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Nuclear magnetic resonance study of soft-mode dynamics in the nematic phase
of p- azoxyanisole
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The critical slowing down of the optical soft mode, or the order-parameter fluctuation, in the nematic
phase of methyl-deuterated p-azoxyanisole is detected for the first time by combining the proton spin-lattice
relaxation times in the laboratory and in the rotating frames. Freed's recent theory of spin relaxation by
quasicritical order-parameter fluctuations is used to satisfactorily interpret our NMR measurements. The
present study confirms the mean-field prediction of symmetry in critical order-parameter fluctuations at
isotropic-nematic transitions.

I. INTRODUCTION

In investigating the dynamic properties of the
Maier-Saupe model of nematic liquid crystals,
Blinc et al.' demonstrated the existence of soft
modes, the condensation of which leads to an iso-
tropic-nematic transition at a temperature &,.
The symmetry-recovering Goldstone mode in the
nematic phase corresponds to order-director fluc-
tuations' ' which are. well-studied by NMR. The
diffusive optical soft modes in the nematic phase
describe fluctuations in the magnitude of the ne-
matic order parameter and condense at the sta-
bility limit & of the nematic phase. In the iso-
tropic phase, the soft modes, which describe the
well-studied short-range or ientational-order fluc-
tuations, ' condense at the corresponding stability
limit &* of the isotr'opic phase. Since & is always

'

greater than 'E*, the isotropic-nematic transition
will be of first order with &*&&,&& . As pointed
out by Blinc et gE, ' the nematic optical soft mode
may be observable, for example, by NMR relaxa-
tion techniques.

This paper reports for the first time on an NMR
study of the nematic soft modes. Freed's4 recently
developed theory of spin relaxation by quasicritical

, order-parameter fluctuations below &, is tested by
the present NMR study of soft-mode dynamics in
the nematic phase of methyl-deuterated P-azoxy-
anisole (PAA-d, ).

II. THEORY

In this section, we outline the relevant section of
Freed's paper4 which is required for the inter-
pretation of our NMR measurements. Consider the
relation between the isotropic and nematic phase-
stability limits by examining the orientational free-
energy fluctuations. Below T„ the difference (bE)
in free-energy density between the nematic and
the isotropic states is given by

where &&~ is the free-energy-density deviation in
the nematic phase from the equilibrium value of

Q„' —3'»'+4CQ4» and A =A. —2BQ»+3CQ2». Now
for smallA. (viz. , IT —T*l IT —T*I), one may ex-
pand the expression for Q» [Eq. (2)] to lowest order
in A to obtain A = 3a(T —T) with Tt —T, = ~(T,—T*).
By including the lowest-order space variation of
Q in Eq. (3), one obtains the free-energy-density
deviation in terms of the Fourier components 4Q-„
ofbQ:

nE»= —P (A+L»&'}~~Q~~'

where I„is a nematic elastic coupling constant
between neighboring molecules. From the equi-
partition theorem,

(I~Q-, I )=»/A V(1+ W )

where V is the volume and Z= (I »/X)~' is the co-
herence length of the nematic order-parameter
fluctuations. Now

(5)

(6)

b.E =—'AQ2 ——'BQ ~ +—' CQ

where the magnetic field term is neglected, Q(F)
is the local orientation order parameter and A
=a(T —T*}in the mean-field approximation. When
bE is minimized with respect to Q, one obtains
the nematic value Q„given by

Q» = (B/2C)[1 + (1 —4AC/B')~'] (2)

At &„ the free-energy densities of the-nematic and
isotropic phases are equal (i.e., &E =0}and hence
Q„=2B/3C and A =2B'/9C =a(T, T*). ln—the ne-
matic phase Q =Q»+&Q, where &Q is the fluctua-
tion in the magnitude of the orientation order of the
molecules. Keeping the lowest-order terms in

