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We apply an approximate form of the exact one-particle-irreducible renormalization-group generator to the
calculation of the equation of state. Several approaches are explored. (i) Global nonlinear trajectories for the
Hamiltonian parameters are exploited to give nonlinear crossover equations of state. Logarithms of the
reduced temperature t =(T-T,)/ T, are automatically exponentiated to give power-law behavior. (ii) The
form and asymptotic properties of the equation of state are described for those systems whose complete
nonlinear trajectories cannot be explicitly obtained. (iii) Nonlinear trajectories for the irreducible Green’s
functions are solved to give a fully exponentiated equation of state containing no logarithmic terms. (iv)
Simple critical (noncrossover) equations of state are obtained by iteration of the generator with linear and
quasilinear trajectories. (v) Operator nonlinear equations are solved to give the crossover equation of state for
an arbitrary order O critical system, both in an e expansion and at the borderline dimension. (vi)
Combination of the Green’s functions are formed into Green’s eigenfunétions or operators and their nonlinear
trajectories used to calculate fully exponentiated equations of state for order © Ising systems. Systems
considered include the usual Wilson-Fisher Hamiltonian [methods (i)~(iv)], the Sak-model compressible
ferromagnet [(i)—(i))], the nm-hypercubical model (of which the dilute quenched random ferromagnet forms
the n —0 limit) [(ii)], and the isotropic n-component order © ferromagnet [(iv)-(vi)]. The tricritical (© = 3)
case is given explicitly as an example of the general formalism of methods (iv)—(vi). Throughout, we use a
bare critical propagator which is an arbitrary generalized homogeneous function of the components of the
wave vector. This allows us to simultaneously describe ordinary critical systems and anisotropic Lifschitz

points as well as certain structural and spin-reorientation phase transitions.

I. INTRODUCTION

In an earlier paper® we used a variety of exact
and approximate differential renormalization-
group generators to describe critical systems,
calculate the critical-point exponents, and solve
nonlinear renormalization-group equations. Here,
we wish to discuss various methods which can be
used to apply differential generators to the problem
of the calculation of the free energy and magnetiza-
tion equation of state. Therefore, our emphasis
is not on the fixed point and scaling features of the
renormalization group, but rather on its usefulness
in the direct calculation of the partition function.
Our methods differ from other techniques in being
entirely differential in nature rather than employ-
ing field-theoretic diagram expansions alone® ® or
in combination with some recursive or differential
renormalization of the Hamiltonian parameters.*~’
Of course, certain aspects of our solutions have
diagrammatic analogs, but the generator itself is
self-contained. For the calculations detailed here,
we will use an approximate form?® of an exact one-
particle-irreducible generator® to demonstrate the
solution techniques for several model systems.

The exact generator is derived by performing an
infinitesimal saddle-point expansion (in the spirit
of the Wegner-Houghton generator!?) about a non-
zero magnetization. This magnetization is ad-
justed at each stage to conform with the physical
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magnetization and the loop expansion is employed
to remove reducible diagrams. In fact, it can be
shown that it is an infinitesimalization of the loop
expansion described in Ref. 3. The exact generator
is atransformation on the Hamiltonian, but it can
be interpreted as an evolution equation for the
Helmbholtz potentialA(M’g) for an arbitrary magne-
tization 1_\7I§.

Thus, the generator is capable of calculating all
the one-particle-irreducible Green’s functions.
To describe the exact generator we first cover the
full range of wave vectors with a one-parameter
family of surfaces we call shells. Each wave vec-
tor lies on exactly one shell. For systems isotropic
in —E, we can conveniently choose the Ith shell to
be specified by |k| =exp[~1]. For more complex
systems, other shell systems are appropriate.
At the lth stage of renormalization, the generator
involves derivatives taken with respect to spin
fluctuations on the Ith shell and on the previously
treated shells (loosely, larger wave vectors or
greater momenta). We have the result

A -

ol - legl ln{ASS' _ASE[A 1]gg'Ag's’} ’ (1.1)
where A ,, =5°A /6M ,6M _, (We suppress component
indices), {s,s’} denotes on-shell momenta and
{g,g'} denotes off- and above- (greater-) shell mo-
menta. The inverse matrix [A~'],,. is computed

g
within the above (gg”) shell subspace only. The
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physical A is the limit of A (I) as [ tends to in-
finity; that is, as the family of shells completes
its sweep through 3 space.

Although (1.1) is exact, it is useful for the pur-
pose of practical calculations to approximate it.
The solution techniques we will use have analogs
for the exact generator. The basic approximation
is made to guarantee the renormalization invariance
of the critical propagator [which is the k-dependent

portion of the quadratic term in 4, :33TK)M, « M_,].

Ignoring corrections to this term amounts t6 ne-
glecting those terms which are the source of ,
critical exponents such as n.. The remaining de-
pendence on k is assumed to be trivial (see below).
To make this self-consistent, we take the limit

of zero external momenta, that is, setting to zero

all momenta not summed or traced over explicitly -

in (1.1). We use a propagator T" which is a gen-
eralized homogeneous function

r{axteir}) =ark,}) , (1.2a)

where each —E,. is a d;-dimensional vector; the lat-
tice dimension d=),d;. An important example is
the anisotropic Lifshitz point, T =),|k,|%, which
arises in the modeling of the onset of helical
order.'"'? Other forms are obtained for structural
and spinreorientation phase transitions.'® Wwe
have termed the {c,-}, propagator exponents, as
suggested by the Lifshitz I'. We define our shells
by

r{kr}) =e=*2

for some A, (A, will be the Gaussian eigenvalue of
the 52 operator). One choice is X\, =¢,, where o,
=max{c;}, however other choices are sometimes
more convenient; we will leave the normalization
of I (and hence, 2,) free. The zero-momentum
limit is taken in such a way that I'(¢;)~0.
We wish to preserve the possibility of con-

sidering Helmholtz potentlals of the form

(1.2b)

A=A {(Mi1 <M, )})+ = ZFM,M (1.3a)
where we use the notation
(F) =/d‘1xF(x) . (1.3b)

This amounts to permitting the expansion co-
efficients to contain extra & functions in the wave
vectors which group the spins.! Of course we are
only interested in the thermodynamic limit
Q(=(1)) = «, This allows some freedom in the ap-
proxirriate expression since we can include terms
which vanish in the thermodynamic limit in order
to give the generator a simple form.

When we take the zero-momentum limit, the
matrix A, depends on p and ¢ only in the propagator
term and through § functions. Moreover the sum
over greater than shell momenta inside the log is
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compressed as the momenta labeled g are forced
onto the shell; these terms do, however, make
(1.1) contmuous for small external momenta which
enables us to sort out the spin-grouping 6 functions
(which are all identically satisfied in the zero-
momentum limit). We obtain

A _ I< A _fﬁL_»
YRR tr Infe 25”+8M,~8Mj , (1.4)

where X,=1,)d;/0;, and we define

3 9G 3F

m(F)(@ '<F>?1‘Z,~_ +<G>Wi— . (1.5)
Component indices for M have been restored. The
factor exp[—2,l] simply is the density of states on
the shell, and exp[—,l] is exactly the value of the
propagator I'(k) on the shell. To use (1.4) for
systems without spin groupings, A=(A (M)), we can
simply drop the brackets. On the other hand, we
have shown' that (1.4) becomes exact for totally
paired systems A =A ((M?). We can convert (1.4)
into the usual sort of fixed-point generator by the
scale charges = M exp[3(r, —,)I] and H (B, 1)
=exp[r l]A(M 1). Throughout the remainder of this
paper H and § will refer to the scaled Hamiltonian
and spin while A and M refer to the free energy
and physical magnetization.
" Since (1.4) is a closed-form expression, it is
possible to show, for example, that for any non-
Ising isotrobical interaction spin systems, the
longitudinal susceptibility, I';', diverges on the
coexistence surface

chrarz (1.6)

where X, =2X, - ), and% is the magnetic field. This
divergence has been discussed for 0;=2by various
authors'® 4 and will be explicitly demonstrated for
the usual critical point in Sec. ITII. Similarly, we can
show that the critical-point exponent 6 is always given

