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In this paper Onsager’s theory of the orientational order in a three-dimensional system of hard rods is
reanalyzed as a nonlinear eigenvalue problem. Bifurcation is found and the equation of state is calculated
from the orientational distribution function for a nematic phase. We also investigate the corresponding two-
dimensional system of hard lines. The existence and order of a phase transition are shown to depend on both
the direction of bifurcation and on properties of the global solutions. The analysis can be adapted to other
nonlinear equations obtained in theories of liquid crystals.

I. INTRODUCTION

At sufficiently low densities, systems of highly
asymmetrical molecules behave ideally and the
distribution of the molecular orientations is uni-
form or isotropic. At higher densities, on the
other hand, the molecules begin to strongly inter-
fere with one another and the system undergoes a
phase transition to an ordered or anisotropic
state.

There is a class of theories of the isotropic-
nematic transition having a common aspect in
terms of the orientational distribution function
(ODF), f(3), which gives the probability that a
molecule is oriented about the direction 3. This
is the fact that the ODF satisfies a nonlinear in-
tegral equation of the type

1n{47rf(3i)]=C+)\fF(i,i’)f(E’)dQ’. (1.1)

The unit vectors 3 and @’ are taken to lie in small
solid angles d§2 and d€2’ and C is a constant de-
termined by the normalization,

ff(i)dnzl. ‘ ' (1.2)

Different choices for the parameter A and kernel
F(Z,3’) lead to equations found in the hard-rod
theories of Onsager! and others,? as well as in
several recent treatments® which include orienta-
tion-dependent attractions via mean-field theory.
In the paper we view the equation for the ODF as
a nonlinear eigenvalue problem and use bifurcation
theory to investigate the existence of multiple
solutions of (1.1). We concentrate on Onsager’s
model although the analysis applies directly to the
above theories and, more generally, to any prob-
lem in which F(4,3’) depends only on the angle be-
tween 2 and 3’. The purpose of this investigation
is to give methods which show the connection be-
tween analytic features of (1.1), namely, the di-
rection of bifurcation and properties of the global
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solutions, and the possible existence of a phase
transition. Although neither the model nor the
underlying equation are new, the methods and
emphasis are new. Furthermore, the results ob-
tained for the ODF are more accurate than those
found previously by minimization of a free energy
functional.!+

The remainder of the article proceeds as fol-
lows. The analytical formulation and bifurcation
analysis are given in Sec. II. In Sec. III, the
global solutions are obtained. Thermodynamic
properties and the location of a first-order phase
transition are in Sec. IV. The summary is in Sec.
V where we also present the corresponding re-
sults for a two-dimensional system of hard lines.
It is shown that the direction of bifurcation is
opposite to that found in three dimensions and this
difference precludes the existence of a first-order
transition. ’

II. ANALYTICAL FORMULATION

A. Preliminaries

We note that f(3) =1/4n, corresponding to a uni-
form distribution of orientations, satisfies (1.1)
for all values of the parameter A. For conve-
nience the function %(3) is introduced,

h(Z)=4nf(E) -1, , 2.1)

so that #(3) =0 corresponds to the isotropic dis-
tribution. Exponentiation of (1.1) and the use of
(1.2) yields

exp(A [ F&,8)n@E)dQ’/4n)

REO= 1 W) Jexp (1 [ F &, BW@) d'/4n) a0
(2.2)
where the normalization
1 = B '
= jh(a)dsz_o 2.3)

is incorporated into the equation.
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We focus on the system considered by Onsager,
that is, a fluid of long rigid cylinders of length [
and diameter d at a density p and temperature T.
For [>d, the parameter A and kernel F are given
by

x=pB,=tpnl’d, (2.4)
(1/4m)F@E,8) =(-2/73)[1 - @-3'PP2.  (2.5)

Owing to the rigid-body interactions, the ODF de-
pends only on the density. The quantity B, is the
second virial coefficient (averaged over the rela-
tive orientations of two cylinders) and throughout
this paper we choose units such that B,=1. There-
fore, in all that follows, the symbol p denotes the
dimensionless number density.* The kernel
F(a,?’) indicates how the volume excluded to two
cylinders with fixed orientations, 3 and 3’, de-
pends on the angle between them. Since the con-
tribution of the third virial coefficient is negli-
gible when I>d, (2.4) and (2.5) should represent
a reasonable approximation.!

