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A recent x-ray study, by De Jeu and De Poorter, of the smectic phases of heptyloxybenzylidene-
pentylaniline shows that the individual molecules are tilted with respect to the layer normal in both the
smectic-4 and the smectic-C phases. We demonstrate here that a system of long molecules, moving within a
planar layer, and making a fixed angle € > 0 with the layer normal, has a second-order transition from a
phase with disordered tilt directions to a phase with the tilt directions aligned along some axis.

It is suggested that this model phase transition underlies the smectic-A-smectic-C transition, at least in
those cases where the smectic-4 layer thickness is significantly smaller than the molecular length. In this
model the effective tilt angle o, as measured in optical and magnetic resonance experiments, grows
continuously with increasing order of the tilt directions, and saturates at the value a = e. On the other
hand, the biaxiality (A)in the molecular orientational order passes through a maximum and remains small at
all temperatures; e.g., we find |A| < 6 X 1077 for € = 30°. The phase transition is driven by the gains in
translational entropy and total attractive energy which accompany an increase ‘in order of the tilt directions.
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(At the transition temperature these effects balance the loss in orientational entropy.)

I. INTRODUCTION

The striking behavior of the smectic-C phase,
observed in optical and magnetic resonance ex-
periments as the smectic-A-smectic-C transition
is passed, is conventionally explained by a
gradual tiltipg of the molecules away from  the
normal to the smectic planes, all the molecules
(within a given domain) remaining parallel as they
tilt."»? A recent x-ray study by De Jeu and
De Poorter?® shows that this interpretation cannot
always be valid. These workers found that the
layer thickness in the smectic-A and smectic-C
phases of heptyloxybenzylidene-pentylaniline (ab-
breviated 70.5) are equal and less than the mole-
cular length (the layer thickness in the smectic-C
phase of 70,5 was found not to vary significantly with
temperature). The angle between the molecules and
the layer normal was deduced to be about 17°in
both phases.

We propose a new interpretation of the smectic-
C phase which is consistent with these results. -
It is suggested that  the change from smec-
tic A to smectic C is the result of a second-order
phase transition in which long-range order in the
molecular tilt directions develops. In the smectic-
A phase the tilt directions are disordered; in the
smectic-C phase the tilt directions tend to align
along a preferred axis.

A simple model for this phase transition is
given in Sec. II. This model considers rodlike
molecules packed in a planar layer and making a
fixed angle € with the layer normal. The phase
transition is driven by the gains in translational

entropy and fotal attractive interaction energy
(assumed isotropic) which accompany the growth
of orientational order in the tilt directions—below
the transition temperature these effects overcome
the loss in orientational entropy. The same type
of mechanism has recently been proposed to ex-
plain the isotropic-nematic phase transition. ¢

In Sec. III it is shown that this model exhibits
the usual optical behavior associated with the
smectic-C phase. This behavior is characterized
by an effective tilt angle which grows continuously
from zero at the smectic-A-smectic-C phase

transition.

The simple model of Sec. II is appropriate for
cases, like that of 70.5, where the layer thick-
ness in the smectic-C phase may be taken as fixed
(it is not knowr at present whether this case is a
common one). In another case that has been ex-
tensively studied, that of terephtal-bis-butylani-
line (TBBA), the angle € in the smectic-A phase
is small” and the layer thickness in the smectic-C
phase varies approximately like cosa, where a
is the optically measured tilt angle.® Thus, TBBA
seems to conform to the usual interpretation of
the smectic-C phase. However, it is conceivable
that even in cases like that of TBBA the basic pic-
ture of an orientational ordering of the molecular
tilt directions remains valid, the change of € with
temperature amounting to only an additional com-
plication.

De Jeu and De Poorter?® offered a different inter-
pretation for the smectic-A-smectic-C
transition of 70.5. They suggested that while each
layer in the smectic-A and smectic-C phases has
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a well established tilt direction, the tilt directions
of the layers are randomly distributed in the
smectic-A phase. The smectic-A-smectic-C
transition represents, they suggest, the onset of
coupling of the tilt directions of the various layers.
We believe that this interpretation is unlikely to be
correct. The reason is that the entropy per mole-
cule associated with the tilt direction of a layer

is of order k/N (k is the Boltzmann constant, N is

the number of molecules in a layer) while the coup- -

ling energy, per molecule, between adjacent layers
is presumably independent of N (for large N). Un-
der these conditions, it is difficult to see how a
sharp phase transition, involving layer tilt direc-
tions, can occur. . ’
Several mechanisms for the smectic-A-smectic-
C phase transition have been proposed in the last
few years, °~'' but none of them is consistent with
all the experimental data now available. The elec-
tric dipole model of McMillan® and the steric mod-
el' of the author both predict a large anisotropy
in the orientations of the transverse molecular
axes when the tilt angle in the smectic-C phase
becomes large. This contradicts a series of ex-
periments which have now established that the
anisotropy is quite small (of the order of 10~2 in-
stead of 107%).%*%-5 Further, studies of molecular
structure and the occurrence of the smectic-C
phase do not confirm either of these models. The
study of Goodby and Gray'® makes the McMillan
model doubtful; the study of De Jeu'” makes the
author’s steric model doubtful. The model of
Cabib and Benguigui'’ is consistent with isotropic
rotation of the molecules about their long axes,
but is not supported by either of the above structu-
ral studies.