Y

Section II is devoted to the calculation of one-
loop crossover equations of state for several spin
systems with quartic interactions. Nonlinear so-
lutions!® of the Hamiltonian parameters are used
to calculate the completely renormalized coupling
constants® which are nonlinear scaling fields.!”
Iteration of (1.4) with the nonlinear trajectories
gives a M+ 0 generalization of the trajectory in-
tegral method.'® The full crossover solution is
given for the isotropic case and for a model com-
pressible ferromagnet,’+!9+%° while the solution in
terms of the (unknown) nonlinear scaling fields is
given for the mn hypercubical model (which be-
comes the quenched random model for n— 0).
These calculations are rigorously justified only for

_AgHA,
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T>T,; for T<T,, a continuation of the trajectories
is required. This is remedied in Sec. III where
trajectories for the Green’s functions I', =8"A /
9M" are used. This method increases the number
of nonlinear equations, but has the advantage of
applying equally well above and below the critical
temperature and justifies a posteriori the continua-
tions used in Sec. II. We apply this method to the
Wilson-Fisher Hamiltonian and obtain a completely
exponentiated equation of state (no log terms). This
solution has several interesting properties. It is
exact for n =, and, if exponents correct to second
order in e=x,=4—d are used, it is exact to O(e?)
for n =1 when expanded to that order. For general
n# 1, it correctly gives the singularities on the
coexistence surface, and close to the coexistence
surface, it correctly gives the * log? terms of the
exact result.?

In Sec. IV we consider higher-order critical
points (nonquartic interactions). To begin with,
we use a linear approach which cannot include
crossover effects, but which is straightforward
to apply both above and below 7,. This method
(and small quasilinear modifications of it) has a
close relationship to the multiple loop-expansion.
The order O, isotropic case is described with the
0 =3 tricritical case worked out explicitly.

[For asystem described by an initial Hamiltonian
of degree 20 in §, the “c expansion” is in terms
of the Gaussian eigenvalue \,o. Thus, for quartic
systems we could define e=),. However, since
the usual € =4 - 4 only corresponds to quartic
systems with k2 propagators, we will reserve ¢
for that case alone, using X, (or X,,) for the gen-
eral case.]

In Sec. V nonlinear operator trajectories® are
calculated for the order O isotropic case. In this
case, an equation of state which incorporates the
mean field and true critical-fixed-point crossover
can be obtained within a quadrature. The method
also applies at the borderline dimensions for such
systems where logarithmic corrections are ob-
tained. The 0 =3 tricritical case is done explicitly
to show that the approximate generators do cor-
rectly contain such logarithmic terms.?®* We also
calculate the constant term in A for general 0.

The projection coefficients used in the trajectory
equations can also be calculated with the Wilson-
Kogut generator.?3+** In Sec. VI, the approaches
of Secs. III and V are combined to give nonlinear

trajectories for Green’s eigenfunctions. For the
-

h=v M +u,M?* + 2 Mlr,,| "o/xz{(m 1) [ (1 +
Az Ve

3u

e

© ©
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‘Ising case, the results of Sec. V can be applied
directly to give fully exponentiated equations of
state. In Appendix A, the properties of the non-

- linear trajectory solutions used in Sec. II are de-
rived. ‘

II. ONE-LOOP EQUATIONS OF STATE:
HAMILTONIAN PARAMETER TRAJECTORIES

Elsewhere we have developed techniques to
solve the renormalization-group equations for
Hamiltonian parameters in a nonlinear, global
fashion.'®> The asymptotic behavior of these so-
lutions give the completely renormalized coupling
constants.'® For the ordinary Wilson-Fisher (WF)
model H =3 vs®+ fus?, we define

v, = limr(l)e*d , (2.1a)

100

u, = limy(l)e~*4 | (2.1b)

10
The functions 7, and u, are nonlinear scaling
fields!” and they define a renormalized zero-loop
approximation” to A, A,=3r M+ ju,M*
Using the parameter trajectories on the right-
hand side of (1.4) defines the one-loop correction®

Ay,
- [T (A
Al—f <al

0

9A A
@, - —al&>dz. 2.2)

Thus, for the WF case, the quadratic and quartic
terms are subtracted. These correspond to. the
mass and vertex renormalizations in field theory,
but here they change the bare parameters to non-
linear scaling fields, e.g., ¥ =7, cct¥ (¢ is the re-
duced temperature and y is the susceptibility ex-
ponent).

In this section, we emphasize the calculation of
the magnetization equation of state, h =0A /oM,
since it can be expressed entirely in terms of the
nonlinear scaling fields. Therefore, we will give
either the equation for 7 or will ignore the M-
independent terms in A.>''®* The constant or M- .
independent term will be calculated for various
systems in Secs. III-V.

By applying the method described above, we ob-
tain the equation of state for a model system in
terms of the completely renormalized coupling
constants. This is true regardless of whether we
are able to calculate the -« limits. For example,
for the m~component WF model we obtain

u, M?
7

1+

_zw_f‘/l"‘}
v

o

3u, M2 ] SuwMz]}
1+ - .
¥ Ve

©

(2.3)
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If we make the estimates (cf. Ref. 7 and below) v, ~ sgn#|#Y|, wu, ~u*|t|Y 28, where u*=2,/2(m+8) is the
fixed-point value of # and B is the magnetization exponent, we have

y
7 =|t]Y (sgnt)M + |t|7'25M3+%4- —7;ll—tl—8— MA{(m - 1)(sgnt +M2|¢|~28)In| 1 + (sgnt)M2|¢] 28|
2 .
+3(sgnt + 3M2|t|~28)In| 1 + 3(sgnt)M?|t] =8| }. (2.4)
L

The scale of M and 7 has been adjusted to keep
M,h~0(\3). Iwe e-expand (2.4), we obtain the usual
result; as written, (2.4) is automatically expressed
in Griffiths asymptotic form.?® _

If we wish to examine crossover competition
between the Wilson-Fisher fixed point®* and the
Gaussian fixed point, we must use a more precise
form for »_ and u,. Defining the (positive) cross-
over exponent ¢ by the ratio of the magnitude of the
first irrelevant eigenvalue to the temperature
eigenvalue, we have ¢ =[x, +OM3)]=r,/x,. The
leading crossover power-law behavior is given by

v, =f|t|/Ju + (1 =@)|t|Jyom, (2.52)

u, =ult|?/[a+ 1 -m)t*], (2.5b)
where A, = (m+2)/(m+8) and 7 =u/u*. The compe-
tition and double-power-law scaling behavior?’
are clearly displayed. It is interesting that the
nonlinear scaling fields in (2.5) are very nearly
the simplest imaginable scaling fields with the
required properties.!® This is characteristic of
all the crossover equations studied in this paper.

