(r'e "' —I' ),
1-.(y) = Z "c (3.1%a) D,' = (I"—I' e "') —(1 —e "') . (3.21)

G,(z) = gg z P (0)
Poisson

= e ' &' '& 'I, (- —'a'z)

g igni (y) =(1 —n) reg~& ~ '
n

we obtain, from Eqs. (3.15) and (3.16),

(3.17b)

(3.18)

Expressions (3.22) and (3.23) for the probabilities
are useful in predicting line shapes for wide-band
excitations. The zeroth and first moments for
these distributions are obtained from Eqs. (3.20)
and (3.21) to be

@poisson
=

Dr Cr .
exp t + t

22 2 2 2

(+) Qpoiesou r I - t) er 2 (r r )
poisson (Dr Qr) & g (Dr Cr)

Grr(z) = +g z P (0)

e "12 8 y« '
(D- I)! szrr rl -—ze g .ze g —1~

/

(r' —F )(1 —e ')
%,aguerre

3 3

x exp —&t+ v't

(3.22)

y = -2a' sinh'(P/2) .

(3.19)

)Laguerre @Laguerre

A'+a'
——,'a'e 8 ' sinh(P/2) +- 3- 3

O' —C'
3 3

-or) D,' =(I"—I' e "') . (3.20)

Similarly, for the Laguerre polynomial distribu-
tion,

Explicit expressions for the I' 's can be obtained
from Eqs. (3.18) and (3.19) for any given value of
the degeneracy D. Here we restrict the analysis
to the case D=1 for algebraic simplicity. Using
(3.1) and (3.18), we obtain, for the Poisson distri-
bution,

G(z, t) = B,(t)(l —

zing,

)
' exp[zy, n, /(z n, —1)),

P ( t) =B,(t) a, I. (y,),
where

B,(t) =[D,'j-'(r'-r-)exp(- bt+ v't —,'a'B,'[D,']-'j, -
y =-'"(B'[D'-j ' A'[&'j-'l

A,' =(I"—l)e "'+(1-r ),
B,'=(F+ —1)I' e " +I'+(1 —I' ),

(3.23)

IV. NONLINEAR DECAY RATES: PERTURBATIVE

APPROACHES

The assumption that the decay rates are linear in
the vibrational energy is obviously not valid univ-
ersally [see, for instance, Eq. (2.6)]. Nonlinear
decay rates result in partial differential equations
for the generating function G(z, t) which cannot be
solVed exactly [see Eq. (2.16}]. We have therefore
constructed two separate perturbative schemes.
Both are based on the general development" where-
in one observes the chain condition,

I

a (t) = K(t v.) ap(~), (4 1)

satisfied by the probability vector a'(t} (where K is
the propagator) and develops the perturbation series

I

K(t) = Ko(t) + d7'Ko(t —&)BKo(v) + '
~ (4.2)

Here P(t) and K(t) satisfy the equations

G(z, t) =B,(t)(1 —zn, )
' exp[zy, n, /(zu, —1)j,

P (t) =B.(t) n;1-.(y,),
where

dP = (A+B)a,

= (A +B)K+I6(t),dK

(4.3)

(4 4'i



V. SESHADRI AND V. M. KENKRE

I being the identity, 4 and B being respectively,
the exactly analyzable and the perturbation parts
of the evolution matrix, and E,(t) being the solution
of (4.4) for B =0.

The convergence (and therefore the usefulness)
of the perturbation series (4.2) depends crucially
on what part of the evolution matrix one chooses as
the perturbation B. We identify two separate ex-
actly soluble parts of the evolution matrix: (i) the
linear-relaxation and linear-decay terms, and (ii)
the "downward"-relaxation terms (which would con-
stitute the entire relaxation matrix at T = 0) ac-
companied by all other nonlinear decay terms. In
case (i) we treat the nonlinear decay terms as the
perturbation. This scheme works at all temper-

atures but is restricted to small nonlinearities. "
Case (ii) provides a practically more useful
scheme. In it we analyze the nonlinear terms exactly
by solving a cascade problem and treat the "up-
ward"-relaxation terms (which are reduced with
respect to the "downward" terms by bias factors
e ~) as the perturbation. The greater usefulness of
scheme (ii) stems from the fact that in several ac-
tual experimental situations there is considerable
nonlinearity and keT/hv is much smaller than 1.

