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Using the formalism of irreducible spherical tensors, we derive a general expression for the light intensity

scattered in a process of any order in a low-density fluid; elastic (both coherent and incoherent) and inelastic

(incoherent) scattering are considered. The relevant physic&1 quantities involved are the scalar invariants

associated with the irreducible parts of the various scattering tensors; the polarization dependence is

governed by Po(cosy) and P,(cosy) only, where Pk is the Legendre polynomial of order k and q the angle

between the polarizations of the scattered and -incident light. Depolarization ratios and molecular selection

rules are also given for up to four-photon processes.

I. INTRODUCTION

Angular-distribution and polarization proper-
ties of the light scattered by a material medium
have been widely investigated. ' In ordinary scat-
tering experiments, either in the elastic (Rayleigh)
case or in the inelastic (Raman) case, each ef-
ficient photon of the incident light beam accounts
for one scattered photon. Now, the emergence of
high-power coherent sources has allowed higher-
order effects to be evidenced, such as harmonic
scattering (hyper-Rayleigh scattering) or normally
forbidden Raman transitions (hyper-Raman scat-
tering): for instance, at first order (first hyper-
scattering), two incident photons at frequency &u

may generate a single scattered photon at fre-
quency 2&, or 2&+ w~, where &„ is some mole-
cular frequency. First hyper-Rayleigh scattering
hasbeenobservedby Maker, Terhune, and Savage'
in organic liquids, and theoretically discussed by
Maker3; first hyper-Raman scattering has been
investigated by Cyvin, Rauch, Bnd Decius, who
gave the molecular selection rules and depolariza-
tion ratios. Higher-order processes canbe thought
of and, to the best of our knowledge, no unified
treatment of light scattering pointing out the sym-
metry features common to the different processes
has yet been presented. It is the purpose of this
paper to provide such an analysis in the case of
light scattering by an homogeneous low-density
fluid (local-field effects in fluids will be investi-
gated in a forthcoming paper). (See Fig. l for
scattering examples. )

In such an isotropic medium, the relevant physi-
cal quantities which characterize a phenomenon
from a macroscopic point of view are the scalar
invari3nts formed from the susceptibility tensors
describing this effect on the microscopic scale.
As an example, the expression of the light ampli-
tude scattered by a single molecule in a process of
order r (i.e. , involving r photons) depends upon a
rank-y scattering tensor T. If one deals with an

assembly of molecules, one knows that two types
of scattering have to be considered: a coherent
process in which one has to sum up the ampli-
tudes of each scattering center and an incoherent
process adding up the individual intensities. Now,

a way of discerning the coherent process from the
incoherent one in an isotropic medium emerges
from the decomposition of T into irreducible parts.
Indeed, any rank-x Cartesian tensor can be ex-
pressed as a sum of irreducible tensors of weight
J ~r, i.e., T =Q, zT " (the index r has been
introduced in order to distinguish among the- lin-
early independent irreducible tensors with the
same weight which may appear in the reduction
process). Summing up the amplitudes reveals
one type of invariant: the scalar (Z=O) irredu-
cible part of T; adding up the intensities evidences
another type of invariant: the scalar product (or
full contraction) of T '~ with T ' '~ . Hence,
coherent scattering involves only the scalar ir-
reducible parts of the scattering tensor, while in-
coherent scattering involves all the various
(T ' ' T" ' ) products.

In a previous paper, ' hereafter referred to as
I, we have developed a general formalism in or-
der to express the physical properties of a medium
in terms of tensors irreducible under the three-
dimensional orthogonal group. The formal reduc-
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FIG. 1. Some scattering processes. (a): Bayleigh;
(b): Baman Stokes; (c} and (d): first hyperscattering;
(e) —{h): second hyperse attering.
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tion scheme of Cartesian tensors and their trans-
formation to spherical tensors was presented
using group theory and spherical tensor algebra.
A particular emphasis was put on the geometrical
symmetries (rotation and parity) and the intrinsic
symmetries (behavior under index permutations)
of irreducible spherical tensors. Since irredu-
cible tensors transform in point operations in

a much simpler way with the use of spherical
rather than Cartesian formalism, molecular sym-
metries are more easily taken into account, and
the relevant physical quantities directly related to
their irreducible components. The interest of
such an approach is to easily keep track of these
symmetries in any change of referenc'e frame, in
particular when rotating from the microscopic
axes, where the symmetries of the molecular unit
are most naturally written, to the macroscopic
axes in which the experimental data are collected.
This formalism has been applied to the static-
electric-field-induced optical effects in rarefied
fluids, ' and it was shown to be very convenient to
describe the thermoc'. fnamical average over the
molecular orientations in the presence of the dc
field.

Henceforth, we shall consider the following situa —,
tion: an assembly of identical atoms or molecules
in a gas or a solution is irradiated by an intense
monomode light beam; the scattered lightatagiven
frequency is observed in a given direction. Kith
different modes, the above conclusions about the
scalar invariants of the susceptibility tensors are
still valid; an example of the calculation is given
iri Sec. IVB for two three-photon processes, for
higher orders, the explicit expressions of the
scattered intensity become more complicated be-
cause of the numerical coefficients involved.

In Sec. H, after a survey of the definition and
properties of the scattering tensors, we recall
how the distinction between coherent and incoher-
ent scattering appears, pointing out that elastic
scattering may have both coherent and incoherent
contributions, whereas inelastic scattering is
always incoherent. Then, we express the ampli-
tude scattered by a single molecule in a process
of order x in terms of the irreducible components
of a scattering tensor and those of a tensor col-
lecting all the polarization dependences of the
fields.

In Secs. III and IV, the mean scattered inten-
sity is calculated, first in the incoherent case,
then in the coherent case, by an averaging pro-
cedure over the random molecular orientations,
using some well-known properties of Kigner
matrices. The polarization dependence and the
relevant terms of the scattering tensors are dis-
cussed; an explicit computation of the scattered

intensities and depolarization ratios is given for
y =2, 3, 4.

