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Bifurcation in Onsager's model of the isotropic-nematic transition
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In this paper Onsager's theory of the orientational order in a three-dimensional system of hard rods is
reanalyzed as a nonlinear eigenvalue problem. Bifurcation is found and the equation of state is calculated
from the orientational distribution function for a nematic phase. We also investigate the corresponding two-
dimensional system of hard lines. The existence and order of a phase transition are shown to depend on both
the direction of bifurcation and on properties of the global solutions. The analysis can be adapted to other
nonlinear equations obtained in theories of liquid crystals.

I. INTRODUCTION

At sufficiently low densities, systems of highly
asymmetrical molecules behave ideally and the
distribution of the molecular orientations is uni-.

form or isotropic. At higher densities, on the
other hand, the molecules begin to strongly inter-
fere with one another and the system undergoes a.

phase transition to an ordered or anisotropic
state.

There is a class of theories of the isotropic-
nematic transition having a common a,spect in
terms of the orientational distribution function
(ODF), f(a), which gives the probability that a
molecule is oriented about the direction a. This
is the fact that the ODF satisfies a nonlinea, r in-
tegral equation of the type

tn(4m@(K)] = (;+ A J |'(a, a') f(i') d()'.

solutions, and the possible existence of a phase
transition. Although neither the model nor the
underlying equation are new, the methods and
empha, sis are new. Furthermore, the results ob-
tained for the ODF are more accurate than those
found previously by minimization of a, free energy
functional. "

The remainder of the article proceeds as fol-
lows. The analytical formulation and bifurcation
analysis a,re given in Sec. II. In Sec. III, the
global solutions are obtained. Thermodynamic
properties and the location of a first-order phase
transition a,re in Sec. IV. The summary is in Sec.
V where we also present the corresponding re-
sults for a two-dimensional system of hard lines.
It is shown that the direction of bifurcation is
opposite to that found in three dimensions and this
difference precludes the existence of a first-order
transition.

The unit vectors a and a' are taken to lie in small
solid angles dQ and dQ' and C is a constant de-
termined by the normalization,

f(a) dQ =1. (1.2)

Different choices for the parameter A. and kernel
F(a, a') lead to equations found in the hard-rod
theories of Onsager' and others, ' as well as in
several recent treatments' which include orienta-
tion-dependent attractions via mean-field theory.

In the paper we view the equation for the ODF as
a nonlinea, r eigenvalue problem and use bifurcation
theory to investigate the existence of multiple
solutions of (1.1). We concentrate on Onsager's
model although the ana, lysis applies directly to the
above theories and, more generally, to any prob-
lem in which 1 (a, a') depends only on the angle be-
tween a and a'. The purpose of this investigation
is to give methods which show the connection be-
tween analytic features of (1.1), namely, the di-
rection of bifurcation and properties of the global

II. ANALYTICAL FORMULATION

h(a) =4'(a) —1, (2.1)

so that h(a) =0 corresponds to the isotropic dis-
tribution. Exponentiation of (1.1) and the use of
(1.2) yields

exp (a f F(a, a')h(a') dQ'/4w)
(1/4~) f exp (A fF(a, a')h(a') dQ'/4m) dQ

(2.2)

where the normalization

1
a(a) dn=0 (2.3)

is incorporated into the equation.

A. Preliminaries

We note that f(a) = 1/4m, corresponding to a uni-
form distribution of orientations, satisfies (1.1)
for all values of the parameter A, . For conve-
nience the function h(a) is introduced,
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We focus on the system considered by Onsager,
that is, a fluid of long rigid cylinders of length l
and diameter d at a density p and temperature T.
For l))d, the parameter A. and kernel I are given
by

g= pB2= 4p7Tl (2.4)

h(a) =h(a, .a,,) =h(-a, a,,) =h(-a) . (2.6)

To express the integral on the right-hand side of
(2.2) in terms of known angles, a rotation of the
coordinate axes is performed so that a lies along
the z axis and a lies in the xz plane in the new

coordinate system. We change to the polar co-
ordinates (8', (t8'), and denote the angle between

a, and a by 8. In order to write (2.2) in a com-
pact form, we introduce some notation. With the
inner product

d g sin 8 t dpi', (cos8)
0

xg, (cosg), (2.7)

let H be the Hilbert space of functions g satisfying
(2.3) and (2.6). In addition, an operator K is de-
fined by

d6)' sin'6)'