A. Perturbative-scheme (i)

In scheme (i) the matrix A, representing the
exactly soluble unperturbed part of the full evolu-
tion, is given by

—(e ~+b)

1e ~ (1+2e ~ + b+ c)

2e 8 (2+ 3e ~+ b+ 2c) ~ ~ ~

(4.5)

The perturbation. B is a diagonal matrix given by terms

B =Qb I„)ll,—=8„'
r=2

(4.8)
B „=-dn'5 (4.10)

and the propagator K,(t) is given by

~po pi pm

p0 pl

0 l
~

m

(t) p p p (4.7)

For simplicity we consider an initial Boltzmann
distribution at temperature T, =I&a/keP„. Sub-
stituting Eq. (4.9) in Eq. (4.8) we obtain

P (t) = p (t) —d [m, p, (t)+ m, p, (t)+ m, p (t)].

(4.11)

The total probability Q and the first moment (n) are
given, respectively, by

q = q,[1-d m, ]
(4.12)

where p'(t) is the mth element of the solution of
(4.3) with B= 0, for the initial condition P„(0)= 5, „.
These P„'(t)'s are explicitly given by (3.9) for all I

and m. The probability with the first-order cor-
rection is

t
p (t) =p (t) y Q Q p" (t —r)B„p'„(7')P,(0) d7,

0 g r

(4.8)

where

(4.9)

As an application of this result con.sider the per-
turbation matrix B to represent quadratic decay

(n) =(n,) [1 dm, ]—dm, Q, .

The details of the calculations and the functions
M, to M, are given explicitly in Appendix B.

Instead of evaluating these corrections separa-
tely, we shall study the fluorescence intensity in
a situation wherein there is a linearly increasing
radiative rate cm and a nonradiative quadratic
perturbation dm'. Recalling the expressions for the
time-resolved intensity from (1.3b) and denoting
the exact and perturbed intensities. by I, and I re-
spectively, gives,

f(t) = I,(t) —[bdm, + cdm, ]g, —cdm, (n, ) (4.13)

The two intensities are plotted as functions of time
in Fig. 1.
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I
lA

0
24— B „=c'n5 (4.14)

As a check on the reliability of this perturbation
schem'e we use it in a, case where the exact solution
is known and can be compared with the solution.
given by the scheme. Thus for

z 18—
Lij

,
I—z'
H
LIJ
(3
Z,'

12—UJ

M
Lij
0
O

LL

0
—11.00 -9.75 -8.50

Log t

-7.25 6.01

FIG. 1. Flourescence intensity for linear radiative
decay (curve a); with additional quadratic nonradiative
decay (curve 5). Parameter values are b =k =10~ sec ~,
c =10 sec, d =2.5x10 sec, D =1.

the scheme yields

p (t) = p„(t)+c'[g,p, (t)+&,p„(t)],

Q = Q [1—c'L@,j

(n) = (n,) [1—c'(D+ 1)&,]—Q, cog, . (4.15)

As before, the functions &, to &, are given in. Ap-
pendix B. A comparison. of the exact and the per-
turbative solutions for Q is made in Fig. 2. Need-
less to say, the negativity of the probability is an
unphysical characteristic and stems from the
breakdown of the perturbation scheme for large
times. Generally, the higher-order corrections
extend the breakdown time, Note that the correc-
tion term is proportional to D. This causes the
deviation from the exact solution to increase with
the dimensionality of the oscillator: the larger
the value of D, the shorter is the time for which
the perturbative approach is valid. This can be
seen in Fig. 2 where curves (c) and (d) have been
plotted for D= 5.

