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We consider the total multiple-scattered light field from a system of Brownian diffusing particles. We
assume the correlation function is due to contributions from all the independent single-scattering events

leading to the multiple-scattered field. We then assume the relative magnitudes of the various orders of the
multiple-scattered light are given by the Poisson distribution. For particles of radius r &X, X being the
wavelength of light, we arrive at expressions for the depolarization ratio and the polarized and depolarized
linewidths as functions of the average number of scattering events n = crpx, where o. is the single-particle
scattering cross section, p is the particle concentration and x is a distance related to the scattering volume
size. We give experimental data to support our contentions.

I. INTRODUCTION

Over the past few years a number of papers con-
cerning multiple scattering from Brownian mo-
tion' ' and critical fluid systems' "have been
published. These papers have been for the most
part concerned with the autocorrelation function of
the multiple-scatter'ed -light. The problem is usu-
ally reduced to the study of the double-scattered
light, this component being the lowest-order cor-
rection for the multiple-scattered field.

The procedure for analysis of this problem has
been to consider the double-scattered field as due
to two successive and independent single-scatter-
ing events. This was first suggested by Oxtoby
and Gelbart' for the intensity of the depolarized
light scattered from a fluid near the critical point,
and was experimentally verified by Reith and
Swinney. ' We have considered the double-scat-
tered autocorrelation function in terms of two in-
dependent single-scattering events and found good
agreement of theory. and experiment for light scat-
tering from Brownian diffusing particles versus
scattering angle. ' We then applied this procedure
to the autocorrelation function of the depolarized-
scattered component from a critical fluid with ap-
parent success."

Quite recently Kim, Gallagher, and Armeniades'
have considered the depolarized autocorrelation
function as a function of the concentration of the
Brownian particles. They found that the linewidth
(inverse correlation time) increased monotonically
with concentration. They also devised an ingenious
experiment in which, by using two cells side by
side, they changed the diffusion constant of the
particles responsible for the first scattering event
by a factor of approximately P without affecting the
second scatterers. With such a change the depo-

larized linewidth changed only very slightly. They
concluded that the depolarized linewidth is not af-
fected by the motion of the first scatterers in a
typical double- scattering experiment. They then
developed a theory which involved mixing of the
spatial and temporal coherence of the scattered
light that resulted in a double-scattered linewidth
versus concentration dependence that fit their ex-
perimental results with one free parameter. This
work suggests that the concept of two independent
scattering events contributing to the double-scat-
tered linewidth is wrong.

In this paper we consider both the polarized and
depolarized scattered light correlation function of
the fu/l multiple-scattered field. To do so„we as-
sume the nth-order scattered field is a result of
n successive and independent single-scattering
events in analogy to our earlier double-scattering
work, but in contrast to the results of Kim et al.
Since the extent of multiple scattering is a function
of the particle concentration, we shall find a con-
centration dependence for our linewidths. We shall
show how the data of Kim, Gallagher, and Armen-
iades might be explained with our theory. We shall
also consider the intensityof the multiple-scattered
field and find a relation between the depolarization
ratio and the cross section for scattering.

In Sec. II we develop our theory for multiple
scattering in terms of independent single-scatter-
ing events of relative intensity given by the Pois-
son distribution. Section III gives preliminary ex-
perimental evidence to support our theory. In Sec.
IV we consider the partitioned-cell experiment of
Kim et al. and show how it may be explained
in the context of our work. We also mention
the possibility of cross-section determina-
tion from depolarization ratio measure-
ments.
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II. THEORY

A. Multiple-scattered field

We shall consider the multiple-scattered field
as a result of successive and statistically indepen-
dent single-scattering events. We assume a spher-
ical scattering geometry where the distribution of
second scatterers with respect to first scatterers
is taken to be spherically symmetric. '