Finally, we investigate the important case of
molecular vibrational scattering and give the
selection rules for the most frequently encoun-
tered molecular point groups for the different
cases r = 2, 3, 4.

II. THEORETICAL BACKGROUND

A. Scattering tensors

Let us consider an atom or a molecule inter-
acting with the electromagnetic field. ' The free
(i.e. , noninteracting) system Hamiltonian is H,
=H,

& +H,, (at stand-s for atom and ra for radia-
tion); if we restrict ourselves to electric dipole
transitions, the coupling Hamiltonian is V=-p E
(p: electric dipole of the molecule; E: electric
field). . The transition probability amplitude S»
from a given eigenstate ~Q, ) of the free system
(at+ra), to another eigenstate ~Q, ) can be ex-
pressed as a series of the electric field:

-(S.,) = ~;«;) I;"(E;E,& e,",,"(E,E,E,)

+ & ~k' «8' EP'r &+ ' ' '

(summation is assumed over repeated indices).
n;&', P,.„', and y, »', are the successive scat-
tering tensors; they can be explicitly calculated
through diagram methods (Appendix A) and depend
upon the final and initial atomic states and on the
field frequencies; (E;), (E,E;), (E,E,:E), and so
on, are matrix elements of the electric field.

If the initial and final atomic states are the same,
and we shall see in Sec. HB that this is precisely
the case for coherent scattering, the scattering

linear polarizability n„. and the first, second, . . . ,
hyperpolarizabilities P;,.» y»ar &

~ ~ ~ ~ as they are
usually defined in nonlinear optics. '

The scattering tensor involved in a process of
order y is a rank-y tensor, symmetrical in some
permutations of its indices; the frequency of the
scattered light is &uz = ~tua&u+e ae~, e ap-
pearing x —1 times in an elastic (hyper-Rayleigh)
process, and ez =

~

e + ma m ~ ~ ~ a &u
~

' e~ in an in-
elastic (hyper-Raman) process, which accounts for
harmonic scattering and for apparently for bidden Ra-
marilines. For instance a, P, y aretensorsof rank
r = 2, 3, 4, respectively; the linear term n is respon-
sible for the two-photon processes, while the nonli-
near terms P, y, .. . , account for higher-order scat
terings. The Rayleigh tensor n;„.(-~, &u) is a sym-
metrical one, but the Raman tensor o. „(-&u~, &u)

with &uz = + + &o~ (anti-Stokes) or &uz = ur —&u„

(Stokes) can give an antisymmetrical contribution.
In a third-order process, the first hyperscat-
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tering tensor P,,~(-~s, &u, &u), with ~z = 2~ (first
hyper-Rayleigh) or ~s =2m&+.~„(first hyper-
Raman), is symmetrical in the permutation of its
two last inchces j and k; in a fourth-order pro-
cess, the second hyperscattering tensor
y, ,„,(-es, v, ur, m) is invariant in any permutation
of (jul) whereas y, ,»(—+s, v, +, -e) is unchanged
only when permuting j and k.

Furthermore, if & and &~ are within the trans-
parency range of the medium, the scattering ten-
sors are real, and if one neglects the dispersion,
they can be assumed to be invariant in the permu-
tation of all thei. r indices (Kleinman's symmetry).
For a given atomic transition a- b in a process of
order r, in most cases only the first vanishing
term in the above series [Eq. (2)] is to be taken
into account. However, at high intensities, fur-
ther-order contributions may become non-negli-
gible; for instance, in presence of an intense laser
field at frequency +', the net dipole moment of a
polar molecule is

p, + P,,,(0, (u', —~') (E,". E *)+ ~ ~ ~

I

A(a- b) = PA,
a

with
( ) (&)—A(Q )el+k'Rq t(vy vg )

c

(3a)

The summation (3a) runs over the N, individual
molecules on level a.

The amplitude A(Q.,) scattered by one molecule
regardless of the phase factors, depends upon the
set of Euler angles Q, =($,, 8,, g,) describing the
orientation of the qth molecular frame.

The mean scattered intensity I~ is the square
modulus of A after averaging over the molecular
orientations:

cident light, respectively). .
Now, we assume for the sake of simplicity that

the initial atomic- state is a pure eigenstate of H, t

(not a statistical mixture) and that the levels a
and b are not degenerate (see Appendix B).

The total scattered amplitude in the a- b transi-
t|.on is the sum of the amplitudes scattered by each
individual molecule, zvith their phases, i.e.,

and in the scattering process cu- co~, the relevant
scattering tensor is

or,
I (a-l)=. (AA+) (4a)

8. Coherence and incoherence

Although we deal with an assembly of identical
molecules or atoms, we cannot consider as iden-
tical the quantum states (with which the matrix
elements of the dipole moment are computed) of
two of them iri the same (nondegenerate) energy
level. In fact, the quantum states of an atom are
only determined up to an arbitrary phase factor;
for instance, in a scattering transition a- b, the
amplitude scattered by the qth atom has a phase
factor expi(&f&, ' —Q, ' ), where P,' and Q,' are
the phases of the final and initial states of the
atom q (Ref. 9) (the overlap of the wave functions
of two molecules is neglected).

We must also take into account the propagation
of' the electric field, if the dimensions of the
active medium are not small compared to the
wavelengths; hence, the amplitude scattered by
the qth molecule is multiplied by a phase factor
exp(ib, k ~ R,), where R, denotes the position of the
molecule q and hk the wave-vector mismatch:

I

hk=ks —(k+kzk+ ~ ) (2)

(ks and k: wave vectors of the scattered and in-

o.„( (u„(u-)+y;, „(-(u„u),(u', -(u')(Z, E, *)+

The y term interfering with the z term will cause
Kerr optical effect (e'c e) and self-focusing (&u'

=co); if from selection rules some component of
the e term vanishes; however, photons at (d~ can
be detected.

I, (a- f) = P A(Q, )A(Q, ,)e""'"-""'
I

i(Pp -h, y
(e) ( q')

xe (4b)

The total scattering-cross section is then N, times
the cross section of one molecule, and such a
process is fully incoherent. (This is not the case,
for instance, of stimulated Raman scattering
which is interpreted as a resonant four-photon
elastic process (++&u- vs+ u„s); the oscillation
at the Stokes frequency starts on the noise due to
ordinary incoherent Raman scattering).