B. Perturbative-scheme (ii)

1.00

In scheme (ii) the unperturbed problem involves
the solution of a cascade problem. Equation (2.14)
yields, for the initial condition p (0) = 5„„,

dP &m
+ nz+ — P =0, m=n

0.75—
j. dp ~m" + m+ p„=(m+1)p „, m&n

~ 050—
CC)

C)
K
CL

o 025—

0.00--

—
I IO -9.75 -8.50

-I

-7.25 -6.01

P =0, nz&n. (4.16)

'The perturbation of the mth level is given by the
Chain term, (m+D)e p, and the feed term, (m
+ D —1)e ~p„, which connect the mth level to
the (m+1)th and (m —1)th level respectively.
Hence the perturbation matrix has the form

8 „=-(m+D)e ~6 „+(m+D —1)e+6 „„.(4.1V)

The solution of Eq. (4.14) is obtained trivially
through Laplace transforms or otherwise:

ntp" (t) = k~~

Log t

FIG. 2. Comparison of the solutions for the total
probability: exact (curves a, c) and perturbative (curves
b, d) results of scheme (i). Parameter values are b =k
=10 sec, c'=c=10 sec, D=1 for curves a, b and
D =5 for curves c, d.

fl

lI [I (g I) / ~ (y j e(alNof/t) .
l-"m j&l

my tl

(4.18)

Obviously for m &n, p" (t) =0. Hence the propaga-
tor is a ma, trix of the form
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z, (t) =

p p ~ ~ ~ p ~ 0

p p 0 ~ ~ p ~ ~

p ~ ~ ~ p ~ ~ ~
(4.10)

zero ~ ~ ~ . ~

(4.20)

n+1

f'(t) = g o' „p"(t),

where the superscript n on 1(t) indicates that the excitation was initially on level n. The quantum yield
to first order can be obtained as follows:

(4.21)

By inspection the probability at the mth level with the first-order correction is seen to be
ted+1 n

&"(C t" (t) t=e +tv''t'(( ~)(r+c —1)t";(x)—g t (& ~)(r+c)t "(r)) .
o . r m r=m

From Eq. (4.17), one can calculate all relevant quantities such as the differential photon count rate and
the quantum yield. If n is the radiative part of the decay, the differential photon count rate is

c"=g
00 fl-m ~]

a P" (t) dt = Q o'„' k" " II [k(n j)+ &„—;]t
0 mO m j~0

'
n+1 5+1 -rm

+ ke~ Q aa Q
'

((r+D —1)k"" ...[ k(r
, m=O r=m m ~ —j=o

n a 0~m"; (r+~)k-" ]]~k(r-j)
m=o r=m ~ ' —j=o

—n-r+1

j )+ a„, II k(n —t) + o.'„,
—1"0

8 F a]
+ ~, , j,l k(n —t) + ~„,

-EW
(4.22)

Despite its formidable apped. rance this expres-
sion is easily evaluated numerically. A similar
expression including the quadratic correction is
used in the next section to compute the quantum
yield in the presence of radiationless trans-
itions.

Finally, as in the case of scheme (i), we check
the reliability of this scheme by comparing the
solutions with the exact results of Sec. III. When

is linear, i.e.,
=b+cm, (4.23)

one can obtain the solutions of Eq. (4.14) in terms
of Bernoulli 'distributions. It is easy to see that the
solutions p (t)'s are then

ed) probabilities and is compared with the exact
solution in Eq. (3.10a). The comparison is shown
in Fig. 3. The system is assumed to be excited
initially at the tenth level, and the exact solution
represented by Eq. (3.10) is shown as the solid
curve. Since the exact probability is very insen-
sitive to temperature and has nearly identical
values for all three temperatures (2It(d/kat 5u/
kt), —3It(d/ktt) we have chosen, only one curve has
been drawn at T = 25(d/ka. The perturbation solu-
tions converge to the exact solution at low tem-
perature but shown considerable deviation from it
as the temperature increases.