We also have the complete nonlinear solution®
for the Sak? model compressible magnet. The
Hamiltonian is given by

se=1r(8) + hu(8%8?) + 5o-(8)°
+(gradient terms). (2.6)

We let Q= in the resulting renormalization
equations to obtain the thermodynamic limit. The
term proportional to v reflects the coupling be-
tween the spin and elastic degree of freedom. In
this case, we will give the free energy:

A= M4 5, 0 M5 (U0, [/
X [(m -1)L 1((u‘,f, ':’Uw )M2>+L1<(3u°° +0, )M2>:l

v

o o

+ (terms in7_ and ¢). (2.7a)
Here v, = limv(l) exp(-x ) and
Ll(x)=»§(1+x)2ln|1+x|—§x—%x2. (2.7b)

For v,=0, we return to the Wilson Hamiltonian
result. The nonlinear scaling fields are

s they, 0,) =[G f (@), uq, vg*2m f (q)]J, (2.8a)
where
g 2.8b)
f(q):ﬁ(l—q(l"zAm))/ﬁ(l—2Am)+q(l‘2Am)’ ( .

and 7= 2mv/x,. Equations (2.8) are valid for all
values of u#, v, and m. In the region #>7/(1 - 24,)
= 0, it is sufficient for illustrative purposes to
pick g =q,, where ¢g, is the crossover function
which appears in (2.5):

a0 =1t1?/[a+ (1 -w)|t?]. (2.9)

Just as a double-power-law scaling function arises
in the description of a twofold competition between
fixed points, the full description of the crossover
phenomena of the three competiting fixed points

of this problem (a critical, tricritical, and fourth-
order fixed point) is characterizedby triple-power-
law scaling functions.?” These incorporate the
three different critical behaviors appropriate to
the Gaussian (@ =7 =0), Wilson-Fisher (z=1,

2=0), and Fisher renormalized® (=1, 7=1
-2A,,) fixed points. This is most easily seen in
the zero-loop approximation to the magnetization
equation of state,

o de ) a(1-24,)
h'Mt<a+(1—a)ltl?’) v+[a(1=2a,) -oftl?/[a+1 -a)|t|¢]} 1-%n
M3%lt|? (“ (4 —m)/m
TasA-n)e 5+[u(1—2Am)—5]{lt|¢/[17+(1-a)|t|</']}1-2Am>. (2.10)

The asymptotic behavior of this expression depends
on the sign of the critical-point exponent o at the
Wilson- Fisher fixed point: a . =X,(1-24,)/x,.
For ay,> 0, the Wilson-Fisher point is unstable
with respect to the Fisher-renormalized point.

The asymptotic values of the exponents are
changed in the usual way, i.e., y=y/(1—ays), B
~B(l-a,, ), and @ == oy, /(1 -, ). Inthis case,

.
2+ 0 is a surface of ordinary critical points with
Fisher-renormalized exponents. There is a line
of tricritical points with Wilson-Fisher exponents
along 7=0. Finally, the Gaussian fixed point
appears as a point of order 4.

On the other hand, for o, <0, the Wilson-
Fisher fixed point is the more stable. The sec-’
ond-, third-, and fourth-order critical hyper-



17 EXACT AND APPROXIMATE DIFFERENTIAL RENORMALIZATION-GROUP... 2087

surfaces aregivenby 7#u(1 - 24,), 7=u(1-2a,),
and 7 =7 =0, respectively. The relative sim-
plicity of the full nonlinear solutions of the re-
normalization-group equations (cf. Appendix A)

is reflected in the fact that the equation of state
(2.10) involves the product of two double-power -
law crossover terms rather than the most general
triple-power-law.

Our third example is the nm-hypercubical mod-
el.?® Although we have not derived the complete
nonlinear solution, we can give the form of the
free energy in terms of the scaling fields. The
Hamiltonian is

1 n S n 2
H =§rZ s§+—u<z si)
J=1p 4\
+%C<§: (s;)2>. 2.11)
J=1

Each 3, is an m-component spin vector. The free
energy is given by

2
Ve Uy c
A='2—ZM12+T< Mf) +ad M}
T T T
r |Mo/hs
+~|__°°_L__Z ‘:(’Wl — 1)L1<.y2 ZM3+ cﬁ.M?)
2 I X Yo J Yo

+Ly(zp . (2.12)

The z, are defined by

n 1+Z

7 l+z +u 7]

=Z [In(l +z +2,)
~In (1 +2 + U v Z:M,2 + SCJ;‘Mf)] .
I

(2.13)

2u, 2 M3

1 2 “1a72
> My +3c,y My
T

For the special case of n =2 [cf. Ref. 15(b) and
Appendix A], the roots are given by

1
R 1,2 =—2;;-{(M?.+M§)(4uoo + 3cco)

+ [4u2(M3 +M3)* + 3¢, (4u,, +3c.,)
X (M2 -M2?|H7 . (2.14)

The detailed behavior is quite complicated!
We can simplify the result in special cases.
First, consider M, =M§5,,. Then we have

A=ir M?+
No/ A
e I;\O z[(m _ 1)L1<(uir+c§)M2)
2 ©

+L1<——3(”°;+C°°)M2> +mln - 1L <4M2>]
i " (2.15)

s, +c,)M*

Note that for n =1, this reduces to the previous
case (2.3) with u,_ +c, replacing #_.

Second, consider M, =M for allJ. We can now
take the limit of A /n as n—~ 0 to obtain the free
energy of the random model. 3® The equation of
state becomes

h=r,M +c M?® +—$—M|vw [*o/X2
2

2
x [(m -1)f=p; <C°°M >+ S, +2u, L;(——3c°° M2>
Yo 7, 7, v,

o

o 0

+6 °°M21n
where L} (x) =dL,/dx = (1 +x)1nl1+x(—x For u, =0,
we return to (2.3).

1+—?;——M2H (2.16)

£

III. GREEN’S-FUNCTION TRAJECTORIES:
FULLY EXPONENTIATED EQUATIONS OF STATE

The Hamiltonian parameter trajectories dis-
cussed in Sec. II give partially exponential equa-
tions of state in that ¢ is replaced by #*, etc.; how-
ever, the M dependence is unexponentiated, being
expressed by logarithmic terms. In this section,
we will use trajectory equations for the Green’s
functions to give fully exponentiated results. As a
by-product, we will show that the results of Sec.
II were correctly continued to T'<T, [through the
singularity at »(I)=-1].

We consider the n-component Wilson-Fisher
model. All the information needed for the equation
of state is provided by (1.4). We define

r,=8%A/oM*. » (3.1)

The function T, is the p-point irreducible Green’s
function evaluated at zero momenta; T'; is simply
the magnetic field #, T, is the inverse longitudinal
susceptibility and so forth. For n#1 we expect
T, T'}4/* near the coexistence surface; this willbe
demonstrated explicitly below.

By differentiating (1.4) with respect to M, we ob-
tain renormalization-group equations for T',. For
example,

T =e ™I, g+ (n-1)(T,/M)'g,], (3.2a)
T ,=eM T, o4 (n=1)(T,/M)"g, ]
—eMH{Tigi+ (- D[(T,/M)'Pgi},  (3.2b)
where a prime denotes differentiation with respect
to M and g, =(1+(T,/M)e*2"), g,=(1+T,e*2!)t. The
equations for I', and ', are more complicated.

Making the approximation that I'; =T';=0 and keep-
ing only quadratic terms, we have

- Ayl 2 ‘k TN/ -
ra%—3e 4 [1-‘3r4g2+(”- 1)<-1\7> (’M“) g:} , (3.2¢)
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T "2
—_3e*4’{1“2g§+(n~1)[(ﬁ1> jl gf} (3.2d)
Equations (3.2) preserve the relations
r,=T,/M+3T ,M?, (3.3a)
r,=r,m, (3.3Db)

which are strictly true only as initial conditions to
the exact trajectories.

We solve (3.2) in an analogous fashion to the
systems in Sec. II. We first define linearized
Green’s functions

_ ePaix)1 T\’
T,=T,+ o [F3g2+ (n - 1)<—A71> g{’ , (3.4a)
-~ e(l4-7t2)ll T.\”
D [F4g2+(n—1)<7wi> P

As l—~w, fl -T, I:z-— T,. The flow equations for
I, and T, are (to quadratic terms) ‘

: 1

%:-e 1;/11“("3 gf+g§>—e"4’§1"iM2g§,

(3.5a)

T,= _6141f2r4<.7l_;.1_ g§+g§> - eMT2M%g%.  (3.5b)

The system of equations (3.2)-(3.5) can be solved
by quadrature functions. Define Y,, Y,, and Y by

I>1/Y1=-§(n+ 8)I',eMig?, (3.6a)
Y,/Y,= % (n+8)T Mg (3.6b)
Y/Y=-T,eM'[3g2+t(n-1)g?], (3.6¢)

with the boundary condition Y;(0)=Y,(0) = Y(0)=1.
Of course Y=Y ("1/(m8)yAn8)  Fxamining (3.2)
and (3 5), we have immediately

T,/M=Y(Y ;8 Ly, M), (3.7a)
T,=Y(tY ;™ +} u4M2), (3.7b)
Ty=u,YM, (3.7¢)
T,=uY. (3.7d)

Explicit dependence on 2, has been dropped; ¢ and
u, define the initial conditions for fx and T,.