II. MODEL PLANAR LAYER AND ORIENTATIONAL PHASE
TRANSITION

The N molecules composing the planar layer will
be assumed for simplicity to be ellipsoids of revo-
lution of length and diameter [ and d, -respectively.
The mass centers of the molecules move only on a
plane of area A, and the long axis of each mole-
cule is inclined at the angle € to the plane normal.
In addition to the hard-core repulsion between the
molecular ellipsoids, we assume an attractive in-
teraction —K/7$, between pairs of molecules (»,,
is the distance between the molecular mass cen-
ters).

Let the plane normal be the Z axis of a rectangu
lar coordinate system X, Y, Z, and let the X axis
be the direction of alignment of the tilts in the or-
dered phase. The unit vector é‘ along the long
axis of molecule i can be written

&, = Zv, cose + (X cosy; +Y siny,) sine , (1)

where v, =+1 and g, is the azimuthal angle of g,
measured from the X axis. Similarly, we write
the radius vector T,, between the mass centers of
molecules 1 and 2 as

T, = X7, cOsp+ Vo, sing . (2)

The orientational distribution function f(¥,v) can
be expanded in a trigonometric series

F@,v)=(1/47)[ 1+ 2av cosy + 2b cos2ph++ ++ ], (3)

where no sines appear because the XZ plane is a

plane of symmetry. However, this expansion is
only useful near the second-order phase transition
where it is sufficient to keep one or two nontrivial
terms in Eq. (3). Since we want to study the beha-
vior of the model also for high degrees of order
(when a, b, etc., are of order 1) we adopt instead
the trial form

F, v)=[1/4n1(p)]er e, »

where p is a variational parameter and I, is the
zeroth-order modified Bessel function of the first
kind:

1 ug
)= [Te e ean. (5)
0

It may be verified that near the transition, where
|pl <1, Eq. (4) and Eq. (3)—suitably truncated—
give much the same results.

Let the system be at constant volume (i.e., con-
stant area A), so that the appropriate thermody-
namic potential is the Helmholtz free energy
F=U-TS. As usual, we set the entropy S equal
to the entropy of the hard rods without attrac-
tion.'®'® Then the attraction between molecules
enters F only through the internal energy U. This
procedure is acceptable for liquids far from the
critical point.*

For the hard-rod entropy we employ the Onsager
approximation,*

S _
~—=1+lno —!; f 4, f,Indf,

Y
9 ‘-y-‘J f dy, dy, f\f 2B (6)

where 0 =N/A, f; = f(;, v;), and =B, is the pair
excluded area of molecules with orientations ,,

v, and ¥,, v,. Since the intermolecular radius vec-
tor ¥, lies in the XY plane, we have

-na- 5 (%) . g

where we use the contact radius p,, given by the
Gaussian overlap model of Berne and Pechukas?:
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1 (;" é’l +;"§2)2
=d|: -—X——
P12 1 2 X( 1+xe, &,

L& -7 a2)2>]-1/2’ 9

1-x€, &,
Y=F,/ v, X=(2-d%)/(?+d?).
Similarly, we evaluate the internal energy by

using just the low-density form of the hard-rod
correlation function g,,
>
P (©)
0, 7,,<P,-

Thus,

U 0 - =K
Wzggfd%d%szf dr1zy—gg12

=——%§£; f d‘p1d¢'2f1f2 J( d¢o< pi )4- (10)

The above expressions for the entropy ard ener-
gy neglect the molecular correlations that must ex-
ist at liquid densities. As a consequence, the de-
pendence of the translational entropy and U on the

. orientational order is exaggerated and, as will be
seen below, this results in a gross overestimate

" of the transition temperature for large values of
l/d and €.