(I/4w)E(a, a') = (-2/v ')[1 —(a ~ a')']'i'. (2.5)

Owing to the rigid-body interactions, the ODF de-
pends only on the density. The quantity B, is the
second virial coefficient (averaged over the rela-
tive orientations of two cylinders) and throughout
this paper me choose units such that B,=1. There-
fore, in all that follows, the symbol p denotes the
dimensionless number density. ' The kernel
E(a, a.') indicates how the volume excluded to two

cylinders with fixed orientations, a and a, , de-
pends on the angle between them. Since the con-
tribution of the third virial coefficient is negli-
gible when l»d, (2.4) and (2.5) should represent
a reasonable approximation. '

We seek nontrivial solutions h(a) which cor-
respond to cylinders preferentially oriented about
a single special direction, a0 Such anisotropic
distributions mill necessarily have cylindrical and
mirror symmetry about the direction a; this re-
quires

This is the working form of the basic equation
for the ODF. The analytical properties of (2.9)
are similar to those for an equation derived for a
theory of the fluid-solid transition in which bi-
furcation was found. ' The analytical similarities
are exploited in this paper to investigate the exis-
tence of anisotropic solutions of (2.9).

B, Bifurcation analysis

Since the operator K defined by (2.8) is invari-
ant to all rotations of the frame of reference,
Legendre polynomials must be its eigenfunctions.
Symmetry further requires that they be of even
order. To evaluate KP,„(cos8) the addition for-
mula for Legendre polynomials is used:

P„(sin 8 sing' cosQ'+ cos 6 cos 8')

=P„(cosg) P„(cos8')

xP„(cosg') cosm (2.10)

Upon substitution into (2.8), the complicated sum
involving associated Legendre functions of the
first kind vanishes in the integration over (ti'

yielding

4 fl'

(8P,„(coss)= — 88'sic'8 P,„(coos'))'
0

xP,„(cos8)=-X,„P,„(cosg), (2.11)

(2.12)

Each P,„(cosg), n) 1, satisfies the conditions
(2.3) and (2.6), so that the Legendre polynomials
of even order constitute a complete set of ortho-
gonal functions in the Hilbert space H.

The operator K is also compact, self-adjoint,
and maps IJ into itself; Therefore, we can apply
the same analytical techniques used in the theory
of the fluid-solid transition' and we find that the
existence of bifurcation in (2.9) depends on whether
the associated linear equation,

w (cosg) = —pKw (cosg), (2.13)
2 'Ir

x dQ'h (sin 6 sin 8' cos(t('+ cosgcosg')
0

has eigenvalues. We seek solutions which satisfy
the boundary conditions

=Kh (cosg) . (2.8) w (1)=w (-1)= maximum,
(2.14)

Equation (2.2) may now be written:

exp[-pKh (cosg)]'
&1, exp[-pKh])

(2.9)

w (cosg) has no other maxima.
I

The first part of (2.14) indicates that the ODF is
largest in the special direction a, and the second
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part that there are no special directions other
than ao. The bifurcation density is determined by

p* = -w (cos8)/Kw (cos8) . (2.15)

Every eigenfunction of the K operator satisfies
(2.13) but only P, (cos8) has the behavior required
by (2.14). From (2.12) with n = 1,

KP, (cos8) = ,'P,-(cos8). (2.16)

Since the eigenvalue ——, is simple we find bifurca-
tion at the density determined by

pg 4 (2.17)

Therefore anisotropic solutions to (2.9) possessing
the required properties exist. This result and'

formulas from this section will be used next to
construct global solutions.

III. CALCULATION OF THE ORIENTATIONAL

DISTRIBUTION FUNCTION

A. Branching diagram

As a measure of the size of a solution to (2.9)
at a given density, we calculate its norm,

(3.1)

and plot lib ll vs p. We obtain, by methods to be
discussed in this section, the results shown in

Fig. 1. The isotropic distribution is a, solution for
all values of p and is represented in Fig. 1 by the
horizontal line llhll =0. We observe that the branch
of anisotropic solutions joins continuously to the
isotropic solution at the bifurcation point. This
curve is such that it branches to the left from p*,
bends back to the right at p, and increases mono-

tonically thereafter. As a consequence of the
branching to the left, two anisotropic solutions
exist between p, and p*. These aspects of the
branching diagram will be reflected in the equation
of state of the anisotropic phase and, in fact,
make possible the existence of a first-order tran-
sition.

