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We derive reduced equations of motion for simple quantum systems which are strongly driven by an
external'field and are modulated stochastically by a coupling to a bath. In the derivation we make use of the
cumulant-expansion method of Kubo using two different time-ordering prescriptions, We demonstrate how the
choice of the ordering prescription is related to the statistical properties of the bath, once the cumulant
expansion is truncated. Our equations of motion are valid for arbitrary time scale for the motions of the bath
relative to those of the system, and they change smoothly from the static to the Markov (motional
narrowing) limit. As examples, we consider the problems of a randomly modulated and driven harmonic
oscillator and a modulated and damped two-level system. In the Markovian limit both ordering prescriptions
yield Bloch-type equations of motion; in general, . however, the driving and modulation interfere and the
different statistical properties of the bath, as determined by the two truncated ordering prescriptions, lead to
different results.

I. INTRODUCTION

The partial statistical description of physical
processes requires the derivation of appropriate
equations of motion (master equations) for a few
relevant variables (coordinates, operators, den-
sity-matrix elements) which are called the sys-
tem and which are correlated, hopefully weakly,
to the remaining variables called the bath. ' '

The problem is much simplified when there
exists a distinct time-scale separation between
the motions of the system and those of the bath.
When the characteristic time scale of the bath is
much faster than that of the system (Markovian
limit with no memory effects), it is possible to
solve the bath problem by treating the system
variables as parameters. Thereafter one solves
a reduced set of system equations, assuming that
the bath adjusts to the state of the system. In
such a case many of the known techniques (projec-
tion operators in I.iouville space, cumulant ex-
pansion, Langevin approach, etc. ) yield relatively
simple equations and such approaches are com-
monly used in various problems such as spin re-
laxation, ' pressure broadening of line shapes, '
semiclassical theories of chemical processes, '
and quantum optics. '

In the other extreme, labeled static, where the
bath is motionless it is possible to solve for the
motion of the system for 3. given configuration of
the bath and then average over the distribution of
bath states. As an example of a static analysis
consider any inhomogeneous broadening of line
shapes, ' for instance, Doppler broadening. Here,
the translational degrees of freedom of the ab-
sorber are the bath. At low frequency of colli-
sions the translational distribution is static and
the line shape may be represented as a convolu-

tion of the Doppler-free line shape and the Gaus-
sian distribution of. molecular frequencies. This
situation, however, changes when the time be-
tween collisions becomes sufficiently short com-
pared to the time scale for the driving of the sys-
tem. '

The time-scale separation is a powerful method
where applicable. There are many problems,
however, for which it may not be possible in gen-
eral to define the variables in such a way that a
time-scale separation is valid. Some of these are
(i) line-shape theories in all spectral ranges
(magnetic resonance, microwave, visible uv),
either in the gas phase or in condensed phases",
(ii) resonance fluorescence and Raman spectros-
copy including saturation and collisional effects";
(iii) multiphoton processes in large molecules";
(iv) theories of chemical reactions of polyatomic
molecules"; and (v) atom-surface scattering. "
In examples (i)-(iii) the system is typically a few
atomic or molecular levels, interacting with the
radiation field. The bath can be of various kinds,
such as (a) other molecules which collide with the
optically active molecule; (b) intramolecular inter-
actions which couple the various molecular modes
in large molecules; (c) electron-phonon interac-
tions in impurity spectra"; (d) dipolar interactions
in condensed phases. ' In example (iv) we may
choose for the system the few molecular modes
which are strongly correlated with the reaction
dynamics; the rest of the modes which perturb
the dynamics are considered to be the bath. Final-
ly, in example (v), the gas atom plus a few sur-
face atoms may be chosen to be the' system, and
the rest of the solid provides the bath.

A sufficient condition for a partial statistical
description to be useful is that the motions of the
system and the bath are weakly correlated. If
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that is not the case, one should solve self-con-
sistently for the system and the bath and the de-
scription becomes complicated, though feasible. '
This condition of weak correlation is often valid
when there is a time-scale separation, but it may
hold even when the time scales are comparable,
due to other reasons, for instance the presence
of many degrees of freedom in the bath. There is
the hope then that a simple description of the bath
in terms of a few stochastic properties may be
sufficient for a description of its effects on the
system.

Kubo' has shown how to solve line-shape prob-
lems in principle without relying on a time-scale
separation between the system and the bath, by
invoking a perturbative treatment for the inter-
action of the system with the radiation field. The
model considered by Kubo was a two-level system
driven by a weak field. The two-level frequency
was assumed to be randomly modulated by the
interaction with the bath, and to undergo a sta-
tionary Gaussian process. The line-shape func-
tion derived by Kubo goes smoothly from a Gaus-
sian in the static limit (slow motions of bath de-
grees of freedom) to a narrow l.orentzian in the
Markovian limit for fast motion of the bath de-
grees of freedom, also called fast modulation,
or the motional narrowing limit. Recently these
treatments were extended and applied to second-
order optical processes" (resonance fluorescence
with weak excitation fields), again with the re-
striction of low-order perturbation theory for the
field.