The evaluation of the integrals over ¢ in Egs.
(7) and (10) is difficult for general orientations &,
and é,. However, we can expand '

R _1~ 2m & m
1% (57) [ s (88)

=A , +B, v, v, 080, + C,, OS2, +* * * (11)

’

where ¥,, = ¢, = ¥, and the coefficients A, B,,, C,, . . .
are functions of € and y. We truncate the ser-
ies after the third term and determine the coeffi-
cients A, B, C by fitting to J,, at the three points
(@) vy =vy, $,=0; (b) v, =v,, ¥y,=7; and (c) v, =,
¥, =37. Inthese configurations it is easy to calcu-
late J exactly by elementary trigonometric inte-
grals [ f(q2 —-7?cos’x) ™' dx for (a) and (b), and
f(q +78inx) "' dx for (c), in the case m =2. For
m = -4 the integrals are simpler still.] Values for
An, B,, C,aregiven in Table I. It appears from
the table that the series (11) converges quite ra-
pidly, especially for the ‘smaller values of € and
l/d. )

With the help of Egs. (7) and (11), the transla-
tional entropy S; [the last term on the right-hand
side of Eq. (6)] is easily seen to be given by

St/NkZ—Z(?(A2+Bzaz+Czb2), (12)

where & =n(3d)%0 and

TABLE I. Values of coefficients in expansion of J,,
[Eq. (11)].

1/d € A, B, C, A, B, C.
4  20° 1.05 -0.019 —0.001 0.905 0.029 0.004
4 30° 1.12 -0.034 —0.003 0.814 0.043 0.012
3 10° 1.06 -0.050 —0.001 0.891 0.077 0.007
3 20° 1.24 -0.168 -0.013 0.711 0.148 0.041
3 30° 1.49 -0.299 -0.060 0.569 0.148 0.079
5 10° 1.17 —0.149 -0.004 0.778 0.163 0.031
5 20° 1.55 —0.445 —0.040 0.587 0.213 0.093

a=(vcosy), b={cos2y, (13)

with the bracke'ts denoting the average with respect
to f(¥, v): W)=Y}, [dpfw. Similarly, with the
notation K =K/d®, we have

U/N=~-GK(A_, +B_,a®+C_,b?). (14)
Combining Eqs. (6), (12), and (14) we get

F/NRT ~const +{(Indnf) —(y,a%+y,0?), (15)
where

1/ =(KB_,/kT) - 2B,

7,/6 =(RC_,/kT) -2, .

Note ¥, < v, since C_,<B_, and |C,|< |B,]| (Table I).
Using expression (4) for f, we find

(Indaf) = pI,(P)/1o(P) = Inl (p) amn

(16)

and
a=1,(p)/1(p), b=I1,(p)/1(p). (18)

In deriving Eqgs. (17) and (18), the following rela-
tions for the first kind modified Bessel functions
I, areused®: 2I,=1,_ +1@,., 4I/=1I, ,+21,+1,,
and /_,=1,, where the primes indicate differentia-
tion. For small p, Egs. (17) and (18) can be ex-
panded in a power series in p, using the series
expansion

1,(p) =§: (g)ﬂz%! (nFs)!;

then Eq. (15) becomes, to order p*,
F/NET =const +(30)*(1 = 7) +(30)* (7, = 1 =55 7,) -
(19)
Equation (19) indicates a continuous phase transi-
tion at y, =1, with
23/2(7,1 - 1) /2
(1 - %{72)1/2

b=
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TABLE II. Equilibrium properties of the model as functions of 7'/T,.

A. WULF

€=20°,1/d=3 €=20°1/d=5 €=30°,1/d=3

T/T, 1 099 0.90 0.80 0.99. 0.90  0.80 0.99  0.90 0.80
» 0 0.26 0.90 1.4 0.23  0.74 1.1 0.25 0.86 1.3

a 0 0.13 0.41 0.57 0.11  0.35 0.49  0.12 0.40 0.54

105 0 0.08 0.9 1.86  0.06  0.62 1.32  0.08 0.82 1.66

a 0 2.9 8.9 12 2.5 7.6 10 4.7 15 19

e a 0.83 0.86 0.88 0.83 0.85  0.87 0.63 0.69 0.74
~102A 0 0.08  0.77 1.4 0.06  0.56 1.1 0.18 1.7 2.9

AALT /T, =1, ,=4 (3cos’ —1).

for 0 s p< 1. The transition temperature is given

by v, =1, i.e,
K 0B_
Te=7 1+26B, ° (21)

For large p, Eq. (15) is evaluated numer-
ically using Eqs. (17) and (18). Table II gives
the value of p which minimizes F for several val-
ues of T/T,, €, I/d, and G =3; corresponding val-
ues of @ and b are also given. [Note y, =(1+26B,)
X T,/ T - 26B, and a similar expressionfor y, (with
C’s instead of B’s) are evaluated using Table L]

From Eq. (14), it is seen that GKA_, represents .
the mean attractive energy per molecule for a= b= 0.
As an estimate, an approximate value appropriate
for p-azoxyanisole' may be taken:

OGKA_, ~20kT, (T,~400°K).
This enables us to rewrite Eq. (21) as

6[?14—4, B_4A4 -4 <B-4/A-4
v 1+208, 20T\ 71,5, ) (22)

where we have again taken G=3. It has been
seen previously for nematic liquid crystals that
the use of the correlation function (9) for long
rods (e.g., I/d=3) grossly overestimates the
change of U/N with orientational order, but that
for l/d~%the correct order of magnitude for this
change is obtained.® Therefore, since B_,/A_,
measures the rate of change of U/N with a?, it is
not too surprising that Eq. (22), together with
Table I, gives values of 7, too large by about a
factor of 5 for //d=3. For I/d =%, on the other
hand, we get

T.=

€=20°
€=30°

6
15709

T

T, ~
[o}}
which is about right. This suggests that the order-

ing transition of the molecular tilt directions may
indeed occur at typical smectic-A temperatures.