,.~„(q)
Conversely, in an elastic process, ei " =1;

if we sum separately over q =q' and qtq', the

We have to perform, in a first step, the sum over
the molecular positions, noticing that A.(Q,) is in-
dependent of R„ then the average over the mole-
cular orientations. Thi s separation is Possible
only because see neglect molecular correlations:
in fact, the presence of other molecules which can
belong to the solvent, in the vicinity of a scat-
tering center, will affect its orientation.

In an inelastic scattering process, levels a and
b are different and the phase factor ei~' differsi ay( ~)

from unity; because of these random phase fac-
tors in Eq. (4b), the sum over q and q' with qcq'
vanishes; the sum with q = q' is N, , and hence we

get

Is(a- b) =N, (A(Q)A*(Q)) =I,„„„(a-b) .
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former summation is N, (A(Q)A*(Q)), and the lat-
ter is

(A(n))(A'(n)) Pe'*"'" —iv,).
q

The mean scattered intensity hence results from
two contributions, i.e., I~(a —a) =I„„(a-a)
+b,I(a-a). The first one,

'2

I„h(a-a)= (A(Q)) 2 g e'+R R,

q

is the coherent term that we should have obtained
in adding up the individual amplitudes with their
phase, then averaging over all the molecular
orientations, then squared.

The residual term

(6a)

'i(a- a) =~.[(IA(Q)l')- l(A(Q))l'j, (6b)

C. Irreducible tensors

Consider an x-photon process, and let T be the
rank-r scattering tensor involved, and (e', w,. ),
(e, "~) the polarization unit vector and frequency
of the incident and scattered light, respectively
(i =1,2, . . . , r —1). (e and e can be a Priori cir-
cular, linear, or elliptic. ) The amplitude scat-
tered by one molecule is proportional to the
scalar component quantity

T = ~ Tizsc" R~r eJ ez
r-1 r-2

~ ~ 1

IJK ~ ~ R

In Eq. (7), the subscripts I, J,K, . . . , R of the
Cartesian components of T, e', and e refer to a
fixed reference frame XYZ which we take as the
laboratory frame. The macroscopic components
TIJE R depend on the orientations of the mole-

which is proportional to the square variance of
lAl and to the number of active centers, is an in-
coherent contribution due to the random mole-
cular orientations (with rigidly fixed molecules,
it would vanish).

lf the energy levels are degenerate, the inelas-
tic scattering is still incoherent, but the elastic
scattering has both a coherent contribution caused
by transitions from one state to the same state and
an incoherent contribution resulting from transi-
tions between. two different states with the same
energy (see Appendix 8).

From the above considerations, if follows that
in both coherent and incoherent cases, we have to
express the amplitude scattered by an a.rbitrary
molecule and then perform an averaging proce-
dure, calculating (A(Q)A*(Q)) in the incoherent
process and (A. (Q)) (A*(Q)) in the coherent con-
tribution.

cule in the laboratory axes; now, let xyz be a,

reference frame rigidly linked to the molecule;
in the microscopic axes, the comporients T&,.~. ..„
of T are fixed quantities, and the number of in-
dependent components depend only upon the mole-
cular symmetries. The transformation of the
components of T from the macroscopic (Xgg)
axes. to the microscopic (xyz) axes in Cartesian
coordinates is given by

TIJE'''R

eos&;icos6jJ eos8, ~ cosO+RTfjp ~ ~

IgA ~

(6)

where 0,, is the angle between the axes z and I;
hence the calculation of the scattered intensity
will exhibit tremendous expressions, such as

(COS8(y COS8&I ' ' 'COS8e~ COS8gege

XCOS8Je~e ' C SO„8-e)e

in an incoherent process, and the ave raging over
all the molecula, r orientations will be tedious in
Cartesian form.

On the contrary, it will be easily performed in
the spherical tensor formalism. Let Q, 8, P be
the Euler angles of the rotations changing XYZ
into xyz (we adopt the convention of Edmonds"
according to which 8 and Q are the polar angles
of the z axis in the laboratory frame). The trans-
formation of an irreducible spherical tensor T~~

is easily performed by use of a Wigner matrix

and the averaging procedure over all the molecular
orientations leads to (S'-'i $'-'„i*), which is quite
simple to evaluate using the orthogonality proper-
ties of Wigner matrices:

""
dg

"dP I" sin8d8 &j) (J )e
mN m'N'

=&~z '= '-'(2'+I) ~

Hence, in order to derive the genera, l formulas
describing light scattering, we shall now use the
formalism of I and express (7) in terms of ir-
reducible spherical tensors.

The transformation from reducible Cartesian
tensors to irreducible spherical tensors can be
performed in two steps. First, from reducible
Cartesian tensors to reducible spherical tensors-
Seeond, by reducing these spherical tensors
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through spherical tensor algebra. In order to dis-
tinguish between Cartesian and spherical sub-
scripts, we use the following nota. tion'. a latin let-
ter (k, K) stands for a. Cartesian coordinate
(X, F, Z); a greek letter (p. ) stands for a spherical
coordinate (-1,0, +1). The first step is just a
product of unitary transformations [see Eq. (4) of
(I)], leading to

X pl/ ~ p

(-1)"T~„,...p
e ~e „e, ~ ~ e

p

with M= (A+ p, + v+. . + p).
All the polarization dependences can be collected

in a unique tensor P defined by

T ~ ( 1)r+ J+NT(7 J)~rJ
JI/I -N

p ~+ g) e r -& (3 8 r -2 (3. . .g) ~ &

Let T'J and P' be the irreducible parts of T and
P with weight J (the reduction process is analyzed
in detail in I). By applying Eq. (47a) of I, Eq. (11)
can be cast in the following form:

TT+ g ( 1)J+ /+M+M (gran+~ J)
& JMm

V JMIIt'

The averaging over molecular orientations is per-
formed by use of Eq. (10): the summation over J',
rn', M' vanishes, and finally one has

I, ;-NI, g(RZ+1) ' QP'„P" QT' *T'„) .
vT J

(15)
All orientation dependence has disappeared, which
accounts for the isotropy of the scattering process.