In this paper we make use of the cumulant ex-
pansion of Kubo to derive equations of motion for
simple quantum systems (two-level system, har-
monic oscillator) whose frequency undergoes a
random modulation and which are driven by a
strong field. In Sec. II we outline briefly the
cumulant-expansion method. '" Basically, this
method enables us to derive closed equations of
motion for a, selected set of degrees of freedom
which include a desired amount of information
regarding the behavior of the bath. This informa-
tion is expressed in terms of appropriate corre-
lation functions which can be calculated with sim-
ple dyna, mical models for the bath. Alterna, tively,
one can adopt a stochastic description of the bath.
The cumulant-expansion method provides us with
a large degree of flexibility, as we can a,dopt dif-
ferent time-ordering prescriptions. By carrying
out the cumulant expansion to infinite order, the
ordering becomes unimportant. However, once
the cumulant expansion is truncated at some order,
then the choice of the time ordering becomes cru-
cial, as it implies different choices of statistical
properties of the bath. Knowing the statistical

II. REDUCED EQUATIONS OF MOTION

We consider a set of a few degrees of freedom
(the system) coupled to other degrees of freedom
(the bath). ~e are interested in deriving a closed
set of equations of motion for the variables of the
system. '"""The total Hamiltonian is

H=Hs+Kz+H =Ho+H

where Hs, H~, and H' denote the Hamiltonian of
the system, of the bath, and the interaction be-
tween system and bath, respectively. We define
the appropriate Liouville operators

L = [H, ], I 8 = [He, ],
L'= [H', ], L„=[H„].

The total density matrix of the system plus the
bath obeys the Liouville equation

Bp—= -iLp.
Bt

(2)

We now change to the interaction representation,

p(f) eiLoip eiHotpe-iH&&i

L'(t)=e' 0'(L —L,)e ' 0'= [e' 0'(H H) ]-
to obtain

Bp -r-—=-iL p.
Bt

At time t= 0 the system and bath are assumed to
be uncorrelated, i.e. ,

p(0) = o(0)A(0), (6)

properties of the bath, we- should look for the
time-ordering method most convenient to de-
scribe these properties.

In Sec. III we consider the problem of the ran-
domly modulated and driven harmonic oscillator,
using two different ordering prescriptions, the
chronological-ordering prescription (COP) and a
partial-ordering prescription (POP). In Sec. IV
we treat the modulated and damped two-level sys-
tem using the same techniques.

. In the Markovian limit, both ordering prescrip-
tions result in the same "Bloch-type" equations
of motion. The effects of the bath may then be
incorporated by including a relaxation time T, in
the equations. In the general case, however, the
driving and modulation interfere and the different
statistical properties of the bath in the two order-
ing prescriptions lead to different solutions. The
models considered here are of direct applicability
to the physical problems (i)—(iii) above, but the
method can be applied also to other problems [e.g.,
(iv), (v)].



1990 S. MUKAMEI, I. OPPENHEIM, AND JOHN ROSS

where a and A are the system and bath density
matrices, respectively,
e

O =( p) =-
trbaib )O t

trsystem ~ ~

The formal solution for o(t) is

rr(t) = ( U(t, 0)) o(0),

where

U(t, o) =1+ PM„(t),

(7)

(8)

(9)

M„(t)= i"
~Jp PP

d72 ' dT
0

x'm„(r„r„.. . , r„) (10a)

m„(r„v'„.. . , r„)= ( L'(r, )L'(7,)
' ' ' L '(7„))

=trbatb~L (ri)L ( 2)''' L ('r.)j ~

(lob)

K(t) = QK„(t) .
n=1

(1lb)

Each E„ is a cumulant or connected average de-
fined in terms of m„m„. . . , m„; P is an ordering
prescription. The flexibility of this formulation
lies in our freedom to choose I' in many differ'ent
ways and then to define the appropriate cumulants
K„so as to satisfy Eq. (lla). Of course, any in
finite order-cumulant expansion gives the same
result. However, it is often convenient to con-
sider Gaussian processes (in which all cumulants
of order &2 vanish). Then it becomes important
to choose the right ordering for a particular prob-
lem.