III. OPTICAL PROPERTIES OF THE MODEL

In this section we show that the orientational
properties of the model are characterized by an
effective tilt angle « which vanishes in the high-
temperature (disordered) phase and grows con-
tinuously from zero in the low-temperature (or-
dered) phase. In addition, it is seen that the ori-
entational distribution of the long molecular axes
in the ordered phase is biaxial, but the associated
biaxial order parameter remains small at all tem-
peratures. We employ the language of the optical
experiments, but everything said applies also to
the magnetic resonance experiments provided P
and P, (defined below) are suitably reinterpreted.

As mentioned in Sec. I, rotation of the molecules
about their long axes appears to be nearly iso-
tropic.>!®71 Therefore, the molecular polarizabil-
ity may be taken to be cylindrically symmetric,
with components P and P, parallel and perpendicu-
lar to the molecular axis. Then the average polar-
izability tensor is*

(B =P,1 +(P- P)Q, (23)
where P,=(P,+2P,)/3 and
Q=(85-1/3). , (24)

The angle o between the layer normal and the major
principal axis of Q is the optically measured tilt
angle.

With the help of Eqs. (1) and (13) we obtain

(&) =cos’cZZ +5(1 +b) sineXX +3(1 - b) sine PV
+3asin2e(ZX +X2). (25)

We diagonalize expression (25) by transforming
to the tilted frame Z’, X’, Y, where
- = Al —_ Al 3
Z % cosa—X'sina, (26)
X=2'"sina +X'cosa.

Substituting Egs. (26) into Eq. (25), we find that



the condition which diagonalizes (€8&) is

[cos?e — 3(1 +b) sin®e|tan2 @ =a sin2¢ (27)
or '
_1 - asin2e
Ry P £(1 +b) sin®e (28)
Then we have
Q=1,(2'2"~1/3) +AX'R' - 1), (29)
where
=3[cos?ecos’a— 3 +3(1 +b)sin*esin’a
+3a sin2e sin2a ], (30)

and the biaxiality A is
A=(3)cos?e sin®a +(3b)sin’e
— ilasin2e sin2a + (1 +b) sine sina]. (31)

It is seen that A =0 for vanishing order of the
tilt directions (@=a =5=0), and again for perfect
alignment of the tilts (a=€, a=b=1). Values of
a, 71,, and A as functions of T/T, for several
values of € and //d are given in Table II. For very’
large values of p (not shown in Table II) we observe
|A| passing through a maximum and then decreas-
ing very slowly. The maximum values of [A|are
about 3 X 1072 for €=20°, and 6 x 1072 for € =30°.
Biaxialities of order 1072 in smectic-C phases
have been measured in nuclear-magnetic-
resonance'® and nuclear-quadrupole-resonance's
experiments.

IV. COMMENTS

The model for the smectic-A~-smectic-C transi-
tion given here is, of course, very idealized. In-
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teractions between smectic layers and fluctuations
of the angle € are not considered, and the smectic
layer ordering is assumed perfect. In addition,

the energy and entropy of the model system were
evaluated neglecting all correlations between mole-

‘cules except for the nonoverlapping of the rodlike

hard cores. Nevertheless, the conclusion that an
ordering transition of the molecular tilt directions
can take place in smectic layers whose thickness
is less than the molecular length, is probably val-
id. As shown in Sec. IIl, if this phase transition
occurs, it is observed experimentally as a smec-
tic-A—smectic-C transition.

It remains to be seen whether the case of 70.5—
smectic-A and smectic-C layer thicknesses about
the same and independent of temperature—occurs
frequently. Clearly, it would be very useful to
have measurements of both tilt angle and layer
thickness as a function of temperature in a variety
of systems with smectic-A ~smectic-C transitions.

It is interesting that the present model gives
new meaning to Saupe’s remark that the smectic-
C phase is analogous to a two-dimensional nematic
liquid crystal.?®

Note: Very recently De Vries®” has found that
the layer thickness in the smectic-A and -C phases
of n-pentyl-(n-decyloxybenzylidenamino)-cinna-
mate shows the same behavior as in 70.5.
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