In Sec. II, we had obtained the following expres-
sion for the coherently scattered intensity (Eq.
(6b) ]:

'2

I„„=((A(n)) (
Pe'4"'"

From Eq. (14) the mean scattered amplitude per
molecule is proportional to

ol

The amplitude scattered by a single molecule can
thus be expressed in terms of the irreducible ten-
sors P~ and T'„~, but only this la, st tensor de-
pends upon the molecula, r orientation and needs to
be expressed in terms of the fixed components
T'J along a set of molecular axes. The amplitude
scattered by a single molecule is thus proportional
to

z= y~+J (14)

The averaging over all the random molecular
orientations can now be performed with the use
of Eq. (10) in both coherent and incoherent cases,
since in Eq. (14) only the Wigner matrices 5)~~/

depend upon the Euler angles P, 9, 'P.

III. EXPRESSION OF THE SCATTERED INTENSITY

A. General expression

From Eq. (5), the intensity scattered incoherent-
ly by N molecules is

I~„,——NIO(TT ),
where I, is a proportionality constant whose ex-
plicit calculation is briefly recalled in Appendix
A; from Eq. (14) the intensity scattered by a single
molecule is proportional to

The mean value of the Wigner matrix is readily
obtained from Eq. (10), since D",,'= 1,

Hence, the mean amplitude scattered coherently
by a single molecule depends only on the scalar
irreducible parts of the scattering tensor (which
in this case is identical to the usual polarizability
tensor).

The substitution of the sum over the molecular
positions by an integral over the volume of the
medium (assuming the mean distance 'oetween moi-
ecules to be smaller than the wave-lengths), i.e. ,

ib k ~ Rq

U
e ib, k ~ R d'3B

evidences the function

2

f(V, k) =N'
i=rye 2 i i

proportional to the square of the number of atoms
and involving a phase-matching condition. " If a
monochromatic incident light wave travels on a,

length L in the direction of k in the medium,
f(V, k) is merely N'(sinX/X)', where X= —,'(Ak L).
If the dispersion of the medium keeps the phase-
matching condition from being exactly achieved
(i.e. , 4k=0), coherently scattered light can yet
be observed. One can define a coherence length
Lc from nkLc = ~n, i.e., Lc =X/4(n'(P&u) —n(w)) if
CO& =P(d.
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Moreover, whereas the Doppler effect and col-
lisions broaden the spectrum of incoherently
scattered light, conversely in the coherent case,
when phase matching is achieved, no impulsion is
transferred to the atomic system so that first-or-
der Doppler effect is eliminated. (The frequency-
matching condition Zco= 0 in the molecular frame
implies its fulfillment in the laboratory frame. ) If
we neglect molecular correlations, the spectral
width of the scattered light is then limited by the
spectral width of the source (temporal coherence).

Hence, the coherent i.ntensity is given by

p&'r'i (6tI2&SR&i ' (QSS

= (2J+1) Q (-1)"'
J

For sake of simplicity, we now assume the scat-
tered light to be linearly analyzed, and let (8~, Q~)
be the polar angles of the real polarization &. It
is well known from the properties of the Bacah
spherical harmonics (see, e.g. , I, Appendix 3)
that

I„„=I f(V, k)'Q (T' T"*)(P"P''") . (17) ~=C"'(8 0 )

(19)
We note that by isolating in the ezpressions of the
incoherently scattered intensity Eq. (15) the con-
tributions of the scalar (8= 0) irreducible parts of
T and replacing N by f(V, k) gives Eq. (17), while
the residual incoherent contribution Eq. (6b) is ac-
counted. for by the other-than-scalar terms in Eq.
(15).

In both cases, we can write

and

I incoh 0
J

I..=I.f(V k)x(0)

with

g J {&'g kg

The unit vector q is an irreducible tensor of weight
1, and + is an irreducible tensor of weight k orig-
inated from the tensor product

r-1 e&-2 (I

Here, R~J denotes the Hermitian conjugate of R J

(i.e. , Ri~i= (-I)"Ri*„); if, in Cartesian coordinates,
R contains an imaginary part (T near a resonance
or P if one of the polarization vectors is circular
or elliptical), R~ is not Hermitian (R cR), but can
be expressed as the sum of a Hermitian part and
an anti-Hermitian one.

In order to end up with practical formulas, we
now calculate separately the two scalar products
T'J 7'~' J and P'J P~' J. I,et us first consider the
polarization dependence

(esRi'=(11, 00llo&C" &(8 Q ).

B. Linearly polarized pump beam

If one deals with a single linearly polarized pump
beam, let (8i, Qi) be the polar angles of the polar-
ization e. In a similar way, e =C"'(8i, Qi); s then
reduces to the symmetrical tensor product
(P'e) In'the . irreducible subspace $(k) with
2k+ 1 dimensions, the spherical harmonics
C'(8, Q) play the role of unit tensors in the (8, Q)
representation, and hence s,'~' is proportional to
C(a&(8

(7 l(0)) is a proportionality coefficient depending
upon the coupling scheme (and then upon 7)

From the coupling scheme adopted in I, i..e. ,

s (0& —(er-& CgI(er-. 2 g(. . .I2&(e2IgIe&)i&ji&. . .] ir-2)&&& &

the seniority index r is (j „j4, ~ ~ ~,j 2, p). It has
been shown in I that the proportionality coefficient
(r l(0)& was then equal to a product of Clebsch-
Gordan (C-G) coefficients:

(o)&=&11,oolj30&&lj. oolj40&" &Ij.- oo lao&.