We cannot expect these expressions to be equally
valid since successively more severe truncation
was applied to the T',, T';, and I', equations. For
example aT /aM;& I',. The expressions in (3.7b)—
(3.74) should be con31dered as auxillary functions
to be used in the primary result (3.7a) for 1"

Rather than attempting to directly solve the non-
linear problem to compute Y and Y,, we will esti-
mate them.®” Combining (3.6¢) with (3.7d), we

have (exactly)
1
Yl=1+3u, f ovtgiais “Shu, [ evigial.
(4]
' (3.8)
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In the critical region, I', <1, I,/M <1, so that
g,~1 up to a value of I=1, (and g,~1 up to I=1,),
where (Ty/M)e*2'1 =1(T, e 2’2=1), BecauseTI,>T;/M,
l, is less than I,. For points near the coexistence
surface, I, <<, but in any case, we have 1</,
<

1

At a renormalization time [, the longitudinal
fluctuations have been incorporated (or integrated
out). However, this is not all the renormalization.

Until I~1,, the transverse fluctuations are still
important. At 1~I,, we may assume that T',/M has

reached its asymptotic value, but at I~1,, r re-
flects only the longitudinal effects. Making an
asymptotic expansion of the integrals in (3.8),
therefore, gives as [ -«

Y- 1~1+ 4 (F-X‘i/)? 1)
Ay
n-1u s YA
Tl @9

where T, represents the value of T, at the point
~1,.

If we now turn to Y,, we have no simple expres-
sion like (3.8) to approximate. However, from its
definition (3.6b), we see that ¥,—~0 exponentially
for 1>1,. Therefore, the integral for Y, is cut off
by the longitudinal propagator at I =7,. In the re-
gion I<l,, we cannot distinguish between g, and g,.
Thus, the asymptotic expression for Y, is given by

Y321+ 5 (n+8)(u,/ANT e 2 - 1), (3.10)

To close our system, we need T,. Since I,>1, we
may assume that I',~ T, so that (3.7b) can be used.
At the renormalization time I=1,, Y= Y, so that

(3.11)

Equations (3.9)-(3.11) combined with (3.7a) give
the complete solution for I';. The estimates used
are supported by the exact nonlinear solution tra-
jectories studied in Sec. II and Appendix A.3!
These expressions give the full crossover equa-
tion of state containing the competition between the
critical fixed point at u,=3X,/(n+8) and the Gaus-
sian fixed point at #,=0. We note that we can re-
cover the Hamiltonian parameter expression of
Sec. II by setting T,=¢,+3u M?, T,/M=t_+u M?
in the expressions for Y and Y, and expanding the
M dependence (u,=6ux). We obtain exactly the log-

T,=Y, [tY;%/ ™®+ fu m?].

-arithmic terms of (2.3), thus confirming that the

continuations employed are justified.
To explore the result further we set u, =32,/
(n+8). Then, we have

T, lT 6/ (n+8)10g/Ag) 4 1 Mz
M [n=1)/(n+ 8)](r /M)” M“2+[9/(n+ 8) [T, a7z

(3.12a)




17 EXACT AND APPROXIMATE DIFFERENTIAL RENORMALIZATION-GROUP... 2089

T,=The/2(iT;0M/ (meh2 L b2 (3.12b)

We have absorbed the fixed-point value of «, into
a scale change of M. There are several points to
note about (3.12). _

First, as n—~«, the T', dependence in (3.12a)
disappears giving a simple equation for Fl/M

T,/M=(T,/MP/ 2(t+5M?) . (3.132)
This can be solved to give the exact spherical re-
sult

T,/M=(t+1 M2/ (-ral2e) (3.13b)

This reduction to an exact result does not apply to
T,, T,, and I', as given in (3.7b)-(3.7d) as pre-
viously indicated and confirms that the expression
for T', should be considered central. It also sug-
gests that the implicit expressions such as (3.12)
should be taken as written and not promiscuously
e-expanded.

Second, the coexistence curve singularity is cor-
rectly given. Equation (3.12b) guarantees that T,
is finite on the coexistence surface and I', ~ [const ¢
+ M2/ 4-24/%2) a5 required to give I',~T' */?2. The
amplitude for the crossover between analytic and
nonanalytic behavior is given correctly to lowest
order; i.e., (n-1)4 as can be read off directly
from (3.12).%2 4

Third, in the Ising case we can write (3.12a) as

T
M‘"—'Féb'a)/w'”[tréw'l)./7+%Mz], (3.14)

where the critical point exponents have been in-
serted in the manner required by scaling. The
distinction between T', and T, is of course absent.
Equation (3.14) is interesting since we can use the
critical-point exponents as measured or calculated
separately. If we use the second-order exponents
for the k? propagator case (\,=¢=4-d) and ex-
pand (3.14) in an ¢ expansion, we recover the ex-
act ¢? equation of state. This fails at O(e?®), how-
ever, due to the introduction of new classes of
diagrams (and neglected terms of the trajectory
equations) at that order.®® In expanding to O(¢?),
it does not matter whether T, is obtained from
(3.12) or by iteration from I',=8T",/0M.

Fourth, we may put (3.12) into normalized form.
Define

T,/M=M"f(x), T,=M*1g(x), x=t/M*'".

(3.15)
We wish to normalize such that f(0)=1 and f(-1)
=0. We have
_ n=1+97(0) /22
flx)= n— 1)f(x)"'4”‘2+ 9§(x)"‘4’ Tz

R

(3.16a)

We cannot “improve” this result by the insertion
of critical-point exponents as easily as in the Ising
case since there are several places where ambig-
uities arise. However, we can compare (3.16) as
it is with the exact ¢? result of Ref. 3 for the %?
propagator case. We cannot expect to get all the
¢21n terms without correcting our exponents. How-
ever, ¢?1n? terms can be compared to check the
exponentiation. A partial check has been pro-
vided by the exact spherical limit and the exact

to O(¢?) Ising result. We can use f=x+1 and g=«
+3 on the right-hand side of (3.16) since O(¢) cor-
rections to these expressions do not affect the
¢?In® terms. We obtain the ¢21n® terms of Ref. 3
plus the following term:

_ €(n-1) ofx+1
R (x+1)In <x+3>'

Note that this vanishes for n=1, n= and on the
coexistence surface x=-1. However, the result
given in Ref. 3 also contains a quadrature integral
Q, given by

Q:_ 522((711-}-__8:%; [(x+4)11(P) —Iz(p)]y

where p=(x+3)/4(x+1) and I,( p) and I,(p) are given
in Ref. 3.

As x—~ -1, p—~, and we can make an asymptotic
expansion of @ which gives

_ n-1 , /In?p Inp
Q_A+~—F(n+8 (O(—-Ez—,-—p—>.
The term A thus represents the leading behavior
of the integral near the coexistence surface. The
remaining terms of the asymptotic expansion of
Y, [neglected in (3.10) and subsequently | and O(e?)
terms dropped from (3.2) are of the general form
of the integrals of (3.18).