Our work has not considered the effects of co-
herence of the field on the correlation function.
Van Rijswijk and Smith, however, have considered
this problem. They considered two separate cells
of Brownian particles. Light single scattered from
one was collected at some angle and directed to the
second cell and was single scattered again. The
spectrum of this double-scattered light was then
considered. They found, and verified experimen-
tally, that when the cells were far apart, R-50 cm,
the light was non-Gaussian and the linewidth was
independent of the second scatterer. However,
when the cells were close together, R-1.5 cm, the
light was Gaussian and the linewidth was described
by two independent single scatterings. In conven-
tional experiments, where one is concerned with
the field scattered from the illuminated scattering
volume, the first, second, third, and so forth
scatterers are all close in the sense of Van
Bijswijk and Smith. Thus, we shall take their re-

suits as further evidence that the independent-
scatterer approximation is good and that the scat-
tered light is Gaussian.

We proceed as before and consider the multiple-
scattered field as a Born series of scattering
events. We write for the correlation function of
the multiple-scattered field [see Eq. (5), Ref 1.]

(z*(t) ~ z(o)) = g (z„*(t)~ z„(o))
n=1

+ g (E,*. (t) ~ E,(0)),

where E, (t) is the tth-scattered field [see Eq. (4),
Ref. 1].

We consider the cross term in Eq. (1) with i&j.
E&(0) represents scattering from j independent
particles. If at a time t later, light is scattered
from the same j particles, although not necessari-
ly in the same order, the correlation of the two
multiple-scattering events will be a function of t.
However if E,(t) represents these j events plus
i —j different events, the total correlation (E,.E&)
will be zero because these i —j events are com-
pletely random. If we take r, (t) as the p.osition
vector of the ith scatterer at time t and k,. as the
wave vector of the ith scattering event, we may
write

(E*,.(t) ~ EJ(0))~ (exp(ik, ' [r,(t) —r,(0)]}).. . (exp$ik& [r&(t) —r&(0)]])

&& (exp[ikz. , rz„(t)]).. . (exp[ik, ' r, (t)]) .

This cross term is zero because the terms (e'"')
=0.

If the additional i —j events are from particles
included in the first j particles, i.e., some parti-
cles scatter more than once in the sequence des-
cribed by the cross term, then the correlation
would not be zero. However, we feel the statisti-
cal weight of such terms will be much smaller
than that of the (E„*'E„) terms and so we shall take
them to be zero. We therefore eliminate the cross
terms from Eq. (1) and have

(z*(t).z(0))=g (z*(t) z„(o)),
n=1

which represents the sum of n-scattered fields.

B. Intensity

From Eq. (3) with t =0 we find the total multiple-
scattered intensity to be

I=+I„.
n=l

(4)

We stress that this is a sum over all orders of
multiple scattering. To evaluate (4) we need to
have a relation for the various orders of scattered
intensity. Since the Born approximation is no

longer valid for large amounts of scattering,
another device is needed.

We shall use the fact that light scattering may be
considered a random statistical process. This can
be best illustrated by calculating the turbidity of a
system by assuming it is a cumulative Poisson
random process. To generalize this for our pur-
poses, we assume the detected scattering volume
and the illuminated volume are equal. We then as-
sume that the probability of observing a photon
after n scattering events is given by the Poisson
distribution. Thus, the nth-order intensity is pro-
portional to
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I„P(n) = (n "/n! )e.", (5)

where P(n) is the Poisson distribution with average
n. The average number of scattering events n can
be found from a turbidity argument to be

n = (rpx =x/1 .
Here o. is the cross section of scattering for the
particle and p is the particle number density. We
will take x to be a distance parameter related to
the mean size of the scattering volume, and l is
the mean free path of the photon.

We wish to relate n to the depolarization ratio
R of the scattered light. R has been used before to
characterize the extent of multiple scattering. '"
We have

2.0
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Depolarization Ratio R
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n=lI

@=1

Here L and [I denote depolarized and polarized,
respectively, where we consider the standard ge-
ometry with incident beam polarized perpendicular
to the scattering plane. Note that each order n has
both a polarized and depolarized part, thus

I„=I„„+I„P(n).