AQ, this gives
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(T } ' = (9y'Ir'/8r )['pJr' ((u ) +~8 ' (2(a) )

+ 'Po) (2 cu, )], (8)

where & is a fixed internuclear distance, (u, /y is
the rotating field &„and all other symbols have
their usual meaning. Iri treating quasicriti. cal or-
der-parameter fluctuations below T„Freed has
extended the Landau-deGennes mean-field theory'
which has been successfully applied to the isotropic
phase, where fluctuations in both magnitude and
orientation of the single-molecule orienting poten-
tial were considered. For a spin-~ pair with r
parallel to the long molecular axis, Freed has ob-
tained the following spectral densities4:

kT vow'~'

x [1 + (1 +M2(g2y 2)+2] (9)

where &„ is a nematic viscosity or diffusion con-
stant and 7, = r„/E(1 + pq'). The coherence length
7 is proportional to (T &.

—) ' in the mean field
approximation.

The theory of nuclear-spin relaxation arising
from fluctuations in the magnetic dipolar interac-
tion of a spin-2 pair gives the following spin-lattice
relaxation rate in the laboratory frame:

(&,) ' = (9y'I /8~)[Jr'i(a) )+Jr'r (2(u, )],
and in the rotating frame

an extremely pure methyl-deuterated P-azoxyani-
sole sample which has a clearing temperature &,

'

= (186.5 +0.3) 'C. The sample was sealed in a vacu-
um after degassing by the freeze-melt method.
The inversion-recovery method was used to de-
termine the proton T, at ~,/2rr =60 MHz, while
the proton T~ measurements were performed at
the same Larmor frequency with a spin-locking
fie d @x o G. Both the Ti and the ~is measure
ments were made on the same sample with a Bru-
ker SXP4-100 MHz pulsed spectrometer with an
experimental error of less than 5'. The tempera-
tures at the sample were maintained by an air
flow with a temperature gradient across the
sample of around 0.5 'C. Care was taken to avoid
heating of the sample by the &, fieM pulse.

IV. RESULTS AND DISCUSSION

Figure 1 shows the proton &, and &,~ measure-
ments in the nematic phase of PAA-d, as a func-
tion of temperature. As reported earlier, ' the
proton &, i.s independent of temperature in the
nematic phase. However, the proton &,z remains
constant until 130 'C and decreases monotonically
until &, is reached. PAA™d,has two. phenyl rings
and therefore four identical sets of orthoproton
pairs. Since the proton &,~ of PAA (Ref. 8) is
dominated by the order-director fluctuations in
the nematic phase, it would show the quasicritical
order-parameter fluctuations by a decrease in its
magnitude as &, is approached. The critical tem-

(lo)

where 7, is w, ~ and the «(0, M)'s are given in terms
of the nematic order parameter S („} and its
small fluctuating component S, as below:

K(0, 0) = 5 + 2 (S

+Sr�)

—(S +Sr } = 5 + ~S —S

«(o, 1)=-,', (11)

0 —e~
20-

1.5-

«(0, 2) = 5 ——,
' (S +S,}—5 —gS .

The effect of these K(O, M) coefficients is to reduce
the importance of the order-parameter fluctuations
as the ordering .increases. Indeed far below &„
order-director fluctuations are important. It suf-
fices to state that when the director is along the
external magnetic field &0, the order-director
fluctuations give a nonzero & '

(&u, ) only arid hence

T, /T, ~
=-,'. (12)

III. EXPERIMENTAL PROCEDURE
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Since the theory is applicable to a spin-& pair,
we have chosen to examine the phenyl protons of

Iya. 1. proton 7'& (0) and Tf p (X) in the neinatic
phase of PAA-d6 vs tern. perature at 60 MHz and B&
=10 Q.
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perature dependence of the proton 1'& arises from
the spectral density J~'~(2&v, ) because &u, &7, '«u&, .
In this limit, Eq. (10) becomes

J 0 (2m )~[«(0 0)] v„P/L' (13)

which is independent of &, and acquires a critical
dependence on temperature through the coherence
length g. «(0, 0) reduces the importance of order-
parameter fluctuations as S incre3'ses from a val-
ue of -. 0.4 at &, to a value of 0.76 at which it van-
ishes.