The symmetry properties of the C-G coefficients
(j 1,00 lj „0) require the following selection rules:
j, „must be even gad j, must be odd. The coef-
ficients (7 l(0)& have been tabulated ih I up to order
4. Similarly one has

s "&=(r'l( )&C0&& &(8 Q )

and

(s'es'}' =(T l(0)&(1 l(0)&(kk ) 00 llo&C (8 Q )

The scalar product P' P~' can be transformed
in order to couple the 0 and the s together:

The polarization dependence of Eq. (18) can now
be put in the following form:
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P" P"=(-1)""(2J+1)(xl(»)&"I(0»

& &11,00ilo)&l u, 00 ilo)

x Q [C &t)(~ )C(l)(~ )]
1 1

k J
(20)

leading to

P' ~ P' ~= QA(J, l, 7, r')P, (cosy), (21a)

where A(J', I, 7, 7') is a numerical coefficient,
easily computed in terms of the Clebsch-Gordan
and Wigner 6-j coefficients":

A(J I 'r 'r') =(-1)'"~-~(~~(0))(~'~(0))(11,00 ~l0)

x (j„,j„' „00~l0)
j„'', 1

(21b)

Equation (21a) is absolutely general, and by use
of the reduction method of I, can be used to analyze
any scattering process of the type considered. The
relevant tensorial quantities are the scalar pro-
ducts T'~ T' ~ as was mentioned in the Introduc-
tion. An important result is readily obtained from
Eq. (21b): Because of the selection rules of the
Clebsch-Gordan coefficients, l can only take the
value 0 or 2. Thus, whatever the order of the
process may be, the dependence of the scattered
intensity upon the angle between the incident and
scattered polarization only involves an isotropic
part Po(cosy) and a part proportional to

P2(cos'g) = 2(3 cos 'I) —1).

This result can be illustrated in the following
way. Because the scattered intensity (a scalar
quantity) is observed for a given direction of polar-
ization, the' dependence on e is a linear function of
(CSR), i.e. , a symmetric rank-2 tensor with only
a part of weight 2 and a part of weight 0, which
must be coupled with tensors of the same weight
to form a scalar. Since the only relevant angle
is q, the intensity can depend only on P, (cos7I) and

P, (cosy).
C. Symmetrical case

It is now necessary to study in more detail the
influence of the properties of the irreducible com-
ponents of the scattering tensors on the scattered

(Note that these results would hold if one deals
with two or more beams with different frequencies
and directions but the same polarization. )

The only relevant angular parameter involved in
the process is the angle g, which is between the
incident polarization vector e and the scattered
polarization vector z (cosy =e e). In terms of the
Legendre polynomials, we have

C'(8z, Pz)C'(8z, &t z)
= P, (cosy),

intensity.
For the sake of simplicity we assume that the

scattering tensor T is fully symmetric in any
permutation of its Cartesian indices, i.e. , the
experiment is performed in the transparency
range of the medium. In this case, it has been
shown in I that T has only one nonvanishing com-
ponent of weight J, T~, if r+ J is even and none
otherwise; moreover, the projection of T' upon
the totally symmetric representation of the per-
mutation group S„ is obtained by applying the r-
symmetrizer v(x):

o(x)T '~ = X",~ T '~.

The real coefficients

.= 1&~
I

&DI)
I (g &~&I &OI&')

have been tabulated up to rank 4 in I. The scalar
product T'~ T'~ is thus directly proportional to
the squared norm of the irreducible tensor T~,
i.e. , ((T~J)'= T~ ~ T~, and one can write

)&'(J) = Q &(J, l)llT'll'P, (cos'9).
i&)2

The numerical factor

I3(J)l) =g X",~X'",,~A(J, l) r, 7') (22b)

1. Rayleigh-Raman scattering

I„,= ,'I,IL(n' '
~ n"')[1—+2P, (cosy)]

+ (n"' ~ n"')[I + 5P, (cosy)]].,

I„=—,'I,(Il n
"&II'+ —', ll n" 'll'],

I, =- —,'P.(lln"'ll'] .

The scalar term is the classical cos'g law.

2. First hyper-Rayleigh-Raman scattering

I,„,=—45I,J—,'(p "' p'. ")[11 + 16P,(cosy)]

+2(p" ' 'p"')[1+—', P, (cosy)]],

p"

is tedious but straightforward to compute. The
explicit calculation has been perfromed up to order
4 in the incoherent case, i.e. , ordinary Rayleigh
and Raman, and first and second hyper-Rayleigh
and -Raman scattering, with linearly polarized
incident and scattered lights. The results are
given below: The fraction of the scattered light
polarized parallel to the incident light is I [@=0,
P, (cosrl) = 1], whereas the fraction polarized per-
pendicular to the incident light is I [q=-,'n, P, (cos7))--.]
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These formulas are essentially the same as those
of Maker. '

3. Second hyper-Rayleigh-Raman scattering

If one deals with centrosymmetrical molecules,
lI vanishes, and the hyperscattering is due to the
cubic polarizability; such an effect, excessively
weak, has not yet been observed:

I;...= ,',I.—((y"'y"')ll+.2P, (cos)))]

+ (y"' y"')[—"+ —,",P, (cos)))]

+ (y"'y"')[ ,' + —,—',P, (cos)))]},
I =-'I.&lly"' ll'+-' lly"' ll'+ —' Ily'" ll')

I =-'
&
—' lly"' ll'+-'lly"'ll')

One of the most widely used parameters is the
depolarization ratio p which is defined from

P = (Ill Ii)f (III + I1.)

Table, I gives the depolarization ratio for the
three configurations analyzed above. The most
notable result of this section is the following: if
we assume Kleinman's symmetry, the relevant
quantities in -incoherent scattering processes are
the norms- of the various irreducible parts of the
scattering tensors.

On the other hand, in a coherent process, )f(0)
reduces to

Rayleigh intensity. In the incident mode (k~ = k,
e = e) the scattered amplitude interferes destruc-
tively with the incident wave, which ensures the
total intensity to be conserved. The second hy-
perpolarizability y has two scalar irreducible
parts,

y01, 0 ~y(0) and y21, 0 2 y(0)

which after a short calculation leads to

gbth a monochromatic pump, one fourth-order
coherent process can be evidenced: third har-
monic generation, i.e. , &0z =3 and 6k=k(3&0)
—3k(&0). With two pump beams at frequencies &0,

and e» several fourth-order effects have been
observed and discussed, "such as coherent anti-
Stokes Raman scattering (&d, =2&d, —&0,) and three-
wave mixing (0), = 2&0, + &d,).