Fifth, Ref. 14 has also considered the expon-
entiated equation of state from a different ap-
proach. Equations equivalent to (3.2) are obtained
by a spin shift. Approximate nonlinear trajec-
tories are followed up to an I corresponding to
our [,; the transverse fluctuations are then con-
sidered in a diagram expansion which is approxi-
mately summed. A result different from (3.12) is
obtained which agrees with it for »=1 but does not
pass to the spherical limit for n=%. If we ¢-ex-
pand both results for the %? case considered by
Ref. 14, we find that Ref. 14 contains all of the
€21n? terms of (3.12) plus an additional term

-1 (x+1)? In? x+1
(n+8P x+3 x+3)°
This term spoils the spherical limit and is of a

(3.17)

(3.18)

(3.19)

2
€
r=5_ 3.
A T (3.20)
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form which cannot arise from the integral @ (being
too large by a factor of n+1). However, the term
is small near the coexistence surface due to the
factor (x+1)2. The result of Ref. 14 also has
change in the character of the temperature sin-
gularity at n=5 about which we cannot comment.
The difference between the two results may be
attributable to the use of the matching procedure
used in Ref. 14 which can be shown to be good to
O(e), but which is perhaps not as uniform to O(e?)
as a pure renormalization-group approach.

Finally, the free energy A can be calculated from
(3.7). We cannot avoid the case of the asymptotic
expansion about the break points I=1,, and I=1,,
however, even if we express things in terms of ¥
and Y,. We write

A=e o In(1+ T,e*2t)
+(n=1)In[1+(T,/M)e*']}. (3.21)

Integrating by parts, we drop terms which are
analytic at the critical point and terms with ex-
plicit A, prefactors. Defining

A= Ay =) 1 1_1
A-—A+—-——————>\O(}\2_A4)e T2 HNT g+ (n=-1) 77 &)
(3.22)
we have (keeping only quadratic terms)
L - T\2
A=- %e‘4’[f§g§+(n—l)<ﬁ> gﬂ . (3.23)

We break the integration of (3.23) into 1<, and
1,<I<l,. Forl<l,, wetake Y,~Y, and g,~g,~1.
For 1>1,, we set g,=0, fix ¥,, and integrate ¥,
from Y, to its asymptotic value. To these results,
we add the initial condition, A = tM2/2+u, M*/41,
to obtain®*

A=v(t %i Yoo/ y ”—————Zﬂfé>
\ .

. 3n 2( v (n=4) /(ns8)
n n+ _1
+_r2(n_4u4t (v )

+-3—(Y_Y2)t2y;12/‘"+8>. (3.24)
2u,

Since a=(),/A,)(4 -n)/(n+8), we see that the

specific-heat term is inversely proportional to o

as expected. Differentiation of the explicitly shown

M dependence gives (3.7).

In the spherical limit, (3.24) becomes
A=3(Y/u) (t++ u,M?)? + (analytic terms).  (3.25)
For u=u*, we rescale A and M (A —~A/u, uM?—M?),
to give :

A= % (t+_é_ M2)2+h4/(12"7t4) s (3.26)

F. NICOLL AND T. S.

CHANG 17

which is the exact spherical result.

We conclude this section by remarking that our
results (3.7)-(3.12) and (3.24) satisfy both the
Griffiths condition for large x and analytically for
small x if they are treated as implicit equations.
If a simple analytic guess is made as in the dis-
cussion following (3.16) then only the leading be-
havior will be in the Griffiths form. An iterated
solution will improve this order by order (in x~2).
In the spherical limit (3.13), for whichthe complete
solutions of the implicit equations are easily ob-
tained, both the small-x and large-x regions are
represented by a single simple expression.

IV. HIGHER-ORDER CRITICAL POINTS:
LINEAR AND QUASILINEAR APPROACH

The techniques of Secs. II and III give the non-
linear crossover trajectories and equation of state.
At higher-order critical points (by which we mean
systems not described by s* Landau theories), the
nonlinear equations are more complex and there
are different approaches which emphasize differ-
ent aspects of the critical behavior. In this sec-
tion, we use a simple iterative solution which gives
a critical noncrossover equation of state in an €
expansion. The method closely parallels the field-
theoretic approach as will be seen below. How-
ever, some information about the nature of the
nonlinear trajectories can be employed to ad-
vantage in considering the result. We recalculate
the ©0=2 (s* equation of state as an example, and
then give the result for the © =3 (s°) case. This
method can be applied generally to any critical
system.

We will consider the isotropic Oth-order equa-
tion of state for which X,, <<1. The zero-loop ap-
proximation for A is a polynomial of degree © in
M2 :

tM?  ubr* veM?®

Ao= gt (4.1

At the fixed point, » is O(\,q); if # is considered
to be O(1), we have M?= 013/ V), We wish to
have equations in which M is also O(1) and we ex-
pect to be able to extract scaling behavior (in this
linear approach) only if we are near the fixed point.
Therefore, we set vy =v*),4, where v* is an O(1)
number which can be calculated as in Ref. 1 or
which can be determined by enforcing scaling on
the resulting equation of state. We rescale A and
M accordingly, and define a variable z by

20-156-7&21. (42)

Then to order ),q, the generator for the free en-
ergy becomes®

8A (o™ 0)1/(6-1) 924

Bz aM,;3M, ) :

5% 29 1trln <§“+z1'°
(4.3)
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For I€[0,], we have z&[1,0]. For convenience
and to facilitate comparisons with other methods,
we replace the cutoff 1 with a general cutoff A,
This allows us to explore the limit A -,

From the form of (4.3), we see that to obtain all
the O(%,) parts of A we must compute © -1 loops
(iterations) of the equivalent integral equation.
This is to be expected since only diagrams with
© internal lines have logarithmic divergences in
a field-theoretic approach.

‘We begin with the 0=2 case. First, we will
choose a “bare power” expression for 4., A,
= 3tM?*+ §M*, with ¢ fixed. This corresponds to
purely Gaussian trajectories of the scaled vari-
ables. We get from (4.3) a one-loop correction

A, =50 [5(t+ 3M?)? In(¢ + 3M?)
+3(n = 1)(t+ M2 In(t + M?) + F(A)]. (4.4)

In Eq. (4.4), F(A) contains analytic corrections to
A as well as terms proportional to A and 1InA as
A -, If we ignore F(A), we reproduce the usual
result.

The M? and M* portions of F(A) could be incor-
porated into a redefinition of # and the scale of M.
A more enlightening approach is to choose an ini-
tial A, which has some z dependence. A “bare
eigenfunction” expansion in which s? and s* are re-
placed by the corresponding eigenfunctions @, and
Q, gives

Ay(2)=5t[M? =3\ p*z ]
+5[M* (0 + 22 0*2M?] + O(A2), (4.5)

This reduces the A divergence of F from linear to
logarithmic. The M?InA and M*1nA terms are

“()\6/7‘2)1/2

handled by the use of pieces of the nonlinear tra-
jectories; the full trajectories are not needed. We
incorporate propagator factors into the eigenfunc-
tions, and define®®

Qs,= (1/2p) f2(z, LY > [-M?/f (2, )], (4.6)

with f(z,#)= X, 0¥z - ¢{In(¢+2)]. This cancels the
M?1In A term (and modifies the constant term). The
M*1In A term arises from the #? contribution to the
u (four-point). equation; it indicates the presence
of the fixed point whose effect on the trajec-
tories was inadvisibly ignored. Recalling that
the coefficient of the M* term (or @, eigenfunc-
tion) is actually u(l)exp[-A,l], we realize that
as -« on the critical separatrix, we have u(l)
-1, its fixed-point value; thus, we are mis-
representing the form of the trajectories as
z~0. Picking A (2)=1Q,+2z*Q, properly gives
the asymptotic behavior of A, (many other choices
would do as well) and cancels the M*InA term.

The remaining terms are finite as A~=, The
M? and M* parts of these terms are canceled by
more subtle consideration of the nonlinear trajec-
tories. Of course, for the problem at hand, A=1.
The A~- limit is useful only in removing analytic
background terms from the calculated free energy,
leaving the “singular part.”