We seek nontrivial solutions #(2) which cor-
respond to cylinders preferentially oriented about
a single special direction, 3,. Such anisotropic
distributions will necessarily have cylindrical and
mirror symmetry about the direction 4,; this re-
quires

n@)=h(@-34;)=h(-2-3,) =h(-7). (2.8)
To express the integral on the right-hand side of
(2.2) in terms of known angles, a rotation of the
coordinate axes is performed so that 4 lies along
the z axis and 3, lies in the xz plane in the new
coordinate system. We change to the polar co-
ordinates (6’, ¢’), and denote the angle between
3, and 2 by 6. In order to write (2.2) in a com-
pact form, we introduce some notation. With the
inner product

m 2m
(gl,g2>:——1—f desinef dp g, (cosb)
ar J, o

x g,(cos6), (2.71)

let H be the Hilbert space of functions g satisfying
(2.3) and (2.6). In addition, an operator K is de-
fined by

2 m
—z—f de’ sin®¢’
™ 0
2m
xj d¢’h (sinfsiné’ cos¢’ + cosfcosg’)
o

=Kh (cosf). (2.8)
Equation (2.2) may now be written:

exp[ —pKh (cos8)] (2.9)

h(cosf)==1+ (1, exp[—pK )
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This is the working form of the basic equation
for the ODF. The analytical properties of (2.9)
are similar to those for an equation derived for a
theory of the fluid-solid transition in which bi-
furcation was found.® The analytical similarities
are exploited in this paper to investigate the exis-
tence of anisotropic solutions of (2.9).

B. Bifurcation analysis

Since the operator K defined by (2.8) is invari-
ant to all rotations of the frame of reference,
Legendre polynomials must be its eigenfunctions.
Symmetry further requires that they be of even
order. To evaluate KP,, (cosé) the addition for-
mula for Legendre polynomials is used:

P, (singsing’ cos¢’+cosfhcos’)
=P, (cosf) P, (cos@’)
(7L 'Wl ' m

+2}: ope P™(cos6)

X P (cos@’)cosm’. (2.10)

Upon substitution into (2.8), the complicated sum
involving associated Legendre functions of the
first kind vanishes in the integration over ¢’
yielding

KP,, (cosf) = < fd@’sm 9’P2,,(cos9')>

X P,, (c0S6) = ,,P,, (cosd), (2.11)
1 [2n-2 1 2n
= _4=2n+1 _ >
hzrx 4 n n+1 (n> 1).
n-1
(2.12)

Each P,, (cos8), n>1, satisfies the conditions
(2.3) and (2.6), so that the Legendre polynomials
of even order constitute a complete set of ortho-
gonal functions in the Hilbert space H.

The operator K is also compact, self-adjoint,
and maps H into itself. Therefore, we can apply
the same analytical techniques used in the theory
of the fluid-solid transition® and we find that the
existence of bifurcation in (2.9) depends on whether
the associated linear equation,

w (cos6) = —pKw (cosb), (2.13)

has eigenvalues. We seek solutions which satisfy
the boundary conditions

w(1) =w(~1)=maximum (2.14)

w (cosh) has no other maxima.

The first part of (2.14) indicates that the ODF is
largest in the special direction &, and the second
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part that there are no special directions other
than 4,. The bifurcation density is determined by

p* = —w (cos6)/Kw (cosé) . (2.15)

Every eigenfunction of the K operator satisfies
(2.13) but only P, (cos#6) has the behavior required
by (2.14). From (2.12) withn=1,

K P, (cos6)=—3P,(cos6). (2.16)

Since the eigenvalue —; is simple we find bifurca-
tion at the density determined by

p*=4. . (2.17)

Therefore anisotropic solutions to (2.9) possessing
the required properties exist. This result and’
formulas from this section will be used next to
construct global solutions.