D. Circularly polarized pump beam

If the pump beam is circularly polarized, we can
assume a propagation in the +z direction and a. po-
larization in the xy plane; for a right circular
wave, e is given by its circular components e„
= 1, e, = e, = 0. It follows that

g (T ' T' ') g &(0, l, v, r')P, (cos))), (23) x (r —1 r —1, r —1 —r + 1
I
l 0),

which can be changed into

Z (T" &' ")(~
~

(O))(7'(O))( ' '
)

Since P, = 1 and P, = —,
'

(3 cos')) —1), the polarization
dependence of the scattered intensity is thus'mere-
ly the square cosine of the angle between the in-
cident and the scattered light polarizations.

In a second-order coherent process appears the
norm of the scalar polarizability a"'. Since the
phase-matching condition is fulfilled in the forward
direction,

I„„=I,f(v k) IIC(") II' 'cos. 'ri-
gives the distribution of the forward scattered

and hence that

1 P, ( cso8~ )x«) = II"II' ~ (-1)
y —1 y —1 J

&& (11,00
I
l0)

&& (r —1r —1, r —1 —r + 1
I
l0) .

(24)

The only irreducible component appearing in )((J')
is the one with maximum value of k and k' (k

r1); this implies that except in a linear
(two-photon) process, no coherent (j= 0) scattering
can occur in a fluid with one circularly polarized
pump beam. The explicit calculation has been

TABLE I. Depolarization ratios in incoherent scattering.

Depolarization
ratio Haman scattering Firs t hyper- Haman Second hyper- Haman

Mll~"'ll'+ 7il~"'ll'

7jl p &"II'+lail p (3'll' 54lly("II'+ 4ollg 'll'

»Ilp"'ll'+»Ilp"'ll' »ally"'ll'+»&lly"'ll'+4&lly"'ll'
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performed below in the symmetric case.
Two-photon process:

I„„ lln"'ll' . 2g f(y k)S

Iln'"' ll' Iln'" ll' P,
I0 9 (~. ~,), (~. ),

Il~'" ll'
g 0 yp

I„=I =-I0 . +

Three-photon process:

quantity in the totally symmetrical representation
of their point group. These molecules belong to
.direct groups (i.e. , with no improper point opera-
tion) and hence exhibit optical activity, such a fre-
quency mixing, first discusse'd by Giordmaine, "
and observed, for example, in solutions of chiral
glucides by Rentzepis et al. ,

" is weak since it is
only allowed as far as frequency dispersion can-
not be neglected. If the two fundamental beams
are polarized parallel to each other, Eq. (20) gives
a zero intensity; however, the scattered intensity
is easy to compute from Eq. (17) and is readily
written

IIP'" ll' IIP'" ll' 2
1„9 15 ' 15 " 7 ')' with

f (y k) llP&0) ll2P1$0P1\ 0

II P'" ll'

21

Four-photon process:

lly'."ll' ~ Ily'" ll' ~I„ 10 21 ' ' 21 ' 12 ')'
II '"ll'

Ig =In
36

This provides a way of measuring directly the
norm of the irreducible component of highest
weight, for instance, llP&" ll. Then one can mea, —

sure llP'"
ll

with different polarizations. These
experiments can complete other nonlinear optical
experiments, such as dc second-harmonic genera-
tion, which allows one to measure P,"'.

IV. OTHER EXAMPLES

In Sec. III, we investigated the case of one single
monochromatic linearly polarized pump beam.
All of our results [Eqs. (15)-(18)]are still valid
in more complex situations, and we shall now give
two examples relative to third-order processes:
(i) Coherent frequency mixing, with two mono-
chromatic beams, both linearly polarized. (ii)
Incoherent hyper-Hayleigh scattering, with one-
pump beam elliptically polarized.

A. Coherent frequency mixing

Since the (pseudo) scalar part of a rank-3 tensor
is fully antisymmetrical in any permutation of its
Cartesian indices, no coherent second harmonic

I

generation can occur in a fluid. Now, parametric
interactions such as &d, = &d, + &02 (&0, 4 &d2) can be
evidenced with molecules containing a pseudoscalar

P"= fc e (e'e e')&'&}&'& .
Since

(e'I3Ie')&" = (i/~)e' x e'

and

feSu)&" = —(1/~e u,

we obtain

I„„=,'I,f(v k) II—P"'ll'
I
~ (e' """)

I

'
~ (25)

Indeed, if e' and e' are parallel, I„„=O; if e'
ie', for instance e'll x and e'

ll v, let 8e be the
angle between 0 and the 2 axis, we then find that
I„„is proportional to cos'6)s.

I/I0 = cos'U(+) + sin'U(-) + 4 sin'X cos'U(+) . (26)

The two first terms account for pure circular
waves. The crossed term is readily computed
from

s&,»' = (e"CgI e j,'»' = (11, 1 —1
l
ko) 5„

and one finds

y(J) = g(11,00
l
lo)P, (cos8e)

x g ( 1)»" (kk, oo
l
io)

aa' uu'~
x (11, 1 —1

l
ko)(11, 1 —1

l
k'0) (P»' P

B. Hyper-Rayleigh scattering

Though no coherent second harmonic generation
can occur in a liquid, Rayl. eigh scattering can
still be observed. We suppose that the fundamen-
tal beam is elliptically polarized, ' i.e. , a statis-
tical mixing; then, e is given by its circular com-
ponent s (e = cosh e'+ single ) .

