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We have measured the angle and concentration dependence of the first cumulant of the field-correlation
function for multiply scattered light from polystyrene latex particles in water. The experimental results are
analyzed in terms of a model based on the assumptions that the scattering particles are pointlike and that the
number of renormalized scattering events is Poisson distributed. The agreement between theoretical and

experimental results is satisfactory.

I. INTRODUCTION

The recent rapid development of dynamic-light-
scattering methods in the study of macromolecular
motion has renewed the interest in multiple scat-
tering of light. Since the usual single-scattering
assumption breaks down, drastic changes in the
dynamic and static properties of the field-corre-
lation (FC) function may occur.

Several authors have analyzed multiple scatter-
ing from noninteracting Brownian particles by the
use of lowest-order multiple-scattering correc-
tions.!™ Such corrections have also been applied
in the analysis of experimental results from op-
tically dense systems.*® ,

Multiple scattering has also gained much inter-
est in connection with light scattering from molec-
ular fluids.® Of particular interest to the present
work are recent papers by Bedeaux and Mazur,’
and by Boots ef al.®*® These papers show that a
renormalization technique can be used in which
the pure extinction of the light beam, as it passes
through the scattering volume, is taken into ac-
count in the definition of the permittivity tensor.
In this formalism, multiple scattering is ex-
pressed in terms of renormalized “single” scat-
tering, “double” scattering and so forth.

The aim of the present paper is to calculate the
first cumulant of the FC function to any order of
multiple scattering and compare the resulting ex-
pressions with experimental results. The paper
extends the first-order analysis developed pre-
viously,* using the idea of renormalization.

The paper is organized as follows: In Sec. II
we discuss multiple scattering and introduce a
diagram representation suitable for discussing
various scattering processes in terms of density
correlation of the scattering particles. In Sec. III
this formalism is applied to scattering from non-
interacting Brownian particles, and renormaliza-
tion resulting from consideration of the time de-
pendence of the various diagrams is also shown.
In Sec. IV we develop an explicit expression for

the angle and concentration dependence of the first
cumulant of the FC function of light scattered
from pointlike isotropic scatterers. This is done
for both the polarized and depolarized components,
using a Poisson distribution for the number of “re-
normalized” scattering events.

Our experiments are discussed in Sec. V. The
results are compared with calculated values using
the expressions developed in Sec. IV.

II. MULTIPLE SCATTERING EXPANSION
OF THE FC FUNCTION

The scattered field E(f) can be written as a sum
of partial fields corresponding to the order of
multiple scattering®:

B0=3 B 0. (1)

Consequently, the FC function G(¢#) of the scattered
field is given by

= EX(HE0)= ZG,,,, , (2)

(#) is defined by
Gy (B = EX(DE,(0)). (3)

The explicit form of the nth-order scattered field,
and hence the various partial FC functions, de-
pends on factors such as the scattering geometry,
the properties of the scattering medium, and so
forth. Such explicit expressions have been given
in Ref. 4, where it is shown that the fluctuation

of the scattered field is connected to the proper-
ties of the scattering medium through Fourier
components $(q,?) of the instantaneous particle
density p(F,?):

where the partial FC function G, ,

N .
ZP(?l, t) = V-l Z e-iq-ri(t) s (4)

where N is the number of scattering particles
within the scattering volume V.
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Each scattering of the field, involving a momen-
tum transfer d, introduces a density component
#(d,t). The fluctuating part of the nth-order scat-
tered field is then given by the product 117, 9(q;, £).
Hence, the statistical properties of the partial FC
function G, , depends on the density-correlation
functions D, (1),