We now turn to the O =3 free energy; for %* pro-
pagators, this is a Xx,;x3-d expansion. The
calculation to O(x,) requires two iterations of
(4.3), and for the general n-component model in-
volves a quadrature. Dropping terms which are
removed by rescaling or the use of simple non-
linear improvements on the bare eigenfunction
trajectories, we take the A=« limit and find

A =5IM? ¢ suM* + L M° ~ T3 22T [(¢+ 3uM® + BM*)*/2 4 (n — 1)(¢ + uM?® + M*)*/2)

+ 2“4‘(%‘—'—;/3222) {M2(3u +10M?)2 In(t + 3uM?+ 5M*%) + (n — 1)(u + 2M?)
‘ ' » 9 ’ '
« [3M200+ 2 M3 It + 3ubt? + 5% + K — M2+ 2047 2K /,M,A )]
' 3(AT/M)
+5(n = 1)(3u+ L0M?) [(¢ + 3ubs® + BM*)(t + ubl®+ M* /272 } @

The function K in (4.7) is given by

(D/a)l/z daa?

Kb, @)= (b [ 7 T Ina. (4.9

K behaves as p® for p small and therefore does not
contribute on the coexistence surface. The cor-
rect values of v, B, and 8 to O(\;) and a(=3) to
O(1) can be read off from (4.7). This expression
also gives correctly the eigenvalue for the u (the
M?*) perturbation (thermodynamic field) A;=2x,

—2(n+4)2,/(3n+22). In Sec. V, we will show that
for A ,=0, the approximate generator gives the cor-
rect logarithmic behavior by using a nonlinear
trajectory calculation. :

The general O case to (0 —1) loops is beyond the
reach of this method as formulated above. In Sec.
V, an operator technique is used to extract and ex-
ponentiate the leading logarithmic terms from the
(® —1)th loop while ignoring the contributions from
the intervening lower-order loops.
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V. HIGHER-ORDER CRITICAL POINTS: NONLINEAR
CROSSOVER AND LOGARITHMIC CORRECTIONS
AT BORDERLINE DIMENSIONS

In Sec. IV. higher-order equations of state were
calculated by straightforward iterations of the gen-
erator. For the isotropic case, O -1 iterations
are needed to reach the first logarithmic correc-
tions which are associated with the shift from
mean-field exponents. In this section, we will use
operator (eigenfunction) trajectories to bypass the
intermediate stages. This is, of course, not a
complete description of the equation of state since
the nonlogarithmic terms are not generally analy-
tic [cf. the O(\}/) part of Eq. (4.7)]. However, the
logarithmic terms do represent an important part
of the equation of state, especially at borderline
dimensions. There has been an impression in the
literature that approximate renormalization groups
do not correctly give these logarithmic corrections
at d=3 for the k* propagator tricritical point.?*> We
will show by explicit calculation that this is in-
correct. The general O isotropic point is also cal-
culated within a simple quadrature, with the cross-
over between the Gaussian (mean-field) and non-
trivial (true critical) fixed point incorporated as
in previous sections.

We work in the disordered phase for simplicity
and calculate the nonlinear renormalization-group
trajectories for all the relevant isotropic opera-
tors. To automatically incorporate the high-tem-
perature (infinite Gaussian) fixed point we define
operators with built-in propagators [cf. Eq. (4.6)].
If sz(gz) is the eigenfunction of degree 2j, we de-
fine

Q,=(1+7Q,,[(1+ 2] (5.1)

Here ¢ is the reduced temperature [the coefficient
of @, in H].
_ We expand the Hamﬂtoman H in terms of the’
QJ’ZI
0 £l
H=Y a,)Q,- ’ (5.2)
p=1
The trajectories are
22 (ijlpda;a, _ 2 GjklpYasaa,
[ R C L AL

= Nyply=

- (—l—f—z)—z—{p+ l,p}a,, +1 +(quartic terms) ++ .
(5.3)
The sums are over i,j,k>1; (ij|p) is the projec-
tion of the quadratic part of the generator applied
to Q,; and Q,; onto Q,,, (ijk|p) is the analogous
projection of the cubic terms, etc.; {p +1,p} is
defined by

[§€ -2(j+ 1)]Q2j+2=2{j+ l,j}sz-

CHANG 17/
Logarithmic terms at the borderline dimension
arise from the generalized Wegner conditions
i+j—p=0,i+j+k —-p=20, and so forth. For finite
2,9, these terms give the leading power-law cor-
rections. It can be shown that the cubic and higher
degree terms in (5.3) give contributions smaller
by factors of A,y (for A,q>0) or by powers of
I lm‘|’1 for Mo =0) and will therefore be dropped.
Similarly for O = 3, the t term can be ignored. The
resulting system of equations is

. Gjilpya.a

@y =Ny — Z ]l?t){ ~(5.4)
i+j=p=0

Because of the constrainti+j-p=0, (5.4) is tri-

angular in the a, and can be solved exactly w1th a

single quadrature. We define Y by

. (0010)ay(l)

“THADP Y (5.5)

with the boundary condition Y(I=0)=1. As in Sec.
III, an explicit expression for Y™ is

o”

where we define u,,= a,(l = O).
2p-point Green’s function

We also define the

p_ lim e Yaola,(l). ' (5.7)

The solutions of (5.4) have the form

a(l)= e Y B[,y +8(V)], (5.8a)
where
5,=2(p0]0)/(00]0)1+5,,). (5.8b)

The ratios A, determine the eigenvalues at the
nontrivial fixed point' for X,,> 0,

Asp=Rgp =Ay90,(1+3, o).

2059 (5.8¢)

The functions g,(Y) are computed from

22 (i 1p)

Y
= Aj*A;=Ap=2( R
g’(Y)"uZt,(ommfl AY Y2875 gy + £4)

X (Mg +85), (5.9)
where 2, denotes the sum over 1<i, j<0,
i,7#p. This is a triangular system of algebraic
equations; each g, is a sum of powers of Y.
The results for the first four I”s are

FZO = hyg Y’ (5.103,)

F20_2=1..L20_2YA0-1, (5.10b)
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2o _,(0 —1,0 =110 = 2)(Y *2e-

Lo ma= Yoo (“‘20 -t

250 —2,0 =110 - 3)
IJ~23<0'G|O>

Doo-e= YAe's{p‘ze-e +

x[ Y20-280-1"2g-3"1 _ 1 <
Dot Boy —Bg3—1 Hooms =

o 00 10)(28,_, — A

, Hoo-p(0-1,0 -110 -2) (
um(oole) (Bag.,

Cases such as 24, —A,_, —1=0 give rise to
InY terms and must be handled carefully. The sys-
tem eventually reaches I'y(Y) giving an implicit
equation for Y; we estimate Y as in Sec. III

V(1= ) =(fye/ mEe) (T3 20 My _1)+1 (5.11)

(uk =x,0/(00]0)).
For 2, =0,

Yl=1 = (1ty9/2,)(00|0) InT,. (5.12)

For the case O=3, we can write for the renor-
malized zero loop A=2;T,;M?%/2j1, or

1 5(n+2) '<#Z) (n=6)/(3n +22) 2
A-z[“z-m i Jororon -y ar
1
T

B ESASUC I VEN gs YMS. (5.13)
We have chosen the normalization Q,;~ s¥/(24)! to
allow a direct comparison with Ref. 22 with which
it agrees exactly for A,o=24=0.

We note that the normalization of the fields u,,

- differs from Sec. IV where we considered A,(M)
~O(\3) and used the fact that M*°-2~0(\54). Here,
since we wished to take the limit A,g— 0, no scale
was assumed for the scaling fields except p,,<«<1.%
To compare (5.13) with (4.13), note that p3~x,qu?

Coupled-order-parameter systems will generally
require the solution of a nonlinear problem at the
s%® level and thus the introduction of several quad-
rature functions. Similarly, the situation below
T, will be complicated by the introduction of the
two propagators T',(7) and I',(I)/M. However, the
overall structure of the equations and their solu-
tion will be essentially the same (cf. Sec. III).

