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Energy spectrum of stopping negative mesons and the concentration
dependence of capture fractions
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The physics that determines the shape of the energy spectrum of stopping negative mesons is discussed. We
note that a white energy spectrum, for arrival probability F(E), not flux P(E), follows for a large class of,

models. The importance of distinguishing between F{E)and P(E) is stressed: P(E) reflects the energy (E)
dependence of the total inelastic and capture cross sections, while F(E) is independent of these. The
F(E) 0: E behavior found in some models is due to meson capture at positive energies, i,e., capture behind a
positive centrifugal barrier. We explore the possibility of a concentration effect on capture ratios in binary
mixtures, and conclude that, as long as the energy losses in meson-atom collisions are not much smaller than
the barrier height, such concentration effects are negligibly small,

The atomic capture of negative mesons is a topic
of lively interest, especially in view of the fact
that the observed chemical effects in this capture
remain unexplained. " One interesting question,
which has even been addressed experimentally, '
is whether there is a concentration dependence of
the fraction captured on a given element in an alloy
or mixture of gases (after dividing out the obvious
dependence on the number of atoms). Such a de-
pendence would presumably come from a variation
in the shape of the energy spectrum (at very low
energies) of the stopping mesons as the composi-
tion of the target is varied. In the present Corn-
ment, we discuss the physics that determines the
shape of the energy spectrum and hence the like-
lihood of observing a concentration dependence of
capture fractions.

In a recent Comment, Haff and Vogel4 criticized
(wrongly) a paper of Daniel' for using a "white"
energy spectrum in his model of negative-muon
capture, instead of the

P(E) ~E
behavior found by Vogel et al. ' in their model of
muon capture. In his reply to this criticism,
Daniel' pointed out (rightly) that the white energy
spectrum follows from his model' in which negative
muons lose the same energy ~F. in any collision
with a particular atomic species. It is important
to realize here that Daniel' and Haff and Vogel
are referring to tu)o different functions, either
of which can be used to describe the slowing down
and capture of negative mesons. Thus Haff and
Vogel' employ the flux P(E), while Daniel' evident-
ly has in mind the arrival probability F(E) when
he writes of a white energy spectrum. Of course
F(E) being constant does not imply that P(E) is
constant, since P(E) acquires an E dependence
from that of the total inelastic cross section (see

d(T
~ g d0)'

id ),„, ' d

The transport (in energy) problem is most easily
formulated in terms of the arrival probability
(density) F(E); i.e., the number of mesons arriv-
ing in an energy interval dE is F(E)dE. F(E) ob-
viously satisfies

where the branching ratio (density) for free-free
collisions B""is given by

B""(E,c) =P a,B,"' (E, e),

(E ) =8(E )
dvi E~ E

[e(x) is the unit step function]. Here the average
total i)Mlastic cross section a(E) is

cr(E) =pa, ' de,
0'.

0
(6)

below and Ref. 6). We shall now show that indeed
the white energy spectrum [for F(E)!]holds for a
much wider class of models, those for which (i)
the shape of the distribution of energy losses g is
independent of the incident energy E, and (ii) cap-
ture requires final energy ~0.

The basic quantity, from which both the slowing
down and the capture must for consistency be cal-
culated, is the differential energy loss -cross sec-
tion (do(E, e)/de). If the target material is made
up of several species, each with atomic fraction
g„ then this differential energy-loss cross section
is the average
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where. it is to be understood that the f dq speci-
fically excludes any (Dirac 6 function) 6(z) from
elastic scattering. The 8(E —q) in Eq. (5) ex-
presses condition (ii) above. The total number of
mesons captured on species i is

N, = c, EdE,
0

with the capture probability c, (E) being given by

and the branching ratio (density) for capture on i
by

BcaP((E )
—e( E) i (

dc (E).

The integral equation for F(E) [Eq. (3)] has the
same physical content as the analogous one for
flux P(E) [see Eq. (3.24) of Ref. |)], but is much
easier to use since it avoids the irrelevant de-
pendence on E that enters through 0(F). F(E) is
related to P(E) by

F(E) =Tv(B)P(E), (10)

where T is an arbitrarily chosen time.
We now want to apply condition (i), that the

shape of the energy-loss spectrum is independent
of energy. This is true if d(T;/de is a product:

dV((E) f)
( )f ( )

Then from Eqs. (5)-(7)

B""(z,e)=e(z —e) ga, f (a) pa, f f (E )dE'
0

so that the kernel of Eq. (3), B""'(E+a,c), is
independent of E. This immediately implies a.

white spectrum, i.e.,
F(E) =const. (13)

[For, suppose B""(E,i) =0 for E & 6 for some
&0. Then if F is constant for E' & E+6, &q. (3)

implies that F' (E) = 0, so that F(E) is equal to
the same constant. This is true no matter how
small b, is.] Obviously Daniel's model' is included
as a special case.