Two different techniques were used to calculate
the ODF. In the region between p, and p* the
solutions of smaller norm, indicated by closed
circles in Fig. 1, were obtained by a parametriza-
tion expansion about the bifurcation point. The
solutions on the upper portion of the branch were
calculated by an iterative procedure and are de-
noted by open circles in Fig. 1. Our computations
indicate that the methods do not overlap, ' but that
it is possible to find two solutions quite close to
one another in the neighborhood of p,

p(+) p«+ pi++ «& 2/2 ~ + p«1~ 3/3 t +. . . (3 4)

B. Parametrization expansion

Equation (2.9) may be parametrized in terms of
a quantity +, which is a measure of the distance
from bifurcation, by writing

1n [h (c os 8, o. ) + 1]—(1, ln [h (n) + 1 ])

= -p(n)Kh (cos8, o.), (3.2)

where the normalization factor has been written
in a form more convenient for the present analysis.
We expand h. and p in Taylor series about n =0:

I /tf ~3
0 (cos8, n) -=h(n) =h'o. +h" 2, + 3i + ~ ~ ~ . (3 3)

and
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FIG. 1. Plot of II all vs
p. The bifurcation point is
indicated by p* and the
bending point by p&. The
closed circles are from
solutions to (2.9) obtained
by parametrization, the
open circles from solu-
tions obtained by the itera-
tive procedure.
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so that a = 0 corresponds to h = 0 and p = p*. The
primes denote derivatives with respect to Q,

evaluated at o. =0. Successive differentiation of
(3.2) with respect to cg followed by setting n =0
leads. to a set of coupled inhomogeneous integral
equations for the quantities h. ', Q",
y III I II III

~ ~ ~ y p p p y p y ~ ~ ~ ~

h' (1,h') = p*Kh',

h "—(h ') ' —(1,h " —(h ') ) = p*Kh—" —2p'Kh ',

h"' —3h "h'+ 2(h')'

(1 h ill 3I llh t + 2(hl)3)

(3.5a)

(3.5b)

4 ~ 0 (3.6)

so solutions of very small norm exist only at
densities lower than the bifurcation density p*.

C. Iterative solution

We start by rewriting (2.9) in iterative form,

(; )( )
p[-pKh ' ( o 8)j

(3 7)(1,exp(- pKh"))

= -pKh"' —3p'Kh" —3p"Kh'. (3.5c)

fn solving the system (3.5), we make use of the
fact that (l, h') = (1,h") = (1 h"') = ~ =0, and note
that h' is the eigenfunetion at bifurcation, h'
=P, (cos8). The quantity p' may then be deter-
mined by taking the inner product of (3.5b) with

h, using self-adjointness, and requiring that
(h', h") =0. Once p' has been determined, h" may
be found from (3.5b). Similarly, p" may be ob-
tained by taking the inner product of (3.5c) with
h' and requiring (h', h"') =0, after which h"' may
be found. By proceeding in this way it is possible
to determine any number of terms in (3.3) and

(3.4). The parametrization was carried to forty
orders and the densities, norms, and equation of
state obtained were correct to no fewer than six
decimal places except near p~. As is evident
from the solid and open circles in Fig. 1, the
technique is only capable of yielding the solutions
on the lower portion of the branch in the region be-
tween p, and p*.'

Before describing the iterative solution of (2.9),
we mention, that the direction of branching is
determined by the sign of the first nonvanishing
quantity. , p', p", . . . . Since n must be positive near
the bifurcation point so that h(a) defined by (3.3)
has its maximum value in the direction ao, we w'ill

have branching to the left if the first nonvanishing
derivative is negative and branching to the right if
it is positive. Taking the inner product of (3.5b)
with h' = Pg (cos8) yields

where the superscript (i) denotes the gth iteration.
%e assume that A ' is known in the form

h" (cos8) = g ggg' P„(co.s8),
j= 1

and determine the coefficients a,-" in a, similar
exparision of h '+' . This is easily accomplished
because the Legendre polynomials diagonalize K
and are mutually orthogonal. The aj"' are then
calculated by evaluation of the usual inner pro-
ducts.