V. APPLICATIONS

p c (t) 1 m i bt &-(k+c)t-+& k
m! Ba I k+c

n
e-(k+c)t)

As illustrative applications of our theory, we
present two calculations, one of which is exact
and employs the results of Sec. III, the other be-
ing approximate and based on the perturbative
development in Sec. IV.

n-m
bte (k+c)mt --(1 e (k+c) t)c-c(

k+c
p" (t)=0, n& .m (4.24)

Using the solution (4.21) and Eq. (4.17) one can
calculate the first-order correction to the prob-
ability explicitly. The total probability is then
obtained by summing over the individual (correct-

A. Exact line-shape calculations

In earlier analyses of time-resolved emission
and absorption line shapes, relaxation was de-
coupled from the emission process and the prob-
abilities so obtained were used to compute the
spectrum. "~ Such a calculation is valid only if
the emission or absorption process is level in-
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de endpendent. In principle, E(l. (1.3c) can be
i e results in Sec. III to r

nn is ribution since it ields a
usable result in a closed form.

The explicit form of E(l. (1.3c) is

The frequency-resolv
ifferent times in Fig. 4 in units of 5&. The s

t ' t' ll bo db t th
row half-width

u relax to ththose with nar-
-wi s at later times. This.is e

l d t he a s ort times the tern p
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ie . ese have Franck-Condo n

state and
o a road ran eg of levels in the ground

s a e and hence the spectra are bro
times the ten. eratu

re road. At longer
e en.perature drops down and onl the

lower levels of the e t d
ony e

a nonnegligible
e excited state are opopulated to

' i e extent. These levels have a re-
ciable Franck-Condo f t
set of levels in the r

n on actors onl for
s in e ground state and the spectra

are consequently narrow.
An interesting feature of these s ectr

the position f th

is is directly connected to the observatio
by Huang and Ph s"' a

e o servation made

th at spectral peaks frop s from ti~e-indePendent Boltz-
mann distributions do noto no shift with ternpe~atme.

e connection arises from

s i s with temPexatuxe on one hand

I(~,f)=~/ I& l &~'[&,+(—
ffs m

&& P„(t)6(E, + (m —n)bur —)N), (5.1)

where C is a constant of ro or
u es e electronic matrix element and

~
(n~ rn) ~'

are the Franck-Condon factors.
Using E(ls. (3.13a)-(3.13cc), (A3a) and the follow-

nf', I.'„(x)I.'„(y)z"

—[(1 z)2&yz] &/2 z &(&+V)(1 &)

&&I~(2(xyz)'/'(1 —z) ') (5 2)

we obtain

I(Q, t) =C(@'0)'ft(f)[1 e ('( ] '

xexpf {pp(t-) ~a' coth[p(f)/2]j/2)

&& I&(z ((~ cs ch[p (t)/2]), (5.3)
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where ~ =E,+ph~ and I is th/, is e pth-order Besse].
unc ion with imaginary argument.
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and with time on the other, are identi. cal. The
frequency P, at which the peak occurs is obtained
by solving for the roots of the equation

[8 P~ ~ 2f (Z}]

, ,„g(p+rn q 1)
m( (m+P) l

(5.4)

B. Fluorescence quantum yield in the presence of

nonradiative processes .