To solve Eq. (8) we require the depolarization ratio
of the nth-order scattered light,

(9)

Solving Eqs. (8) and (9) for I„„and I„,and substitut-
ing into (7) we have

(10)

This expression gives R solely as a function of n,
the average number of scatteririg events.

To evaluate Eq. (10) we must know 8„for all n.
Since there is no depolarized component for single
scattering, R, =0. We have found' for spherical
symmetry and ~ «X, that R, =0.125 (for r- A., R,
decreases with increasing r/X and becomes scat-
tering-angle dependent"). A similar albeit tedious
calculation gives R, =0.26. R„ for n &3 appears to
be very difficult to calculate. For n»1 we expect
R„=1 because the polarizations will be completely
randomized. We have evaluated Eq. (10) for A4
=0.5 and R„=1.0 for n ~ 5 and will use this in our
analysis below. For R4=1.0 the results are
changed by 5%%uo-10% as seen in Fig. 1 where we
plot n vs R.

Equation (10) or Fig. 1 allows us to determine
F7, the average number of scattering events, from

FIG. 1. Theoretical prediction of Eq. (10) for the
average number of scattering events vs the experimental
depolarization r atio.

the experimental depolarization ratio. Since n is
related to the scattering cross section by Eq. (6),
one may then determine the scattering cross sec-
tion experimentally.

C. l.inewidths

In this section we consider the linewidth, equal
to the inverse correlation time, of the multiple-
scattered light. To do so we consider our results
for the double-scattered linewidth. We found for
the spherical scattering geometry ancI for particles
of radius r « ~ that the first cumulant of either the
polarized or depolarized component of the double-
scattered light was equal to twice the linewidth of
the light single scattered at 90'.' This was a con-
sequence of the assumption of two independent
single-scattering events. One may'easily show
that the same result is obtained if one considers
the double-scattered spectrum as the result of two
single-scattering events each of which has an av-
erage or effective scattering angle of 90 . Thus,
ignoring the nonexponentiality by setting the line-
width equal to the first cumulant, the double-scat-
tering results may be expressed

r, =21,(90') .
It is now straightforward to consider the linewidth
of the nth-order scattered light as due to n single-
scattering events of average scattering angle 90'.
Then,

I'„=n I', (90 '),
where I"„is the nth-order linewidth, independent
of scattering angle.

To find the effective linewidth of the total multi-
ple-scattered field, we consider our Poisson ran-
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dom scattering process and Eq. (3). Equation (3)
will be a sum of exponential correlation functions
of linewidths I'„weighted by the Poisson distribu-
tion, P(n). Such a sum will be nonexponential but
we again consider only the first cumulant of the
sum as the effective linewidth. The effective line-
widths are then Poisson weighted averages which
from Eqs. (6), (9), and (12) are

P [It„/(I+a„)]nP(n)
I I (90o) n=t

Q [a„/(I+a„)]P(n)
n=l

(13a,)

g [I/(I+Il„)]np(n)
I'~~ =I,(90') "=~

g [I/(I+~„)]P(n)
1

(13b)

4.0—

5.0

These linewidths for the. full. multiple-scattered
field are independent of the scattering angle, rep-
resent the first cumulant of the nonexponential
correlation function and most importantly are
solely functions of n which can be determined from
experimental depolarization ratio measurements.
Plots of I", and I', vs n normalized to I",(90') are
given in Fig. 2 with the same R„used in the inten-
sity calculation. Use of 84=0.5 or 1.0 seems to
have little effect.