1 m ‘
Dy,(0)= (Y] ¥t T 96,0 - ®
i=1 j=1

Such density -correlation functions are convenient-
ly discussed using a diagram representation in
which each open circle “i” represents $*(d;,?) in
the upper line and ¥(q, ) in the lower line.. The
density -correlation function D, ,(f) can then be
written

o lo
D)= (6)
O+« 0
m

The correlation range depends, of course, on
the system‘in question, but generally the density-
correlation function D; ,(#) can be expressed as
the sum of terms containing all possible correlated
parts. As an example, we shall consider the den-
sity correlation function D, ,(#). From Egs. (4) and
(5) one notes that D, ,(#) contains the summation
over three “generic” particles 4, j, ! which may be
grouped in the following manner:

i,j,1= [i’j’l] + [7']7 [],l]
+i,1], 4]+ [2,4],2+ 4], [4], [2], (7)

where the particles inside the square brackets are
correlated. The first term on the right-hand side
of Eq. (7) corresponds to three correlated particles
and the last term to three uncorrelated particles.
The diagram representation of the corresponding
correlation function D, ,(¢) is

° o .

ol
(8)

- On the right-hand side of Eq. (8) lines are used
to symbolize summations over correlated parti-
cles and closed circles are used to distinguish
diagrams for correlated particles (CP diagrams)
from those corresponding to the density-correla-
tion function D, ,.

Defining a correlated part of a diagram as either
closed circles connected by lines or isolated
closed circles, the value of a CP diagram is given
by the product of the contributions from each cor-
related part.

Symbolically, Eq. (8) may be written

el e,

D,,(0=3" dy(e, ), (9)
a=l

where d, ,(a,?) represents a CP diagram and « is
a counting index.

A general diagram D,,m(t) is then given by the
sum of all distinct CP diagrams d; ,(a,1),

Dy (t)=3" dy (e, D). (10)

The partial FC function G,_,(f) is obtained from
Eq. (10) by multiplying D, m(t) by an appropriate
factor F,, m({’} taking into account the scattering
geometry, etc., and then summing over all inter-
mediate wave vectors {E} The general connection
between the partial FC function of the scattered
field and the statistical properties of the density
fluctuations of the scattering medium is then given

by

0= > F (&) a4, (c,&}Ln. (1

&) o

'In Sec. III this formalism shall be applied to non-
interacting Brownian particles.

III. MULTIPLE SCATTERING FROM NONINTERACTING
’ BROWNIAN PARTICLES

In the case of noninteracting Brownian particles,
each particle is only correlated with itself. Hence,
the value of a correlated part of a diagram, con-
sisting of » filled circles on the upper line and m
in the lower, is simply given by

= V-(Z-x-m-l)st(Q” t)5§”§,m , (12)

where p is the number density N/V, Q=204 1%
and Q=27 ), and F (Q, D is the self-intermedi-
ate scattermg function which, for noninteracting
Brownian particles, is given by

F(Q,1)=eP9t, (13)

where D is the infinite-dilution diffusion coeffi- ‘
cient.

In the following, we assume that the Brownian
particle is so small that intraparticle multiple
scattering can be ignored. 'Thus, diagrams con-
taining lines between neighboring circles in either
the upper or the lower line are excluded.

Two useful results follow directly from Eq. (12):

(i) A correlated part containing only circles on
one of the lines has vanishing momentum transfer,



o p283, 40,0 - (14)

(ii) All diagrams having M distinct lines connect-
ing the upper and lower line have the same time
dependence

e - - e .. @ "
°. . I I OCHF(q” 19)

This leads to the conclusion that the time depen-
dence of a diagram is determinhed by the number
of lines connecting the upper and lower line. All
other properties of the diagram influence its val-
ue, but not its time dependence. Thus, a diagram
D,'m(t) may alternatively be expressed as a sum of
diagrams having 1 up to M= min(Z,m) lines con-
necting the upper and lower line:

M
D, ()= D, .n,1), " (16)
n=1
where
Dy, 0="d, (1), 17

The summation2J" in Eq. (17) contains all CP dia-
grams d,'m(a, t) having » lines connecting the upper
and lower line.