Experiments in aromatic and other large molec-
ules have shown that the nonradiative decay pro-
cesses such as internal conversion (IC) and inter-
system crossing (ISC) are strongly level depen-
dent. "" Theoretical studies" carried out for
various molecular models are in good agreement
qualitatively and in reasonable agreement quan-
titatively &ith the experimental results. One of

where z = 2a'csch(p/2) and p is the logarithmic
derivative of a I' function. " Although the transcen-
dental nature of this equation has prevented an
explicit solution for P, in terms of P(t}, several
conclusions have been drawn earlier" for limiting
values of the parameter, Thus Huang and Rhys'"
and Markham"" showed that for large values of

'

the Stoke's shift parameter 2a', the peak lies at

p, = -&a' for the case of high and low temperatures.
Lax"' concluded from his analysis of the moments
of the spectra that for large &a', the peak lies at
P, = -~a'. Our own numerical calculation from Eq.
(5.3) shows the same result for a wide range of
intermediate values for temperature (ranging from
10 k&u/A;s to 0.1 av/ks) and for ~a' (ranging from
10 to 1). These results are also in agreement with
those of Dexter. '

Thus, although no formal proof exists, it seems
that a probability evolution which is of the (time-
dependent) Boltzmann form would yield no peak
shift in time. If this is true, monitoring the peak
shift in time would provide an experimental test
of whether or not such a Boltzmannization does
occur. This is more than an academic point be-
cause questions have been raised concerning the

validity of several theoretical calculations par-
ticularly for radiationless transitions, which have

assumed a rapid Boltzmannization. " It is to be

pointed out, however, that this discussion is re-
stricted to systems in which the frequency in the
excited and ground states is nearly equal since a
closed equation, like (5.3), is obtained only if the

frequencies in the two states are identical. '4

the predictions of these theories'" ~ is that the
Sy, ' Sp IC rate is more s trong ly leve l dependent
than the ISC rate for large excitation energies.
The exact form of the energy dependence varies
from model to model but many of the results in-
dicate IC rates that increase as fast as or faster
than an exponential, beyond a critical energy.
Such a rapid increase in the nonradiative decay
rate has been observed in naphthalene" and has
been interpreted to be mainly due to IC. Here
we model such a decay rate and then predict the
quantum yield as a function of initial excitation
energy. Clearly, since the, nonradiative decay is
dominant over all the other rates, we will use
the second perturbation scheme.

When several interacting modes are present in
the molecule one may use the effective-frequency
model developed by Freed and Heller. '~" In this
model the effective frequency. coqf f is proportional
to the amount of energy removed per collision
and hence is dependent on the collision partner.
A more detailed analysis of this model will be
found in Ref. 9a. We will assume for simplicity
that we initially populate a single vibrational level
whose energy is consistent with the excitation
energy of the incoming photon. Our values for
the model parameters are essentially those used
to explain"" vapor-phase data of naphthalene:

Qm 5+c
a"~ =b'+c'm m ~25

=n"~ e' m&2525 (5.6)

We choose b =5 X10' sec ', c=2.5&&10' sec ',
b'=5&10' sec ', c'= V.5&1O' sec ', and A. =O.Q5.

Extending Eqs. (4.22) to include quadratic cor-
rections and using the parameter values in Eqs.
(5.5) a.nd (5.6), we have computed the quantum

yield for various excitation energies for different
values of k. The results are exhibited in Fig. 5.
As can be seen for high excitation energies the
yield increases as the relaxation rate k increases.
This is because the excitation loses energy fast
at higher pressures, populating levels with smaller
nonradiative decay. 'The reverse happens at very
low excitation energies. As k increases, the ex-
citation gains energy, causing the quantum yield

&u = 300 cm ' (effective oscillator frequency)

B =2 (oscillator degeneracy). (5.5)

The radiative decay rate increases linearly with
the energy. On the other hand, the noriradiative
decay increases linearly with energy upto a cer-
tain critical energy and then increases exponen-
tially. This critical energy has been chosen to be
25m(d
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FIG. 5. Quantum yield as a function of the relaxation
rate k (or equivalently, the pressure). For curves, a,
b, e, and d, k equals lx10 sec, 1x10 sec ~, 2.5
&&10' sec-', and 5x 10 sec ~ respectively. See the text
for other parameters.

to drop. This gives rise to the observed inter-
section of the yield curves. A similar effect hys
been observed in the fluorescence decay curves
by Beddard et al." For intermediate excitation
energies one observes a sharp bend in the yield
curve at low pressures. This bend corresponds
to the critical excitation energy beyond which the
radiationless decay increases exponentially. At
higher pressures this bend is no longer pronounced
and disappears altogether for very high pressures.