The generation of a harmonic photon can result
from the fusion of two photons belonging either
to the same mode, or to orthogonal modes:
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In the symmetrical case,

I&,&/r, = ,', —IIP&'&ll'[P. ——",P, (cose, )]

+ —,', IIP'" ll'[P, + ,'P,—(cos8a)]. (27)

The circular case is given by (26) and (27) with
cosA. =0 or sink, =0; in the linear case,

l
cosxl

=
I

sinful

= 1%K If one uses P, (cost 'z) = -P, (cosk)),
one finds again the results of Sec. IIIB. This ap-
proach can be generalized for a process of any
order, evidencing the squared coefficients of the
binomial expansion of (cosh+ sink. )" '.

V. MOLECULAR SELECTION RULES

scattering in a low-density fluid. It has been found
that the intensity scattered in a given direction de-
pends on one angular parameter, namely, the angle
between the polarization of the incident and the
scattered light, and can on1.y have an isotropic
contributionP, (coskl) and adeviatoric oneP, (coskl)
The scattered intensity is a function af the scalar
invariants associated with the various irreducible
components T'~ of the scattering tensor T: the
scalar products (T'~ T' ~) in the incoherent case,
which are changed into II T~ll' if Kleinman's sym-
metry is assumed, or the scalar irreducible com-
ponent T" in the coherent case.

Molecular symmetry requires selection rules
on the polarizabil. ity components, which are not
customarily expressed in the formalism of spheri-
cal tensors. For sake of completeness we now
discuss some symmetry considerations for vibra-
tional Rayleigh or Raman scattering. The cor-
respondence between spherical and fully symme-
trical Cartesian tensors is explicitly given in I
up to rank 4.

In the Born-Oppenheimer approximation, the
wave function of the mo1ecule is written as the
product of an electronic: and a nuclear wave func-
tion. The electronic Hamiltonian as well as the
electronic wave function can be developed in series
of the normal nuclear coordinates q&. so that the
polarizability tensor involved in a process of order
x can be developed as

TN'(ey)=TH'»+ g TH pay+'"
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APPENDIX A

We briefly recall how the scattering tensors and
the absolute crass sections are ca1culated explicit-
ly. 'The transition probability per unit from an
eigenstate

l
&jh) with energy W; of the free (atom

plus radiation) system to another state
l
st,) under

the coupling V is

(Al)

In (Al), p(W) is the density of final states, and

where T'„,
&

= (&T'„/Sq~),~, The first term in Eq.
(27) is purely electronic and accounts for Rayleigh
scattering; the second term is responsible for Ra-
man scattering. The occurr ence of a Baman transi-
tion requires that the corresponding T„' compon-
ent symmetry type contains the symmetry of the
normal coordinate involved q&. In particular, a
coherent process can only involve normal coordin-
ates transforming like a scalar.

In Table II we give the irreducible components
of spherical true and pseudotensors up to J=4
for each representation of the 32 crystallographic
point groups and the molecular groups C„~ and

D„„; the irreducible representations are labeled
following Koster et al." The qth component of
an irreducible tensor of weight k is denoted by
D~ if necessary a superscript "+"or "—"indicates
the parity of the tensor.

VI. CONCLUSION

We have applied the formalism developed in I
to the problem of elastic (always incoherent) light

k, e

Ia) I»

lb) k, cS' Ib)

k, e

I»

k.e

ke, k, e
S

k, e k, e

k, e k, e

k e k, e k,s~~
kc ke ke

Ia I» I» I &)

FIG. 2. Perturbation diagrams for computing a(- co&,

~), p( —~~, ~, ~), ~(-~~, ~, (d, cu).
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TABLE II. Molecular selection rules for the most frequently encountered point groups.

(a) Triclinic system

Group C1 (1)

1 Dq g o k ~ k + 1 ~ ~ o ~ ~ k 1~ k

Group S2 (1)

Dq is I'1, Dq is I'1k+ ~ + k-

(b) Monoclinic system

Group C2 (2)

Dk

12 D, @odd

Group C~ (m)

Dk ' idem

Dk-. I Z
Q

Group C2„(2/m)
I

k+ ~ +

D 1s I'&

(c) Orthorhommbic system

Group D2 (222)

I"
2

I'4

DO

D1-D 1
1 1

D1

D +D

D2 D2 yD2

D2 +D2

2 2

D1 —D2 2

D2 —D3 3

D1 —D1, D3 —D 3
3 3 3 3

D p, D2+D3 3 3

D1+D 1, D3 +D

D D+D D D

D1+D-1~ D3+D

D2 —D 2, D4 —D 4
4 4 4

D1 —D 1, D3 —D4 4 4 4

Group C» (mm2)

Dq .' idem
ls

g
ln

Dk: I1 I'), I'2 I'4
3

Group D2& (mmm)

D"' is I'
D, is I )

(d) Trigonal system

Group C3 (3)

Dp Dp

D1

D

D2 D 3

3D

3D

D30, D,'
D3

D

D 3, Dp, D34 4 4

D42, D1, D4

D 4, D1, D2

Group S6 (3)
k+ ~ +

is I i
I
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TABLE II.(cont&sued)

Group D3 (32)

r2

DO

DA

D~11

D2

2 2D~1, D»

D, +D'3

DA, D3-D3 3 3

3 3D~1, D~2

DA, D3 —D 3
4

D3+D 3

4D~1, D~2, Dq4

Group Csv (Sm)

Dk+ ~

'D q
'. idemls l ln'

Dk-. r rq ' 1 2

Group D3„(3m)
Dk+ ~ r+

is rl
(e) Tetragonal system

Group C4 (4)

12

13

DA Do
1

D1

D

D2

D2

D 2, D2

D'-3 D1

D 1, D3

D4, , D4, , D44

D42, D4,

D43, D41

D-i D3

Group 84 (4)
k+. -

Dk ' r '
C

D:idem
q ls l ln

D, -:I,—r„r,—r,

Group C4& (4/m)
k+ +

D is rl inC4
ls r,

Group D4 (422)

r2

r4

DA

D1

Dq1
1

D2

D2 +D2

D2 —D2 2

Dq1
2

DA

D2-D3 3

D3 +D3

3 3D q1, D~3

D40, D4+D44

D4 —D 4
4 4

Dq1, D~3

Group C4v (4m')
k+. ~Dq: idem

q ls l ln
Dk: r1 r3, l 3 I'4

Group D2„(42m)

k+. ~D: idemls l ln
Dk-: r,—r3, r,—r4

Group D4& (4/mme)
+

Dk. r ' D q l
q ls l ln 4

D is I'l



2058 R.. BONNEVILLE AND D. S. CHEMLA

TABLE II.(continued)

(f) Hexagonal system

Group C~ (6)

F,

Dp

D i

D,

D2

D2

D3

D2
3

D3, DS

D 3

D4 D4

D-4. D2
4

D 3, D3
4 4

D4

D

Group C3& (6)
k+. .