Since the measured &, and &,p contain both inter-
molecular and intramolecular contributions, the
intermolecular contribution must be subtracted
from the experimental relaxation rates before
comparison with Freed's theory. The intermolec-
ular contribution (T,)„' to the proton T, of PAA-d,
has been determined by an isotope dilution experi-
ment' at 120'e. The intermolecular contribution
arises from magnetic dipolar interactions between
the phenyl protons of neighboring molecules and
gives (T,), '/(T, ), ' =0.29 at 60 MHz, where (1',), '
is the spin-lattice relaxation rate due to magnetic
dipolar interactions between protons within a
PAA-d6 molecule. Thus

(&~)
' =(~, ).'+(~, ), ' =1.29(~, ).'. (14)

Because a detailed temperature study was not per-
formed we assume that the ratio (T, ),/(&, )„ is tem-
perature insensitive and obtain (&,), =2.71 s for
all temperatures in the nematic phase. The inter-
molecular contribution to the proton &z of PAA-d,
has not been determined experimentally. However,
there is evidence from the low-field &, study" and
the && angular-dependence study' in the nematic
phase of PAA that the intramolecular contribution
from order-director fluctuations are predominant.
We therefore assume that the main contribution to
the T,p of PAA-d, arises from intramolecular in-
teractions, i.e., Tz ——(T,z), . This assumption ap-
pears justified by the fact that the experimental
ratio of (&,),/(&~), below 130 'C, where order-

director fluctuations are responsible for spin re-
laxation, is 2.3 +0.1 in close agreement with the
theoretical value of Eq. (12). Above 130'C, this
ratio increases leading us to assume that quasi-
critical order-parameter fluctuations are indeed
responsible for spin relaxation both in the labora-
tory and rotating frames. With these assumptions
and using Eqs. (9) and (10) to combine Eqs. (7) and

(8), we obtain

(Tl ).' =(~ ).'-f(s)(~, ).'

= (9y'I'/32r )6g(o) (2~

where

(15)

(Ti )282w/T[«(0 0)]4 o- T t (16)

This equation must be obeyed by (Tz), if it is
governed by order-parameter fluctuations. The
quantity on the left-hand side of Eq. (16) is tabu-
lated in Table I with W= 5900'K for PAA (Ref. 12)
and plotted versus temperature in Fig. 2. The
larger error bars at lower temperatures are due
to the diminishing &~"(2&v, ). The solid line of Fig.
2 represents a fit to the. (&~), data between 405 'K
and 1;by a least-squares linear-regression pro-
gram, It appears that quasicritical order-param-

-'+ (1 — S)'/W2

1+4(1 — S) /W2

Note that when S =0.8 [f(s) = 2], Eq. (15) again re-
duces to Eq. (12) as expected at temperatures far
from &, where order-parameter fluctuations are
replaced by order-director fluctuations. The cal-
culated values of (Tz), from Eq. (15) (see Table I)
show the quasicritical temperature behavior of
order-parameter fluctuations, that is, the critical
slowing down of the optical soft mode. The S val-
ues in Table I are from NMH measurements" of
PAA. Combining Eqs. (13) and'(15) by using v„

, where W' is the thermal activation energy
in 'K, and the mean-field critical exponent for 5,
one obtains

TABI E I. {Tgp)~, [x{0,0)f,e (T' ) and [g(0, 0)]3e 3 {T' )3 calculations at different
temperatures in PAA-de.