VI. CONCLUSION

We have presented above a master-equation
theory of the interplay of vibrational relaxation
with intxamolecular decay processes, our primary
interest being in radiative decay although we have
also applied the techniques to situations involving
nonradiative transitions. This development is
closely related to the master-equation theory of
the effects of relaxation on intermolecular ex-
citation transfer constructed by Kenkre. " In fact,
a formalism for describing the interplay of all
three processes (relaxation, transfer, and lumi-
nescence) has been presented in Ref. 13 where it
has also been shown how detailed techniques de-
veloped for the relaxation-luminescence problem
(such as those described in the present paper)
can be "borrowed" for the relaxation-transfer
problem through the use of a certain transformation. "

We also refer the reader to Ref. 13 for the discus-
sion of the validity of such master-equation ap-
proaches. Here we only remark that among future
problems to be tackled in this area, an important
one is, in our opinion, that of working out the
relation of these theories to the microscopic ap-
proaches of Nitzan and Jortner' and of Hizhnyakov
and Tehver. ' We indeed believe that the complexity
of the field demands that the microscopic and the
master-equation approaches be developed and used
side by side.

Summarizing the primary results obtained in
this paper-, we note that (i) the exact solutions for
the probabilities of individual vibrational levels
are given in Eqs. (3.9), (3.13), (3.20), a,nd (3.21)
for the physically motivated initial distributions
of the 6-function, Boltzmann, Poisson, and La-
guerre forms, respectively; (ii) an illustrative
application of these results may be found in the
exact time- and-frequency- resolved spectrum. ex-
hibited in Eq. (5.3); (iii) the two perturbative
schemes for nonlinear rates are represented by
Eqs. (4.13) and (4.20), and Figs. 2, 3, and 5; (iv)
the demonstrations that optical excitation from a
Boltzmann ground (electronic)-state results in
a Laguerre distribution in the excited state is
in Appendix A and leads to Eq. (A6); and (v) the
expressions for radiative decay rates calculated
explicitly in terms of Franck-london factors are
displayed in Eqs. (2.1)-(2.10).

Finally, we point out that the assumption that the
Montroll-Shuler equation describes the actual de-
tails of the vibrational relaxation may be far
fetched for certain real systems. 'The inapplica-
bility of the equation may arise from at least three
separate sources: (i) the actual relaxation rates
may be nonlinear in the energy; (ii) the, rates may
be nonlocal in energy space, i.e. they may involve
"multiphonon transitions" thus connecting level
m to level n where m An+ 1; and (iii) the relaxation
equation may be nonlinear in the probability it-
self." From a formal viewpoint, consideration
(iii), if present, is the most serious of the three
as it might necessitate entirely new methods of
solution. Our perturbation schemes can be quite
effective for practical low-temperature compu-
tations in the presence of (i) and even of (ii), be-
cause in such situations only the "downward"
rates are nonnegligible. This leads, as we have
shown, to an exactly-soluble sequential or cascade
problem no matter how large the nonlinearities.
Further perturbation developments, which allow
one to relax the restriction that the temperature
be low, have been constructed by Seshadri and
will be presented" in the context of an application
to quantum yield calculations in the presence of
radiationless transitions.
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algebraic ma, nipulation of Eq. (A4a, ) yields the
following expansion'.

(A5)

P„=(const. )MQ E„ l (n l m) l'e (Al)

where 8 „ is the energy of the transition given by
E, + h {m (d2 —n((&, ); ((&, and (D2 are the frequencies
in the ground and excited state; Eo is the energy
of the 0- 0 transition', M is the electronic part of
the transition-matrix element defined in Eq. (2.4).