III. CALCULATION OF THE ORIENTATIONAL
DISTRIBUTION FUNCTION

A. Branching diagram

As a measure of the size of a solution to (2.9)
at a given density, we calculate its norm,

Il = Chym )2, (3.1)

and plot ||#|| vs p. We obtain, by methods to be
discussed in this section, the results shown in
Fig. 1. The isotropic distribution is a solution for
all values of p and is represented in Fig. 1 by the
horizontal line ||z[|=0. We observe that the branch
of anisotropic solutions joins continuously to the
isotropic solution at the bifurcation point. This
curve is such that it branches to the left from p*,
bends back to the right at p, and increases mono-

tonically thereafter. As a consequence of the
branching to the left, two anisotropic solutions
exist between p, and p*. These aspects of the
branching diagram will be reflected in the equation
of state of the anisotropic phase and, in fact,
make possible the existence of a first-order tran-
sition. , .

Two different techniques were used to calculate
the ODF. 'In the region between p, and p* the
solutions of smaller norm, indicated by closed
circles in Fig. 1, were obtained by a parametriza-
tion expansion about the bifurcation point. The )
solutions on the upper portion of the branch were
calculated by an iterative procedure and are de-
noted by open circles in Fig. 1. Our computations
indicate that the methods do not overlap,® but that
it is possible to find two solutions quite close to
one another in the neighborhood of p,..

B. Parametrization expansion

Equation (2.9) may be parametrized in terms of
a quantity o, which is a measure of the distance
from bifurcation, by writing

In[# (cos6, a)+1]= 1, In[n(a)+1]) )
=—p(a)Kh (cosb, ), (3.2)

where the normalization factor has been written
in a form more convenient for the present analysis.
We expand %z and p in Taylor series about o =0:

2 hl” 3
h(cosb,a)=h(a)=h'a+hr" 921—'- +-—3—%— +eee (3.3)
and
pla)=p*+p a+p’a?/21+p"a®/31+--- (3.4)

10.0
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FIG. 1. Plot of ||z|| vs
p. The bifurcation point is
indicated by p* and the
bending point by p,. The
closed circles are from
solutions to (2.9) obtained
by parametrization, the
open circles from solu-
tions obtained by the itera-
tive procedure.
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so that @ =0 corresponds to 2 =0 and p=p*. The
primes denote derivatives with respect to o
evaluated at @ =0. Successive differentiation of '
(3.2) with respect to o followed by setting o =0
leads to a set of coupled inhomogeneous integral
equations for the quantities 2/, ",

1

]’l”’,..., pl, pn’ P,
r' —(1,r")=—p*Kh',
h"-—(hl)z—<1,h”—(h’)2>:-—p*Kh"—2[.’)'Kh’,

(3.5a)

(3.5b)
" = 3p"p! +2(h')3
- <1’hm —3n"p! +2(h')3>

= _pKh™ —3p'Kh" — 3p"Kh'. (3.5¢)

In solving the system (3.5), we make use of the
fact that (1,2")=(1,r")={1,h™)y=---=0, and note
that 2’ is the eigenfunction at bifurcation, 7z’
=P, (cos@). The quantity p’ may then be deter-
mined by taking the inner product of (3.5b) with
&', using self-adjointness, and requiring that -
(h',h")=0. Once p’ has been determined, #2” may
be found from (3.5b). Similarly, p” may be ob-
tained by taking the inner product of (3.5¢c) with
%’ and requiring (&’,n")=0, after which 2" may
be found. By proceeding in this way it is possible
to determine any number of terms in (3.3) and
(3.4). The parametrization was carried to forty
orders and the densities, norms, and equation of
state obtained were correct to no 'fewer than six
decimal places except near p,. As is evident
from the solid and open circles in Fig. 1, the
technique is only capable of yielding the solutions
on the lower portion of the branch in the region be-
tween p, and p*.°

Before describing the iterative solution of (2.9),
we mention that the direction of branching is
determined by the sign of the first nonvanishing
quantity, p’,p”,.... Since a must be positive near
the bifurcation point so that z(a) defined by (3.3)
has its maximum value in the direction &,, we will
have branching to the left if the first nonvanishing
derivative is negative and branching to the right if
it is positive. Taking the inner product of (3.5b)
with 2’ = P, (cos0) yields .

p'=-%<0, (3.6)
so solutions of very small norm exist only at
densities lower than the bifurcation density p*.