T
$ p

(s)

(T'i )

f (S) (s)

[ff (0 0)]4 (T, )2 e 2lv/ T fz(0 0)]$(TI )3/ e3 /2T

(x 10"~') (x I.pv ss/ )

403
404
405
406
407
408
409
40 9.5

1.18 + 0.02
1.15
1.13

,1 11
1.08
1.03
0.96
0.91+ 0.02

0.52
0.51
0.495
0.475
0.46
0.435
0.41
0.40

1.921
1.890
1.844
1.784
1.739
1.666
1.596
1.568

7.21
5.8 1
4.89
4.12
3.52
2.81
2.21
1.92

34.9+6.3
23.5 + 3.7
18.1+ 2.5
14.4+ 1.8
11.0 + 1.2
7.8 + 0.8
5.2+ 0.5
4.0+ 0.4

45.4+ 6.3
33.8 +4.1
27.7 + 2.9
23~3 + 2~2

19.1+ 1.7
14.7 + 1.1
10.9+0.7
8.9 + 0.6
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FIG. 2. Plot of [f(:(0,0)] (Tg ) e vstemperaturein
the nematic phase of PAA-d6.

FlG. 3. Plot of [v(0, 0)]3(T(p)& e ~ vs temperature
in the nematic phase of PAA-d6.

eter fluctuations do exist up to 5' K below 7, and
the critical temperature & at which a second-or-
der phase transition would occur is at 410.6'K.
Thus T &, = (1—.1 +0.5) 'K as compared with &,—&*
= O'K' in close agreement with the mean-field
prediction of Sec. II. However as seen in Fig. 2,
data over a wider temperature range show a sys-
tematic curvature. When the additional point at
404 K is included in the above fitting process, the
probability for goodness of fit by a X.

' analysis de-
creases from 90/o to 40'%%uo. To see if the mean-
field critical exponent of Z is indeed appropriate
for order-parameter fluctuations, we try kn(&
—T) '~' in Eq. (13) to give

(T' )~~2g~+~2 fg(0 0)]~ccTt- T .

The exponent-& is chosen, because it is appropriate
for most known second-order transitions (e,g. ,
superfluid helium). The quantity on the left-hand
side of Eq. (IV) is again tabulated in Table I and
plotted versus temperature in Fig. 3. The solid
line represents a. least-squares fit to the (T&),
data, between 404'K and T,. A p' analysis shows
that the fit has a probability of 98o/o to be good as
compared with a value of only 40% in the mean-
field approximation. & is found in this case to be
411.4 'K giving & —T, = (1.9 +0.5) 'K. It seems
therefore that the critical exponent, -3, instead
of the mean-field value of --, used for $, can
better fit the data over a larger temperature range,
while over a smaller temperature range, we are
unable to distinguish between the two critical ex-
ponents.

In conclusion, the quasicritical order-parameter
fluctuation or the critical slowing down of the ne-

matic optical soft mode has been identified through
the spectral density J "(2+„)in the nematic phase
of PAA-d, by combining the proton &, and &z mea-
surements at 60 MHz just below &,. It is essential
in evaluating & ' (2~,) to know the intermolecular
contribution to both the proton T, and 1',

~ since
Freed's theory is derived for interactions be-
tween a spin-2 pair within a single molecule. Cer-
tain assumptions were made in this respect but
they appear to be reasonable. It is shown here
that Freed's theory for spin relaxation by order-
parameter fluctuations below T, is satisfactory,
and that a symmetry exists for the critical order-
parameter fluctuations at 1;as predicted by the
mean-field theory. Current work suggests that
the isotropic-nematic transition obeys the mean-
field theory over a sufficiently small temperature
range (-5'C) below &,. However over a wider
temperature range, the critical exponent for 5

is found to be -3 rather than the mean-field value
of -2. This would imply that the isotropic-nema-
tic transition is similar to most known second-
order transitions in which the mean-field approxi-
mation fails. The observation is indeed interesting
and hence an independent determination of the crit-
ical temperature & should be undertaken to choose
the appropriate critical exponent for 5 over the
wider temperature range.
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