The sum in (Al) can be evaluated exactly when
the excited- and ground-state oscillators involved
in the transition have the same frequency, i.e. ,
co, = co, = (d. However for simplicity we treat E
as a constant. This approximation is justified if
Z, »8'(A& as is usually the case. Then Eq. (Al)
reduces to

P = (const. )ME, Q l(nl m}l'e
n

I

It can be shown that, " the Frank-Condon factor
l(min)l is related to the associated Laguerre
poly nom ia$ s

(A2)

l(min)l' = e ' &2 (m(/&2!)[L"™(a'/2)]'(—,'a')", nom

-a /2 (&2)/m ))[L a (+2/2)]2() +2)m-a

(A3a)

These are in turn related to the Charlier poly-
nominals"' as

APPENDIX A

We derive here the expression for the probability
distribution in the electronic excited state for
wide-band excitation from a Boltzmann ground
sta.te at a. tempera, ture T = 8(D,/ksp. Using the
trans ition rate given in Ref. 1, we have

Substituting Eqs. (A3b), {A5) in (A2), using the
closure relation (A4b) and normalizing we obtain

P =(1- e )exp[ —-'2a2(1 —e ') —mp]

L ( —2a2 sinh2(P/2)) . (A6)

APPENDIX B

For initial Boltzmann distributions, when the
linear decay term is treated as the perturbation,
it can be easily seen from Eq. (4.9) that

t
P„(t)=P (t) - c' g g, P"„(t- r}rP", (v)e-"vd~,

t' ~ q 0

where the unperturbed solutions p" (t) are given by
Eq. (3.9). Exploiting the form invariance of the
Boltzmann distribution, Eq. (Bl) can be cast in
the form

t a[At(t & }e~8'(t"&)]
P.(t) =P.(t) —c'g. &(&)

0

(B2)

where the functions 8(r) and p(&) have been de-
fined in Eqs. (3.13b) and (3.13c). Ol'(t, 7') and
P'(t, ~) are the functions A. (w) and P(v) in which
r has been replaced by (t —7') and P, is replaced
by P(&)

To evaluate (B2), we define the following quanti-
ties:

M, (t)=r (1 —r-e 2~)+r (r e " 1-)e-—
1V,(t) =(1 —r e 2(&)+(r'e () —1)e "',
M2(t, ~) = r'(1 —r -e-"'&)+ r -(r 'e-'('& —1}e"«-'&

l(min)l'=e ' t'(2-'&') '"(m!~!) 'c'. (n; —,'a'). (A3b) A( (t &) (1 r e 8(v&)+(roe--8-(v) 1)e-v(&-v) (B3)

The Charlier polynomials can be obtained from the
gene r ating function

Substituting p(r) in the equations for M, (t, 2) and

Z2(t, ~), we obtain
0(& m

e '(1 —z a ')" =g C (n;a)
m=O

and obey the closure relation

g e 'y'(l!) 'C (l, y)C„(l, y)=n!y "5 „.
L=0

(A4b)

The sum in Eq. (A2) can be performed using Eq.
(A3b) by' expanding the Charlier polynomials
C„(l; y) in terms of C (l;ye ~) using the gener-
ating function Eq. (A4a). A straightforward

M, (t, ~) = (r r-)M, (t)/M—,(r),
tl, (t, r) = (r —r-)l)!,(t}/M, (~) .

In this notation, we can write

6'(t, 7) =e,(t- r)[M, (t, r)]-,
P'(t, r) = ln[M, (t, 7)/Ã, (t, ~)],

where

&) (r+ r )De( 5+v'D)(t- )--

(B4}
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Substituting (B5) in (B3) and carrying out the differentiation, E(l. (B2) is seen to be

t
Z„(t) =p„(t) —c'g. 8(r)s(t —~) m[7, (t, r)]™-1[M,(t, ~)]-(;»

0

I

x '"*""-' (oe )(e, (e, e))"[ee, (e, .)(-~"" ~
'M (' '

)
.

ap(&)
' ' ' '

sp(7)