C. Iterative solution
We start by rewriting (2.9) in iterative form,

exp[-pKh' ¥ (cos6)]
(1, exp(-pKn'?)) ~

RV (cosg)=—1+ (3.7)
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where the superscript (i) denotes the ith iteration.
We assume that %2 is known in the form

2 (cosd) = > a9 p, (cosb), (3.8)
i=1

and determine the coefficients a}“ D in a similar
exparision of 2+, This is easily accomplished
because the Legendre polynomials diagonalize K
and are mutually orthogonal. The af,“l) are then
calculated by evaluation of the usual inner pro-
ducts.

The initial guess at a density near p* can be
taken to be the eigenfunction. at bifurcation
P, (cos6). The converged solution is then used
as the initial guess for the next value of the den-
sity. In the density region between p, and p*,
where two distinct anisotropic solutions exist,
the iterative procedure always converges to the
one of higher norm.® At values of the density be-
low p,, the procedure converges to zero. Con-
vergence was assumed whén the norm of the dif-
ference between the results of two successive
iterations became less than at least 107,

IV. T HERMODYNAMiC PROPERTIES
A. Equation of state
The formula for the pressﬁre is
BP=BP|y, +2p*(h,Kh), (4.1)

where the pressure for a system of randomly
oriented cylinders BP|y, is given by

BP|y, =p(1+p). _ (4.2)

When the ODF has a Legendre representation as
in (3.8), the pressure takes the relatively simple
form

BP=(P|,, +1p? 3 Litar (4.3)

o 2P :Z; 4j+1 - :

Since the eigenvalues X ,; are all negative, it is
evident that the pressure of the anisotropic phase
is always less than the pressure of the isotropic
phase at the same density and temperature. When
the second term of (4.3) is nonzero, BP|misoc Will
be written to indicate that the anisotropic phase
is under consideration. The results for the equa-
tion of state calculated from formula (4.3) are
shown in Fig. 2, where BP is plotted versus 1/p.
Because two anisotropic solutions exist between
p* and p,, the pressure is double valued in this
interval. It is important to discern that there
must be, and is, a region of thermodynamic in-
stability in this range, i.e., where 8(8P)/8(1/p)
>0. The point at which this derivative is identi-
cally zero is the limit of stability of the ordered
phase. Also shown in Fig. 2 is the quantity SP| oL
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FIG. 2. The equations of state, P vs 1/p, for the
isotropic phase, the anisotropic phase, and the limiting
form predicted by Onsager; see Sec. IVC. The hori-
zontal indicates the locatlon of the isotropic-nematic
phase transition.

=3p, which is Onsager’s high density limiting form
of the anisotropic equation of state. Our results
approach this limit quite accurately as 1/p be-
comes small, confirming Onsager’s prediction.!

B. Free energy

Since % (cos6) - 0 continuously as p— p*, the
existence of bifurcation leads to a natural choice
of a standard state. That is, the free energies of
the isotropic and anisotropic phases must become
identical at the bifurcation point and we set this
value equal to zero. Integration of the equation
of state from 1/p* to 1/p then yields the Helmholtz
free energy of the system in excess of its value

at 1/p*,
BA(I/p)/N=-f1 BPd <;> (4.4)

1/p*
The integration is carried out using a spline quad-
rature technique. The chemical potential p is
related to the free energy by

Bu=BA/N+BP/p. (4.5)

The conditions for the coexistence of the isotropic
and anisotropic phases in stable equilibrium are
that their pressures and chemical potentials be
equal. In Fig. 3 is presented a plot of chemical
potential versus pressure for the two phases in
the neighborhood of the transition point. The point
at which the curve corresponding to the isotropic
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AT COEXISTENCE: By = 3.3853, BP = 141164