The results in (5.10) were obtained for © = 3.
However, comparison with the © =2 results show
that they hold there as well. We also can extend
the system to include “I')”’=A if we include a con-
tribution from the trajectory integral. For ©=2,
this just means allowing i= 9 —=1=1 in (5.10¢):

= [t%/2w/u*) (Y220 =1)/(28, = 1),

=~ Y /8 1) /4 a(u/u*). (5.14)

ATION-GROUP... 2093
1"Ae-2"t — 1)
_1) ’ (5100)
2
Bie.p(0 —=1,0 -110 -2) >
Ka@O 10N 246, =2y, = 2)

Y320-1"20-3"% _ 1 ) }

—Ao-s—z)(ZAe-l—Ae-z—1)> . (5.10d)

—

For 0 = 3, the trajectory integral contribution is

A

AT, = _mig[ngl(m]*o% -2}

1 [tegY)]Ee e
- -y . (5.15)

The nontrajectory contributions commence for
even O = 4 and include only the case i=j=30.

We note that the projections used in (5.9) can be
calculated with (1.4) or with the approximate Wil-
son-Kogut generator.! They differ by a factor de-
pending only on O which cancels in the ratios. By
the same method as in Ref. 1, we find (for i +j

=k+0)
i1j12p! <j+—‘z—n-1>< 2 ><2j—2m
2i1251k! - m j-m/\0-2m)"

(5.16)

Gj |Ry=

VI. HIGHER-ORDER CRITICAL PdINTS:
GREEN’S OPERATOR TRAJECTORIES

We can combine the Green’s-function trajecto-
ries of Sec. III with the eigenfunction techniques of
Sec. V to give fully exponentiated equations of
state.

We begin with the Ising case for which a com-
plete solution is possible. The free energy A(M)
can be expanded in a Taylor series around some
magnetlzatlon M,

M-M

AGn) = Z T,y oL (6.12)
We could now expand the logarithmic terms in the
generator in powers of M — M, to recover the tra-
jectory equations of Sec. III for the Green’s func-
tions I',(M,). However, we could also rewrite (6.1)
in terms of an eigenfunction expansion

AGD =D T,M)G, . (6.1D)

»

The f‘,,, which are linear combinations of the Ty,
are what we will term Green’s operators. The Q,
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are chosen to eliminate linear terms in the equa-

tions. In this section, it proves convenient to work

entirely with unscaled variables so that M, is the
(unscaled) physical magnetization. Hence the @,
have ! dependence given by

Q1 M =M =[N L+ Tt/
XHP[(M _Mo)e(xo-xz)z/z
X(1+T,ereh)/2] | (6.1c)

where H, are the Hermite polynomials. The flow
equatlons are glven by the same prescription as in
Sec. V:

. eh201

T,= W(P, ql k>r,,rq , (6.2)

where the sum over p and ¢, 2<p, ¢S 2,p+q=2Q
+k is implied.*® Of course, as [-=,T,~T, (just
as @, — (M = MY’ /pV).

This system is again triangular in the sense of
Section V. and could be solved in the same manner.
However, for Ising systems with spin-inversion

symmetry, we can use the earlier results directly.

We found
T, (M=0)= Vzi({uzj}, Y) P ) . (6.3)

where the y,; are the solutions given by (5.9). We
expect from the work of Sec. III that (6.2) leaves
invariant the relationship

MEiP

L0 =22 vailliosdh Dy

where we have replaced M, by M and where Y is
redefined as

(M)e’2 .
Y —&Wmo, 20(20) . (6.4b)

The function Y will be estimated by

(6.4a)

Y'1=1+—‘im—<2o, 20 | 20)(T' 20/ 1) ,  (6.5)
20
where, of course, I, is T',(M).
To show that this simple result holds, we insert
(6.4a) into (6.2) to obtain

2i=p
Zn, (M’

eheo! (J, k1)
(1+1"e)‘20’)°§: (2s =j)1(2t - R)!

Js k.b

xM2(s+t)-(j+k).},zs.yzt X (6.63.)

We wish to show this is equivalent to

. —g20!
Vop= (e P (28,2t | 2D)Y,Vas » (6.6b)

This requires the following relation:
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(2.5 2t|2z) j,klp}
(2 - E @2s-@2t=-k)1 (6.6¢)

for s+¢=i+0,j+k=p+20. For Ising systems, we
can take

[ »
Goklp)= |, _g

Equation (6.6c) can therefore be written

C)= () (o)

Multiplying by z* and summing over p, we have the
desired result

(L+2)% =D 2*"0(1 +z)2i.'2'+0 (Zt ;O>
7

k-0

=(1+2)?%

Thus, for the Ising case the results of Sec. V
hold with (6.5) for Y. This was noted in the © =3
casefor ), =0, k2propagators by Stephen et ai.22(®)

The case of general n is more complex. Not only
are there two propagators g, (transverse) and g,
(longitudinal) but also, there are singularities
from terms other then the O(X,q) logarithms. For
example, the tricritical case given in Sec. IV has
a (I',/M)*/? singularity at O(A}/?). This means that
a careful order-by-order solution is required to
incorporate successive unlinearized singularities
in a complete solution.

However, it is of independent interest to consider
how the operators may be constructed. One method
which preserves the rotational symmetry is to ex-
pand A in powers of x — x,=M? = M2,

A= ZRzp Ko)——2— (- xo) (6.7a)

and then rewrite this in terms of operators:
A= R0, %, %) - (6.7b)
4

The Qzﬁ are related to the local operators of Wil-
son and Wegner satisfying (in their scaled form)

( g aa *:53>Q2p—?\ 4., (6.8)

where £ is the linear renormalization operator. If
we choose the scale of ! such that A, —A,=4, then

~ a1 a1
Bupll, 0, 5) (g0 Fy (L o) (g g
8> 82

)= 3 L G-l

a=3n-1)(g,/g,) -3 , ‘ (6.8¢)

(6.8b)
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where Lf is the Laguerre polynomial, is the ap-
propriate set. It is then straightforward to show
that the results of Sec. V can again be used [with
(6.4) used for Y] in regions where the two propa-
gators are roughly equal—as in the disordered
phase—or where the transverse propagator is
much smaller than the longitudinal propagator—
near the coexistence surface (0 = 3).

VII. DISCUSSION

We have described a number of differential re-
normalization-group techniques for the calculation
of the free energy and equation of state. These
methods are of a sufficiently general character to
be applicable to any critical system described by
a Landau-Ginzberg-Wilson Hamiltonian. They dif-
fer among themselves in the type and amount of
nonlinear renormalization information incorporat-
ed. In this context, we note that nonlinearity has
two different aspects: (i) crossover information
involving two or more fixed points; and (ii) ex-
ponentiation of logarithmic singularities (which is
roughly equivalent to diagram resummation). We
feel that the differential technique thereby offers
an advantage over purely diagramatic perturbation
theories. Just as the generator approach automat-
ically evaluates the diagram weights and integrals
necessary to evaluate critical-point exponents (as
described in Ref. 1), it also includes the leading
singular behavior of the diagrams to all orders in
the relatively simple and compact nonlinear struc-
ture of the renormalization group trajectories.
This is not to suggest that careful diagram resum-
mation cannot reproduce the results given here;
moreover, at higher order in exponentiated per-
turbation theory, the relative advantages of the
differential method may diminish. However, the
approach is simple and straightforward to apply; it
is supported by a great body of knowledge about
differential equations which will be increasingly
useful as the salient features as identified in a dia-
gram expansion are recognized in the differential
formulation.

If we compare the different methods, the itera-
tion method of Sec. IV is the most naive and the
least nonlinear. It corresponds closely to the dia-
gram expansion, each iteration representing the
contribution of the next higher loop. It does not
easily provide crossover or exponentiation infor-
mation and is therefore confined to exploration of
the critical regime of a single fixed point. Its
simplicity has the virtue of neglecting no contribu-
tion to the free energy and for this reason it can be
used to determine the general character of the sin-
gularities of the equation of state. It is a first
stage in a calculation to provide a simple form

with which the results of more sophisticated tech-
niques (which may stress different aspects of the
equation of state) may be compared.