Using Eq, . (B3), we find

=X,(w)[r-- r'e""-"][(r. r-)M, (t)]-1

=e'&, (7)[I -e "" "'][(r —r-)M, (t)] '.
Substituting (B7) into (B6) we obtain E(l. (4.14)
where

Z, (t) =(m+D l)[M, (t—)(1"'—r )] '[I' S, —I"'S,e "'],
X,(t) = (m+ D)[M,(t)(r —r-)]-'[S, —S,e-"'],

= (1 —1" e ())t —(1 —I' e oo)(1 —e~')v ',

S,(t) = Z;(7) d~
0

= (1, I' e oo)ot~ (1 I'+e oo)'(I e-'"')(2v) '

—2(1 —I' e ao)(l —I"e oo)(1 —e "')v ',

$(e) fTV, (e,)e"' de=
. 0

=(1 —I' e oo)(e"' —1)v ' —t(1 —I''e ()). (B8)

The moments for the linear decay are given by
the equations

Q(t) —
Q

e Q( )
[ ( 7 )( e ) ]

Bp(r)

t
()1)= (no)+ c'D 8(v)

S [+ (t p)e-8'«) (1 e -8'«))-( D +1)]

sp(&)

Using precisely the same algebraic techniques as
before these can be shown to reduce to Eqs. (4.10).
The functions N, and N, are given by

X,= [(r' —I )(M, (t) -Ã, (t)) j'f, (t),

&, = [(r' —r )(M, (t) -&,(t))] 'f.(t), (Blo)

f, = (e'- r-)S, (e' r )S,e-1,

f, = I"S,e "' —S,I' .
The equations for the quadratic decay are more
complicated as they involve second derivatives
with respect to P(r).

g2
P (t) =p (t) d8(7).—.—;[8'(t)g e ""]d&.

(Bl1)
This integration can be performed in the same
manner as before yielding Eq. (4.11). The func-
tions SR„K„andK, are given as

II = (m+ D)e'[(r '- r)M, (t)]-'[e'(D+ m+1)t1[(r' —r-)M, (t) ] '(S, —2S,e "'+S.e '"')]+ (S, - S.e '"')1,

31I, = (m+ D 1)[(I ' r-)M, (t)]-'[(S,r 'e-"' - S,r-) -12e'[(r —I -)M, (t)]-"

&& (m+D)[S,r-- S,(r"+ r-)e-"'+ S,r "e-'"')H,
e

=, (m+ D —1)(m+ D —2)[(I"—I' )M, (t)] '(S,l'"e '"' —2S eo "'+ S,r '),

Ã'(7)e"'d~=(1 —I' e o)'(e"' —l)v '+ (1 —I"e oo) (1—e «)v -2(1 —r e oo)(1 I"e oo)t
I 0

S, = ' & (v)e dr=(1 —I' e oo)o(eo"' —1)(2v) 1+(1—1"e oo)ot-2(1 —r e oo)(1 r e oo)(eo) 1)v-1
0

(B12)
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The moments for the quadratic decay are given
by the equations

92
Q(~)=Q.(~) df -&(~), (8'(&)(&-~~'")')«

0

Q) = (n, ) —dD 8(~)
0

x a [g (t)e 8 (~)
a~()'

&((1 s-()'( t ))-(D+1)]d~

%,=Ds, (t)[(D+ 1)s,(t)f, —f,],
~.=(D+1) .(t)[(D+2)s,(t)f -f ],
K, =Ds, (t) [2(D+ l)s2(t)f4 —f,],
s, (t) = GM, (t) Tr, (t)][r r-]I-',

f =(e'- r-)'s +(e'- r')'s e-'"'

-2(e'- r-)(e'- r')s, e ',
f, = -r-(e'- r-)s, + e-'(r'+ r--2)s,e'-"'

+( s() r+)s s 2vt (@14)

Simplifying as before, we obtain E(ls. (4.12), where
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