At two separate junctures in the above derivation
we have approximated the correlation function as

an exponential with linewidth (inverse correlation
time) equal to the first cumulant. Thus, our re-
sults of Eqs. (13) represent the first cumulant of
the expectedly quite nonexponential correlation func-
tion of the multiple-scattered field. Unpublished
results" indicate the double-scattered polarized
correlation function is more nonexponential than
the double-scattered depolarized correlation func-
tion. We might expect this trend to continue into
all orders. In any event, accurate extraction of
the first cumolant of the multiple-scattered corre-
lation function from data on turbid systems might
be difficult due to the possibly large nonexponen-
tiality.

III. EXPERIMENT

We present here preliminary experimental re-
sults concerning the multiple-scattered depolariza-
tion ratio and linewidths. In the future we hope to
systematize our scattering geometry and data
analysis to obtain a cleaner experimental technique
for these data. Our work here is meant only to
suggest the validity of our theoretical results.

We suspended monodisperse samples of polysty-
rene spheres in distilled water at concentrations
of 1.0 && 10" to 5.76 && 10"particles/cm'. The ra-
dius of the particles was r =0.055+0.001 p, rn. The
condition r «X holds for these particles as is ver-
ified by our double-scattering data. ' We attempted
to add ionic salts to reduce any possible Coulombic
interactions which might affect our results. "
These efforts always resulted in coagulation and so
salts were not added.

The sample cell was a 0.8-cm-i. d. test tube.
The vertically polarized beam of an argon-ion
laser operating at X= 5145 A was directed unfo-
cused (visual diameter of approximately 3 mm) in-
to the cell. Light scattered at 90 passed through
a Clan-Thompson polarizer of extinction ratio
5 && 10 ' which selected the polarization of the scat-
tered light. The light then passed through a 300-
p. m pinhole the effect of which was to give approx-
imately one coherence area of light on the 0.1-in. -
diam cathode of an ITT FW130 photomultiplier 1 m

I.O
1.0 2.0

Ave. No. Scat. Events 0

distant. The photon pulses were then detected and
correlated and the first cumulants extracted as
well as possible from the nonexponential spectra.

We stress that the beam is not focused, but spa-
tial coherence on the cathode is obtained with the

FIG. 2. Solid lines represent the theoretical results
of Eqs. {13)for the ratio of the depolarized (&) or po-
larized (~~) iinewidth to the iinewidth for single scatter-
ing at a scattering angle of 90' vs the average number
of scattering events n. Circles represent linewidth
data from a turbid system of Brownian particles where
n was determined from the experimental depolarization
ratio and Fig. 1.

pinhole. ~so, the illuminated volume defined by
the laser beam is larger than the scattering vol-
ume defined by the pinhole and the cathode. The
scattering volume is approximated by a cylinder
0.8 cm long and 600 p, m diameter. We are not
sure what effect this difference will have. Finally,
the spherical scattering geometry' holds for this
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FIG. 3. Average number of scattering events n vs
particle concentration. n was determined from depo-
larization ratio measurements and Fig. 1.

arrangement.
The depolarization ratios were used to determine

n using Fig. 1. These values are then plotted
against concentration in Fig. 3. The linearity of
this plot is in keeping with Eq. (6) and the slope
should be ox. Experimentally, Fig. 3 indicates
ax =1.93 x 10 ~2 cm'. The cross section o can be
evaluated from t'h e results of electromagnetic the-
ory and for our polystyrene particles 0 =2.64
x 1Q cm lmplylng x = Q.73 cm for our experi-
ment. This value, comparable to the dimensions
of our illuminated volume, seems a bit large to
describe the mean size of the scattering volume.

The linewidths are plotted as data points along
with the theoretical predictions in Fig. 2. As be-
fore, n was determined from the experimental
depolarization ratio and so there are no adjustable
parameters. The theory and data appear to yield
adequate agreement. The deviations of data and

- theory might be explained as due to Coulombic in-
teractions tending to make the linewidth larger'~
or to the large nonexponentiality tending to make
the linewidth appear smaller. This latter fact may
well be the situation for the experimentally very
nonexponential polarized correlation function.