The next level of nonlinearity is represented by
the Hamiltonian parameter trajectory method of
Sec. II. This familiar method contains, in princi-
ple, all the crossover information, but in interest-
ing cases the nonlinear equations may be extremely
difficult to solve for more than asymptotic infor-
mation. In its favor, it is partially exponentiated
(thus providing the 7> T, crossover Green’s func-
tions) and is only slightly more difficult (within
quadratures) than the iterative approach.

The most elaborate nonlinear technigue is the
Green’s-function trajectories method of Sec. III.
Its virtues are manifest since it exponentiates the
order-parameter-dependent logs as well as the
nonlinear scaling fields. We also obtain in a low-
est-order calculation (such as given in Sec. III) an
exponentiated form of the corresponding. zero-loop
and one-loop calculations of Sec. II or IV. How-
ever, the number of quadrature functions (e.g., Y,
and Y,) is increased and the nonlinear problem is
generally made more difficult.

For higher-order (nonquartic) critical systems,
the operator method used in Secs. IV-VI is almost
a necessity. For Ising systems (or more generally
in situations where a single propagator may be em-~
ployed such as in the disordered phase of the isc-
tropic n-component case), the method allows one
to seek out, for example, the logarithms respon-
sible for changing the critical-point exponents
without examining the intervening terms.
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APPENDIX A: SOLUTION OF NONLINEAR
RENORMALIZATION-GROUP TRAJECTORIES

Consider a set of three coupled nonlinear equa-
tions of the form

=, v+ (A u, +Au,)/(1+7),
2.41 =uy[ Ny~ (Byu, +Coy) /(1 +7) 72, (A1)
y=us[ A, — (Byup+ Cou,)/(1+ !

Equations of this form arise in the compressible
magnet and the hypercubical models discussed in
Sec. II. It proves convenient to define'®
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TABLE 1. Fixed point values y{,y%,2* and associated eigenvalues for the four fixed points
of the general coupled-order-parameter model, Eq. (A3).

Temperature

Fixed point yi V¥ z* eigenvalue In plane eigenvalues
) 1 0 126, Y W Y M(1—8y)
(ii) 0 1 —(1-06,) A — Ay - Ag(1 = 6y)
. 10, 164 (1-64)(1— 6,)

0 Ay — M A -\, Ay — 2
(iii) z point 5,67 =5.67) 0= MA, " Ay =53,
(iv) Gaussian 0 0 0 Ay g Y

x=[r+ (A +Au,)/ (A =2)(1+7)] [t Uy €]

_ A2
(A/B)y;=u;/(1+7)?, (\/B))u,=u, . (42)
There are four fixed points in the ¢=0 critical
plane. The eigenvalues at each fixed point are
given in Table I. We define

8,=A;/B;,
6,=C;/B, ,
A,=[8,(1-5,)+4,(1-5,)]/(1-5,5,) .

The critical-point exponent 7 is given by, for ex-
ample, y;'=1-2A,;/A,, at the i=1, 2 fixed points.
The values of the various parameters and the iden-
tification of the variables for the two models of
Sec. II are given in Table II.

Proceeding as in Ref. 15, we define the functions
Y; by

Vi= =AY . ) (A3)

1

(For a discussion of the properties of the Y, cf.
Refs. 1 and 15.) Y, and Y, are not independent:

(1=8)y,Y,1 7% —(1-58,)y,Y! %
=(1-58)y-(1-5,)y,=2 . (A4)

We now will assume provisionally that the Y; are
known. For the equation of state, we need to com-
pute

=lim [t@e™ 2! u, (e ™ Y, ()/Y,(1=0)] . (A5)

The functions ¢;Y; are renormalization invariants
as functions of ¢ and u;. For A, >\, (d,>0,), t,.=7.,
of text. We have’

[t‘x’? ul b u27,°°] = [tqlAlq2A2’ ulqlqsz’ u2q2qfl] . (A6)

Here and elsewhere a subscript « denotes the
I - limit; otherwise a variable or function has its
initial /=0 value. From (A4), we get a relation-
ship between ¢, and g,:

(1=1)=(Y,g,) %7 - I(q,¥ )", (A7)
where I is a renormalization invariant
I1=(1-8,)%,Y,%"/(1 -6)a,Y,51"" . (A8)

In the decoupled case, 6,=0, we can write
(quz)-l:l _I[l —(qlYl)él—l] ’ (Ag)
and thus obtain ¢, in terms of ¢, directly,
Z+74, _ (1-3%)7,
Z+U,q, 70 (1=0)), +7,(q, 0 = 1) "

(A10)

9=

where Z=(1 —8,)%, -%,. In this decoupled case, we
can give explicit solutions for the ¥; and hence for

TABLE II. Identification of the variables and values of the parameters of the general coupled-order-parameter mod-
el, Eq. (A3), when applied to the compressible magnet and the nm hypercubical model.

Parameter
Model uy uy A 34, 5By 3B, 56 3G Ay 61 )
Compressible m+2 2(m +2)
2 8 2 2 1 —_—
magnet (2.6) wovoomi ” mes m (m+2) 0 m+8 (m +8) 0

nw hypercubical

(2.11) c u m+2

mn+2 m+8 nm+8

2(m +2) 12
(m+8) nm+8

m+2 nm+2
m+8 nm+8
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all the nonlinear scaling fields. This is the case of
the compressible magnet model, for which in Ref.
1 a solution was found good in the region y,/y, <1
—0,. A more complicated solution should be ob-
tainable in the complimentary region. In the
large-I limit, we find
Y,q,=[1=(Y,q,)"/7(Y,q,)" 42/ 22/DI,
X[1+(A/X)A0(Y,q,) 1
X (Y,q,) " %2/ 2/DI,) (A11)

where [, is a renormalization invariant independent
of I,

I,= || e/ day My hate/ Nagnt | (A12)
and where the factors D and A, are given by
D=1+(/2)(1-24,),
(A13)

A=A, +A[(1=0,)7, -Z4,)/7,

Equation (A11l) can be solved to any desired order
recursively. However, many of the features of the
solution can be extracted by inspection. For the
case 6,>1, the (i) fixed point is stabler than the
(iii) or z point and we expect it to dominate. As ¢
-0, we expect ¢, goes to zero as some power of .
We find

Gy~ E+7U)/Z , An—nA,

This is not essentially different from the pure-(i)
fixed-point behavior ¢,=1, A, =A,. [Note that it
immediately shows that at z =0, the presumption
of (i)-point-dominated behavior cannot hold, as
expected. |- Furthermore, as t-0,Y,~1-y, ex-
actly and hence [since Y, is known from (A6)] we

must have

Y,q, -’IP(Yzqz)h}“lAZ/ Mg, ~han/ X,

On the other hand, for §,<1, we have an entirely
different critical behavior, dominated by the z
point (except at y,=0). However, the leading order
t dependence of ¢, is almost unchanged. There-
fore, we can pick an initial guess for Y,q, which is
the A, -expansion solution of (A11):

Y,q,=1,/(1+1,) . (A14)

This is the expression used in Sec. II. More pre-
cise forms can be obtained by inserting (A14) into
(A11) and iterating. The weak dependence of I, on
Y, is dropped to this order in Sec. IL

In the one variable case, an exact though implicit
solution can be obtained. If the second square
bracket is dropped (and D=1 for convenience),
we have

(Y,q)7'= (A15)

with ¥, =1-%,. This is the estimate used in Secs.
III-V. The estimates are not as crude as they may
appear to be at first glance. The following integral
(for A a constant) can be done exactly:

1+ /G,

© elwlgl

A Ao
=1 20 220 | j=r20/22
L, “(d+Aey ‘Aw[f’B(" n T, >A

]

(A16)
Dropping all but the constant term in the hyper-
geometric function and evaluating the beta function
at X, =0 gives (A15) with Y=1-1#,.
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