Using Eq. (15), the diagram D,
pressed as

=7, %) can be ex-

D, ln, =Dy, 0) ] Fi@y 0. (18)

j=1

In the same way we may also define a partial FC
function, G, ,(n,1),

G, =" F, {&HD, ,(n,f&},0)

{k}

n
x I Fs@;, 1) - (19)
j=1 -
 When summing G, ,(#) over ! and m, we group to-
gether all the partial FC functions G,'m(n,t) having
n lines connecting the upper and lower line. Thus
we define the nth-order partial FC function G ()

by

=376y, 0, ). (20)
Iym :

This leads to the following renormalized expres-
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sion for the normalized FC function g(#) of the
scattered field:

=gt }fg,,mﬂq,, ). (21)

where g,= G,(0)/G(0) has the form of a probability
density, and the average value appearing in Eq.
(21) is defined as

<ﬁ F§,, t)>
i=1 n
-(ZrT F,,m_<{E})D,,m<n, £Lo)"

lym {E)

<Z ZF,m{'} om0, {’}O)HF a1t >

Tym (&)}

(22)

Each term in the summation on the right-hand
side of Eq. (21) represents the renormalized nth-
order scattering with the extinction included in
the factor g,(0).

One feature of the procedure outlined above is
that the resulting equations, Egs. (21) and (22),
can be applied for model calculations by which es- |
sential dynamical properties of multiple scatter-
ing can be discussed.

IV. EVALUATION OF THE FIRST CUMULANTS
USING A POISSON DISTRIBUTION

“As a first approximation we assume the number
of “renormalized scattering events” to be Poisson
distributed. This corresponds to independent scat-
tering events, each having the same probability.
The first cumulant of the FC function is given as'®

a o n
K =1i —— . = 2
1 1;3;( T lng(t)> ;g; (Dg3),

=3 8Ky (23)
n=1

In Eq. (23) the first cumulant K, is expressed as

a weighted sum of partial first cumulants K, ,
corresponding to the renormalized nth-order scat-
tered light. The partial first cumulant is, in turn,
a sum of » average single-scattering decay con-
stants. If, as pointed out by Sorensen ef al.,’ we
restrict ourselves to pointlike particles, we may
use a symmetry argument. The first cumulant
corresponding to double scattering K, , is then
angle independent and equal to that obtained for
single scattering at 180°. The double-scattering
process may be visualized as two ihdependent
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scattering events. Due to the fact that pointlike
particles are isotropic scatterers, the average
scattering angle for each scattering is 90°. Two
scatterings at 90° yield on the average an effective
180° scattering process, which explains the initial
slope (first cumulant) of the double-scattering FC
function.

Applying these arguments to an arbitrary nth-or-
der (n>2) multiple-scattering process the first
cumulant [Eq. (23)] may be written

K,(6) = ;)T(90°) —g,[T(90°) -T(6)], (24)

where 6 is the angular position of the detector,
I'(0) is the single-scattering decay constant, and
(n) is the average order of multiple scattering.
Thus, for independent pointlike particles, the
value of the first cumulant K, at 6=90°is equalto
that of the average number (z) of multiple scat-
tering.

For a more detailed analysis of the angle- and
concentration dependence of K,, the probability
distribution g, must be used. We then distinguish
between the polarized component K,,, which in-
cludes single scattering as well as multiple scat-
tering, and the depolarized component K,,, which
does not contain single scattering. Using the
Poisson distribution for g,, we obtain

K, (0)= (1 —e= ™o)™ ), T{1 — [1 = 7(8)] e™™o}  (25)
and
K (0)=[1-(1+®)ye ] ),

X T(1 —e™"n) . (26)

Here, v(6)=I(6)/T(90°), (1), is the average num-
ber of scattering events in the polarized compo-
nent, (), is the average number of scattering
events in the depolarized component, and the fac-
tors (1 —e ™)™ and [1 —(1+ (),)e™™n]™ are due
to normalization of g,.

Finally, we add that for a Poisson distribution
the average number of scattering events is pro-
portional to the concentration C of scattering par-
ticles:

m)p=,C, (27a)
)= ,C. ) (27b)

V. EXPERIMENTAL RESULTS AND DISCUSSION

The spectrometer used consisted of an Ar*-ion
laser (A\=514.5 nm, 1.4 W), a movable ITT-FW
130 photomultiplier (PM) tube and a 24-channel
Malvern digital correlator. Rectangular sample
cells of 1 cm optical path were placed in a water
bath for index matching.