IV. DISCUSSION

We have shown the polarized and depolarized
scattered linewidths of the total multiple-scattered
light are increasing functions of the average num-
ber of scattering events in the scattering process,
n. Since n = pxa', we predict a density dependence
for these linewidths as observed by Colby et al.'
and Kim et al.' We stress that the double-scat-
tered linewidths are not functions of the density as
suggested by Kim et al. En an effort to resolve
this difference we consider their partitioned-cell

experiment.
The pa,rtitioned-cell experiment of Kim et al. con-

sisted of two cells side by side. One cell, the sin-
gle-scattering cell (SSC), contained r=0.0455-p, m-

diam particles at a concentration of 4.8 x 10'
particles/cm'. The second, or double-scattering
cell (DSC), contained the same particles at a con-
centration of 1.36 && 10"particles/cm'. The fo-
cused laser beam was incident upon the SSC and
the depolarized scattered light from both cells
was observed at 90 . When each compartment con-
tained fluids (water) of viscosity 1.002 cP a, line-
width of I', =17930 sec ' was observed. However
when the SSC contained a suspension with fluid
viscosity of 1.83 cP the linewidth changed only
slightly to I",=17777 sec '. Reversing this with
fluid viscosity 1.836 cP in the DSC the linewidth
fell to I"„=9875sec ' which is to be expected be-
cause I"~q ', q bei;ng the viscosity. They con-
cluded that I"~ is not affected by the motion of the
first scatterers in a double-scattering experiment.

To analyze this result, we first compare I,
=17930 sec ' to I', (90 ). For their system we can
calculate I', (90 ) = 5600 sec '. If we consider I',
as due to the full multiple-scattered field, we can
compare the ratio I",/I', (90') to Fig. 2 and deter-
mine n=1.6 for their experiment. We also consi-
der F7. = pox with 0 calculated from electromagnetic
theory for their particles and x chosen arbitrarily
to be our experimental x = 0.73 cm and find nss c
= 0.06 and PD« ——1.76 corroborating the value im-
plied by the linewidth data. The point of this exer-
cise is to show that while there is essentially only
single scattering in the SSC there is rnultiPle

scatteringly, not just double scattering, in the DSC.
We now consider the first cumulant value of the

nth-order linewidth. Since the linewidth and dif-
fusion constant are related by I =Dk', we have

(14)

For D,.=D for all i, Eq. (14) reduces to our result
Eq. (12) with k the scattering wave vector at 90 .
From Eqs. (8), (9), and (14), using the same rea-
soning which lead to Eqs. (13), the depolarized
multiple-scattered linewidth is

Again, for D,.=D for all i, Eq. (15) reduces to Eq.
(13a). We have evaluated Eq. (15) with D, =D/1. 836
and D,. =D fori ~ 2 and n =1.6. This represents
our theoretical partitioned-cell linewidth with
higher viscosity in the SSC. We find I', (q»c
=1.836 cP)/I", (q»c ——1 cP) =0.91 compared to'their
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experimental value of 0.99. Considering the dif-
ficulties in applying our argument to their unusual
scattering geometry, we feel that this result indi-
cates that Kim et al. have in fact observed multiple
scattering due to indePendent scattering events. "

The relation between the depolarization ratio R
and the average number of scattering events n
= pox suggests the possibility of determining the
cross section o by measuring R. This has been
considered by Heith and Swinney, "but only to
second order. We hope that with experimentation
'a better characterization of the scattering volume
size x may be achieved and thereby better define
o =n/px.

%e also wish to point out that while our calcula, -
tions have been for particles of size r «A. , it might
also be extended to r-X. To do so we would neg-

lect any scattering-angle dependence of 1 „ for n
large and redefine the average scattering angles
to the forward direction with increasing r. This
last point is suggested by the double-scattering
data. '

V. CONCLUSION

We conclude that multiple scattering can be de-
scribed a,s the result of a series of independent
single-scattering events whose intensities at the
detector are weighted by the Poisson distri-
bution.
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