Dk I, .
C

D: idem
q j.s i lTl g D: I'i I'4, l 2 I', I'3 Fg

Group C6& (6/m)
k+ ~ +

D is I'&

Group D6 (622}

l2
DA

0

DA

D2

D~i2

Dq22

DA

D3+D 3

D~i3

D~23

D34+D4,

Ds —D-34 4

D, 2, D, 4
4

Group C6„(6mm)

k+. -
Dq .' 1dem

qls )1Q g

Dq .. Fi F2, Fs F4

Group D3„(6m 2)
k+.

Dk F .
D Dq: idem

ls ) ln g
Dk-: F,—F,, F,—I.'4, r, —r,

Group D6& (6/mme)
k+ ~ +

D lsIg

(g) Cubic system

Group T (23)

12

DA

D2+i/v 2 (D +D )

Dp —i/ 2 (D2+D 2}

D2-D3 3 ~14D'0+&5(D4+D44)

M10DA —vv (X)4+D 4) —2i&3(D2+D 2)

&10 DA-~~(D4+D 4} +2iV3 (D2+D 2)

F4

Di

DP D2 —Di 2 2

D~i1 2

D~33

D p, D~2+D3 3 3

D~i3 D~3. D4-D-44
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TABLE II.(continued)

Group T„(mS)
y+ . +

D is Ii

I'2

DO

Group 0 (432)

D,p

+D2

D2-D3 3

Mi4D'0+ V 5 (D4+D'4)

M10Dp —v 7 (D4+D 4)

D4, +D42

D

Dp
1

1
Dg

D2

D2 —D2 2

D2

v 5D3, +&3D',

Dp

WSD, + WBD,

~BD 3 —v 5Dg

D2+D

D4, +v 7D4,

D4-D 4

D34+ &7D4,

&7D 3-D(

D2 —D4 4

~7D3 —D

Group Tg (43 m)
Q+ ~D~: idem

D: I;g I'2, I'4 I'5

Group O„(rn3rn)
g+ +

D" is I'&

DO

Dp-

D 1-

Dp~

(h) Group C„~

2+
Dp

D2

D~~2

D~22

DA

DA

D~g
3

D~2
3

3
Dq3

D4+

Dqg
4

Dq2
4

D~34

D~4
4

Group D

D isg, Dq is@

S» is the transition matrix element (see Sec. IIA)
(Q, l

v
l g;) with

lp;)= lg,)+lim . lg;).

and

le &= ln&l~(k e&&

l 4,&
=

l
&&

l
(& —&+ i&(k, e); i(k. , e)& .

An eigenstate of the free system can be expressed
as the product of an atomic state by a radiation
state; in particular, in anxth-order scattering
process

We use the expression of the quantized electric
field

1/2
E = ~ i(ace' —a'e*e '

2& V
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the relation between the incident intensity I and
the mean photon numer X~ „assuming the pump
beam to be coherent, is

I = (Roc/V)N,

~ and vs are the incident and scattered frequen-
cies respectively; T&„&' is the scattering tensor
component (Eq. 7); these formulas are given in
mksa units but the tensors keep the same expres-
sion in cgs units (4ne, = 1). The intensity scattered
in a given direction at a distance L is

(N (N —1). . . (N —P+ 1))=N~, s
s ~ L2dQ (A3)

do' co co 23'I iT( ) i

dQ c' c (4ve, )" (A2)

and p(W) dQ = V~2~ dQ/(2mc)'O'. This leads to the
cross section per molecule for an rth-order scat-
tering process:

Through a diagram method (Fig. 2} we obtain the
explicit expression of the scattering tensors up
to rank 4 (it is worth noting that if q incident pho-
tons belong to a same mode, each diagram has to
be counted q! times). For instance;

g (b I d,. I m) (m I d,. I a) (b i d; I m) (m I d, I a)
E, -E +5(d E, —E +h(d

~ (b I d,. I m) (m I d, I n) (n I d~ I a) (b I d~ I m) (m I d; I n) (n I dz I a)~ (E, —E + 2h&u)(E, —E„+h&u) (E, —E + k&u h~~—)(E, —E„+h&)

(bid;Im) (mid, ln)(nld; I a) + (,dern w;th e„cha„g,.„g& a„d h}
(E, —E„+h~ —h&u~)(E, —E„—h~~)

From Eqs. (A2} and (A3), one can find immediately
the expression of the proportionality constant I,
of Eq. (5).

sitions:

APPENDIX B

In Sec. (IIb), we had assumed that the atomic
. levels a and b were not degenerate; otherwise,
let g(a) be the degeneracy of the initial level, and
n and P be the indices labeling the eigenstates of
the levels a and b, respectively.

An inelastic a- b process is still incoherent;
the total scattering cross section is obtained in
summing over the final states P and averaging
over the initial states n which we assume to be
unpolarized:

incoh(a~b) I ~ ~ /0, -S '

An elastic a-a process has both an incoherent
contribution due to the

~

o.) —
~

n'), with o. W n', tran-

and a coherent contribution due to the
~

n)- ~n)
transitions.

Since the initial state of the atomic system is not
in general an eigenstate of H... but a statistical
mixing described by a density matrix

p = Q p (a, o.)
~

ao.) (ao. ~,

the polarizability tensor -T' "' which accounts for
a coherent scattering process must be replaced by
the average value 7 = Tr(pT), so that the total co-
herently scattered intensity is given by

2

I,.„=f(V,k) gp(a, n)(A)...
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