The scattering systems consisted of filtered

water suspensions of polystyrene latex spheres
obtained from Dow Chemical Co. The average
diameter of these spheres was reported by the
manufacturer to be 109 nm with a standard devia-
tion of 2.5%. Light scattering at a concentration
C=5x%10"" g/cm® gave a hydrodynamic diameter
of 115 nm and this value was used in the calcula-
tions. The small polydispersity is not expected to
seriously distort the measurements of the FC
function.

A lens was used to focus the laser beam down to .
about 200-300 um, which is approximately in the
size of the scattering volume as defined by the
apertures in front of the PM tube. The reason for
the lens was to obtain a higher intensity. of the de-
polarized scattered light, especially at the lowest
concentrations. But, as pointed out by Sorensen
et al.® this tends to give a too large first cumulant
for the polarized component since multiply scat-
tered light is collected from a larger volume than
singly scattered light. This effect is expected to
influence our measurements, especially at low
concentrations. In addition, the use of a focusing
lens introduces an uncertainty due to the possi-
bility that the scattering volume as determined by
the apertures does not fully coincide with that de-
termined by the focused beam. To reduce this un-
certainty, we adjusted the lens to maximum inten-
sity in every run. A better approach would have
been to use a smaller sample cell and illuminate
it as uniformly as possible,

We used Glan polarizers with an extinction co-
efficient of about 10™° to determine the polariza-
tion of the incident light and to single out the po-
larized and depolarized components of the scat-
tered light. In the measurements of the depolar-
ized component, the analyzing polarizer was ad-
justed to minimum intensity. However, an extinc-
tion not better than 10™® inevitably leads to some
mixing of the slower fluctuating polarized compo-
nent into the depolarized one, especially at the
lowest concentrations. This tends to give a too
small value for the first cumulant of the depolar-
ized light at these concentrations.

The experimental data were fed into a computer
programmed to find the initial slope of the normal-
ized FC function. In experiments on multiple scat-
tering it is particularly important to use a correct
sample time on the correlator. The reason is that
the scattered light is a sum of components which
can have widely different fluctuation times. Hence,
the rule of thumb to select a sample time T~ 0.17T,,
where T, is the average correlation time is
incorrect since this results in an integration of
the fastest components. An example of such an ef-
fect is given in Fig. 1, which shows that the value
of the first cumulant obtained at 7=0.1T is too
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FIG. 1. Experimentally measured first cumulant K,
vs sample time T on correlator. Scattering angle was
30° and T,~ 2.5 ms.

low by about 25%.

The analysis of our experimental data is based
on the Siegert relation which connects the inten-
sity-correlation function to the FC function.! This
relation requires Gaussian statistics, which are
not exactly fulfilled in the case of multiple scatter-
ing. However, as pointed out by Kelly,? the non-
Gaussian component is negligibly small, except at
very high degrees of multiple scattering. Further-

more, Colby et al. did not find any significant con- -

tribution from a non-Gaussian component in their
experiments on dense optical systems.®

In Figs. 2, 3, 4, and 5 the experimental results
are compared with calculated values using Eqgs.
(25) and (26). In Fig. 2, values for the first cumu-
lant of the polarized component K, , are plotted as
a {unction of concentration. The full line is cal-
culated from Eq. (25) using the value a,=5.4x 10
cm®/g.

The fit between the theoretical curves and the
experimental values is quite good in the concen-
tration range studied. At low concentration, the

=)
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FIG. 2. Experimentally measured first cumulant KIP/ T
vs concentration at scattering angles § = 90° and 9 = 60°.
The full curve is calculated from Eq. (25) in the text.
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FIG. 3. Experimentally measured first cumulant K,,/T

_+vs concentration at a scattering angle ¢ = 90°. The full

curve is calculated from Eq. (26).

experimental values are too high, which may be
due to the use of a focusing lens.