ISOTROPIC

ANISOTROPIC

13.6 138 140 142 144 146

FIG. 3. Plot of the chemical potential pvs gP for
the isotropic and anisotropic phases. The intersection
point gives the location of the tie-line in Fig. 2.

phase intersects that of the anisotropic phase ‘
determines the transition pressure and chemical
potential:

BP|, =14.1164,
1/pls =0.3039,

Bt lans = 3.3853
1/)| aniso =0.2368 . (4.6)

The tie-line joining the two equations of state at
the transition pressure is indicated in Fig. 2. We
note that, since bifurcation implies continuity in
the isotherm, the tie-line may also be located by
the familiar Maxwell construction. The transition
pressure given in (4.6) is lower than that of
Onsager! by 2.7% (relative to our results) and that
of Lasher? by only 0.5%. Their results, which
are approximate, were calculated by minimiza-
tion of a free-energy functional of the orienta-
tional distribution function and not by explicitly
solving the nonlinear integral equation (2.9)

V. CONCLUDING REMARKS

The existence of bifurcation could have been in-
ferred from Zwanzig’s” “discretized” model of
Onsager’s original theory' and also from Lasher’s?
solution of the variational equation leading to
(2.9). An equation similar to (2.9) can also be ob-
tained from DiMarzio’s lattice formulatlon of the
hard-rod problem.?

In this paper, we have mvestlgated the role of
analytic features of the nonlinear equation for the
ODF in determining the possibility of a phase
transition. The existence of bifurcation leads
naturally to a choice of a thermodynamic standard
state for computing the free energy, and the di-
rection of bifurcation affects the order of the tran-
sition. The double-valuedness shown in Fig. 1 is
responsible for the isotherm shown in Fig. 2. We
find it appropriate to note the suggestive similar-

ity between the isotherm found in this paper and
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that found from a theory of the fluid-solid transi-
tion in the hard-sphere system.®

The effect of the direction of bifurcation on the
order of the phase transition can be illustrated
further by considering the corresponding system
of hard lines of length [ in two dimensions. We
point out, however, that Onsager’s neglect of the
third- and higher-order virial coefficients for the
three-dimensional system is not justified in two
dimensions. The following results must there-
fore be viewed as being merely suggestive rather
than conclusive. The analog of the working equa-
tion (2.9) is given by

$(E)=—1+ exp [~ pi2), sin6’n(6 - 6")a0"/ 7]
- (1/n)f exp[—plzf sin6'h(6 - 6")d6"/m)de

(5.1)
and the linearization about the trivial solution
h=0is

2

m
w(@):..p%f sinfw (6 - ¢')de’ . (5.2)
0

Instead of the Legendre polynomials which were
found to diagonalize the integral operator in three
dimensions, the eigenfunctions of (5.2) are
cos2n6, n=1. Since we require the solutions of

(5.1) to be such that 2(0) =x(n) is the only maximum

of the ODF, we must choose the eigenfunction
cos26 as the solution to the linear equation. The
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associated eigenvalue is simple and leads to bi-
furcation at p*=37/212. By carrying out the same
parametrization indicated in (3.3) and (3.4),

find that p’ =0 and p” =97/3212. The dlrectlon of
branching is therefore to the right, and the pres-
sure of the anisotropic phase is found to lie below
that of the isotropic phase and to increase with
density near 1/p*. The free-energy curve of the
anisotropic phase is also lower than that of the
isotropic phase and is tangent to it at the bifurca-
tion point. If, by extending the solutions of (5.1)
globally, the pressure continued to increase with
density (as we believe it does), the free energy of
the anisotropic phase would be convex. The point
1/p* would then be the only point of common tan-
gency and the transition there would be of higher
order than first. This is precisely the result
found for the one-dimensional case of a theory of
crystallization in the hard-sphere system,® and it
is also consistent with the previous results of
Zwanzig” and the earlier argument of Landau.®
Similar connections between the order of a phase
transition and the direction of branching apparently
also occur in problems of large-scale instabil-
ities.'®
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