Suppose in contrast that the energy-loss spec™
trum becomes narrower with decreasing E [thus
abandoning condition (i)]. Then clearly F(E) will
turn up as E-0. Conversely, if the average en-
ergy loss increases as E- 0, F(E) will turn down
at low energy. These three modes of behavior are
illustrated in Fig. 1. How then can we produce the
F(E)~E behavior at small E found in Refs. 8 and
9? Only by abandoning condition (ii) and allowing

EMETIC Y

I'IG. 1. Behavior of the energy spectrum I (E) when
capture takes place only at & «0. Curve 1 is for energy
losses independent of energy )condition (i)J, curve 2 for
energy losses decreasing as p —0, curve 3 for increas-
ing energy losses.

n, fjdE de B;"'(E,e)

J f dE (R B""(E,E)
(14)

which implies no concentration dependence. Such
concentration dependence requires varying the
shape of F(E), and since F(E) changes more dras
tically as a result of dropping condition (ii) rather
than (i), we will concentrate on this class of mod-
els.

To proceed, we need to know the energy-loss
shape f, (e) and the probability for positive-energy
capture p, (E) for each component; as a qualitative
guide to these quantities we can use the results of
the "fuzzy Fermi- Teller model. "' The function

p, (E) depends on the height of the barrier as a
function of l (orbital angular momentum), the
relative probability of scattering as a function of l,
and the relative amount of scattering from within

capture at positive energy. That is, the reduction
in population represented by the F(E) ccE behavior
results simply from'the'exhaustion of the free-
meson spectrum by captures behind a positive
centrifugal barrier. ' Since the atomic potential
assumed by Daniel' is too steep to support such a
barrier, it will not produce F(E) ccE behavior
even if a distribution of energy losses (which we
know is required by quantum mechanics)' were
used with it.

%e now want to investigate the possible mag-
nitude of any concentration dependence of the cap-
ture ratios. Suppose first that there is no positive-
energy capture, conditions (i) and (ii) hold, so that
as we have seen F(E) =const. Then from Eqs. (7)
and (8) the reduced capture ratio is



and without the barrier. Examination of Fig. 4 of
Ref. 9, which gives the distribution in energy of
captured muons for g =40, indicates that the func-
tion

Fl, E&0

~ 7 I-'

p, (E) = 1 —sin —,0&E&E~, (15)

flfree(E e) —[1 P (E ~)] (E)

(E). (9')

Calculating the N, requires solving the integral
Eq. (3) for F(E). This is most easily done nu-
merically by forming energy bins and replacing
Eqs. (3)-(9) by their discrete analogs; any ac-
curacy can then be achieved by making the mesh
fine enough. Thus Eq. (3) becomes

with

~ free I;n ng g
Q& 0'.

(3')

unfree g& flfree(E E E )+E

etc. %e start with a population of one meson dis-

g0 pc, )p
has the correct qualitative behavior, and this vill
suffice for our purposes. The maximum barrier
height E~, we take s1 a.u. (1 a.u. =27.2 eV). Next,
Fig. 3 of Ref. 9 leads us to adopt for f (e)

f((e) =8(e - fg) /(~+0, )"

with n = 2. The ionization energies I, can be set t a

zero for metal alloys, but are nonzero for mix-
tures of noble gases; the constants P, are taken-
=0.3 a.u.

The presence of capture at positive energy of
course alters the branching ratios; ins'. ead of
Eqs. (5) and (9) we have

/

ENERGY (4.g)

FIG. 2. Computed I (E) curves corresponding to the
top line of Table I.

tributed uniformly between 9 and 10 a.u. , and let
this propagate downward in energy. Because of
the spread of energy losses embodied in the f, (F),
the unphysical "bumpy" behavior of F(E) caused
by the arbitrary starting distribution quickly
smooths out, so that we can be confident that the
shape of F(E) at lower energies is independent of
the starting distribution. As an example which
might at least qualitatively resemble a mixture of
noble gases, we take I, = 1, I, = 0.5, E» = 0.5,
E»=1.0. The resulting F(E) is shown for a, /a,
=10, 1, and 0.1 in Fig. 2. Here we see the F(E)
acE behavior at low energies produced by the cap-
ture at positive energies. But in spite of the sig-
nificant change of shape of F(E), the ratio ~, /n,
is virtually unchanged. This is shown in the top
line of Table I. This is evidently because the en-
ergy losses are not confined to values small com-
pared to the barrier heights.

In an effort to generate concentration effects,
we put both I, to zero and reduced P; as a result
the median energy loss & is reduced. Even under
these assumptions the concentration effect is quite
small, as can be seen from the second rom of
Table I. Only when we Chastically reduce the mag-
nitude of the energy losses by increasing the ex-

TABLE I. Reduced capture ratios for different concentrations and parameters.

ay/a g= 10
nq/n 2

1.0 0.1

1.0
0.0
0,0
0,0
0.0

0.5
0.0
0.0
0.0
0.0

0.5
0.5
0.5
0.5
0.5

1„0
1.0
1.0
1.0
1.0

0.33
0.05
0.05
0.05
0.05

0.05
0.021
0.0 13
0.007

0.781
0.643
0.350
0.279
0.197

0.789
0.644
0,290
0.163
0.098

0.795
0.6 50
0.247
0.100
0.041
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ponent n of Eq. (16) do we see significant concen-
tration effects; this is shown in the bottom rows
.of Table I.

Such a drastic reduction in the spread in e [i.e. ,
in the width of f (q)] from the predictions of Ref. 9
seems to us to be unlikely. Thus we believe that
concentration effects have not been observed' and
will not be observed in the near future. This sit-
uation makes experiments to look for such effects

all the more worthwhile, of course, because a
positive result would unambiguously rule out the
kind of f(e) predicted by the fuzzy Fermi-Teller
model. '
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