Figure 3 shows the first cumulant of the depolar-
ized component K, as a function of concentration.
Here the discrepancy at low concentration is prob-
ably due to the following two factors: (i) the latex
particles used are too large to be treated as point
particles, hence the “average scattering angle” is
less than 90° (ii) the mixing of the slower polar-
ized component with the depolarized one leads to
a too small first cumulant. The full line in Fig. 3
is calculated from Eq. (26) using the value a,=3.3
x 10% cm®/g.

Comparing the values for a, and «,, we find that
the average amount of multiple scattering in the
depolarized component is about six times higher

T 1 T T T
12
L 1.0
=
X
_ 08
[ =4
S
g 06
3
(8]
w04
=
02+ / —
- / -
0 ] | L1 ]
0 0.1 0.2 0.3 0.4 05

sinZ©/2

FIG. 4. Experimentally measured first cumulant K 1,,/ T
vs angle parameter sin’3 0 at a concentration C =5x 10”4
.g/cm3. The full curve is calculated from Eq. (25), the
broken curve is the expected single-scattering curve.
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FIG. 5. Experimentally measured first cumulant K,/T
vs angle parameter sin230 at a concentration C=5x10"%
g/cm. The full curve is calculated from Eq. (26), the
broken curve is the expected double-scattering
curve:

than that in the polarized one. Our calculation
provides no quantitative explanation for this re-
sult. Qualitatively, this effect is not surprising
since the incident polarized light is gradually de-
polarized through multiple scattering. Hence, con-
tributions from higher-order multiple scattering
are relatively more important in the depolarized
than in the polarized component.

In Fig. 4, we have plotted the first cumulant of
the polarized component as a function of scattering
angle at a concentration of about 5X 10" g/cm?.
Equation (25) gives a linear relationship between
the first cumulant K, ,/T" and the angle parameter x
=sin®0. The intercept at x=0 corresponds to the
average number (z), of scatterings. The full curve
in Fig. 4 is calculated from Eq. (25) with the value
for @, used in Fig. 2. The broken curve repre-
sents single scattering. Except at small angles,
the agreement between theoretical and experimen-
tal values is satisfactory. The discrepancy is
probably due to dust in the sample and to the fact
that the latex particles are not pointlike.

Similarly, Eq. 26 predicts the first cumulant
Kln/ I’ of the depolarized component to be angle
independent. This is shown in Fig. 5, using the
value for o, obtained from Fig. 3. Again, the
agreement between the theoretical predictions and
the experimental values is good except at small
angles.

The two main sources for this discrepancy are
probably: (i) the polarized component mixed into
the depolarized one becomes slower the smaller
the angle and (ii) depolarized scattering from dust

and the cuvette is usually more pronounced for
small angles.

VI. CONCLUSION

The diagram technique developed in the present
paper is suitable for analyzing various multiple-
scattering processes in terms of particle-density
correlations. When applied to a scattering system
of noninteracting Brownian particles, this tech-
nique results in a renormalization procedure. The
essential point is that many of the various scatter-
ing processes have the same time dependence,
thus formally the renormalization is carried out
by adding all diagrams having the same time de-
pendence. The FC function of the scattered field
is then given as a sum of renormalized nth-order
partial FC functions. Qualitatively, the renormal-
ization takes care of the extinction of the nth-or-
der scattered light.

The renormalized expression for the FC function
leads to a simple expression for the first cumu-
lant. Assuming isotropy, which is valid for point-
like particles, the first cumulant is a direct mea-
sure of the average number of multiple-scatter-
ing events. Assuming further that the number of
renormalized scattering events has a Poisson dis-
tribution, we obtain simple expressions for the
angle and concentration dependence of the first
cumulants containing the average number of scat-
terings as the only parameter. The agreement be-
tween values calculated from these expressions
and experimental ones is satisfactory.

The final expressions for the first cumulant are
restricted to independent pointlike particles and
scattering events obeying Poisson statistics. The
effect of particle interactions is ignored since
they are not expected to be important in our ex-
periments.® We believe a similar renormalization
procedure may be useful in even more complicated
systems of correlated particles as long as the
correlation range is reasonably small compared
with the dimension of the scattering volume.
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