The initial guess at a density near p* can be
taken to be the eigenfunction, at bifurcation
P, (cos8). The converged solution is then used
as the initial guess for, the next value of the den-
sity. In the density region between p, and p*,
where two distinct anisotropic solutions exist,
the iterative procedure always converges to the
one of higher norm. ' At values of the density be-
low p~, the procedure converges to zero. Con-
vergence was assumed when the norm of the dif-
ference between the results of two successive
iterations became less than at least 10 ".

(3 6)

IV. THERMODYNAMIC PROPERTIES

A. Equation of state

The formula for the pressure is

PP=PPI + —,
' p'(h, Kh),

where the pressure for a, system of randomly
oriented cylinders PPlg is given by

(4.1)

(4.2)

a'A. -

pP=pPI~ +2p'Q
j=l

(4.3)

Since the eigenvalues A „.are all negative, it is
evident that the pressure of the anisotropic pha, se
is always less than the pressure of the isotropic
phase at the same density and temperature. %hen
the second term of (4.3) is nonzero, PPI~gso will
be written to indicate that the anisotropic phase
is under consideration. The results for the equa-
tion of state calculated from formula (4.3) are
shown in Fig. 2, where PP is plotted versus 1/p.
Because two anisotropic solutions exist between
p* and p„ the pressure is double valued in this
interval. It is important to discern that there
must be, and is, a region of thermodynamic in-
stability in this 'range, i.e. , where s(PP)/S(1/p)
&0. The point at which this derivative is identi-
cally zero is the limit of stability' of the ordered
phase. Also shown in Fig. 2 is the quantity PPI og.

%hen the GDF has a Legendre representation a,s
in (3.8), the pressure takes the relatively simple
form
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that found from a theory of the fluid-solid transi-
tion in the hard-sphere system. '

The effect of the direction of bifurcation on the
order of the phase transition can be illustrated
further by considering the corresponding system
of hard lines of length /' in two dimensions. We
point out, however, that Onsager's neglect of the
third- and higher-order virial coefficients for the
three-dimensional system is not justified in two
dimensions. The following results must there-
fore be viewed as being merely suggestive rather
than conclusive. The analog of the working equa-

. tion (2.9) is given by

[-pl~ f sin6'h(6 —8')d8'/w]
h(8) =-I+

(1/w) f'exp I—pl' f"sin6'h(8 —8')d8'/w] d6

(5.1)
and the linearization about the trivial solution
@=0 is

sin 8'w (6 —8') d8' . (5.2)

Instead of the Legendre polynomials which were
found to diagonalize the integral operator in three
dimensions, the eigenfunctions of (5.2) are
cos2nL9, n ~ 1. Since we require the solutions of
(5.1) to be such that h(0) =h(m) is the only maximum
of the ODF, we must choose the eigenfunction
cos26} a,s the solution to the linear equation. The

a,ssociated eigenvalue is simple and leads to bi-
furcation at p" =3m/2l'. By carrying out the same
parametrization indicated in (3.3) and (3.4), we
find that p'=0 and p" =9m/32/'. The direction of
branching is therefore to the right, and the pres-
sure of the anisotropic phase is found to lie below
that of the isotropic phase and to increase with
density near 1/p*. The free-energy curve of the
anisotropic phase is also lower than that of the
isotropic phase and is tangent to it at the bifurca-
tion point. If, by extending the solutions of (5.1)
globally, the pressure continued to increase with
density (as we believe it does), the free energy of
the anisotropic phase would be convex. The point
1/p* would then be the only point of common tan-
gency and the transition there would be of higher
order than first. This is precisely the result
found for the one-dimensional case of a theory of
crystallization in the hard-sphere system, ' and it
is also consistent with the previous results of
Zwanzig' and the earlier argument of La,ndau. '
Similar connections between the order of a phase
transition and the direction of branching apparently
also occur in problems of large-scale instabil-
ities 'o
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