We adopt here two different time-ordering pre-
scriptions. (i) A partial ordering prescription
(POP)"'"b' is designed to construct equations of
motion of the form

Equations (8) and (9) provide an expansion of o(t)
in the moments M„of the evolution operator (U).
We now make use of the cumulant expansion of
Kubo" to rewrite (U) in the form

where

= QK„(t)o(t),
n=1

(12a)

(U(t, 0)) -=exp~(t),
where

(1 la) K„(t)=—K„(t),

If we choose L, so that (L') = 0, we then have

(12b)

t Tl T2 T3
K4=iIf4 — d&, dr2 d73 Jl dv, [m (g „y )m (T y )+m (~ 7 )m (7 ~ )+m (~ T )m («)]

0 0 0 p

and transforming back to the Schrodinger picture for the system operators we get

Bg 0+ ~ ~~ st + ~ ~~~sta

n=l
(14)

To second order Eq. (14) assumes the form

t
(t.,e — de(t. ,(t)e ' '—t.,(t —e)e' ")) e,

0

where

(15)

L,( )=re' )2'L e ' R'. (16)

(ii) Another choice of time ordering is the chronological ordering prescription (COP), resulting in the
following reduced equations of motion for 0:

Tl
d71 d72

' ' ' t d 8„3, (t r1»t. . . t ra)o(ra) t'
0 0 0

(17)

where

1 t sa m2 t 03™3t 4( lt 2t 3t 4) 4 ™2(1t 2) 2( 3t 4) t

and in the Schrodinger picture

(18)
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g
oO n-1'r—= -iL,e+g d7, dr, ' ' ' dr„e '~~'e, (t, r„.. . , r„)e'~~'~o(r„).

n j 0 0 . 0
(19)

To second order Eq. (19) becomes

jL,o — t d7(L, ('t)e '~~" "L,(r))o(r) . (20)

We recall here that the COP expressions are iden-
tical to the results obtained by usi. ng Fano-Zwan-
zig-Mori'"'" projection operators in I.iouville
space. They arise naturally, as the usual formal
solution of the Liouville equation contains only
chronologically ordered operators, 'The POP
arises from resummation of the COP expressions;
it leads to a simpler differential equation [(14)
rather than (19)]and it enables us to treat more
conveniently various types of statistical approxi-
mations to the motion of bath degrees of freedom.
Going to nth order in the POP cumulant expansion
is equivalent to assuming that a11 the cumulants
E

y
K 2, ~ ~ ~ are zero. This results in express-

ing all the moments higher than the nth in terms
of the n first moments [see Eq. (13)]. On the other
hand, an nth-order description using the COP im-
plies that 6„„,8 „.. . [Eq. (18)j vanish. This
amounts to assuming different statistical prop-
erties of the bath. Thus the appropriate expan-
sion should be adopted for the problem at hand.
This issue is discussed in Secs. III and IV, where
we compare the results for simple, model systems
using Eqs. (15) and (20).

III. RANDOM FREQUENCY MODULATION OF A DRIVEN

HARMONIC OSCILLATOR

We now present a model which is of interest
to the problem of multiphoton molecular excita-
tions in the infrared. " Various molecules (e.g. ,
SF„BC1„.. .) can absorb many (30—40) quanta
of a high-power CO, laser (power densities of
MW jcm') and dissociate under collision-free
conditions. This process is of interest as a pos-
sible way of inducing laser-specific chemistry,
and as a tool for investigating intramolecular
interactions and reaction-rate theories. 'The
basic molecular model" is that of a molecule
having one active mode quasiresonant with a
strong ir electromagnetic field. In order to be
able to evaluate the amount of energy absorbed by
the molecule and its distribution among the mole-
cules subject to a given laser pulse, the following
points should be considered: (i) the states pre-
pared by the radiation field are not molecular
eigenstates; (ii) the density of molecula, r states
is a rapidly increasing function of energy. As a
result of these facts, the radiatively active mo-

and

(d=CO +5M,

( 4)) = (d

(21a)

(21b)

(2lc)

The absorption line shape of the oscillator for this
model has been calculated for a weakly driving
electromagnetic field by Kubo', who assumed that
the stationary distribution of the stochastic vari-
able 5(d is a Gaussian. When the bath motions
are infinitely slow (I' «g static limit), the ab-
sorption spectrum just reflects the frequency
distribution of the oscillator and is a Gaussian

lecular states arebeing perturbed in the course of the
molecular driving by the rest of the states. The ef-
fects of these perturbations may be classified into two
categories: (a) First, there are dephasing (T2) ef-

fectss

due to the random force exerted on the active
states, which do not bring about relaxation of the
active states. These perturbations destroy the
coherent nature of the molecular driving and
broaden the molecular levels, which results in
a decrease in the multiphoton absorption cross
section. T, is expected to be of the order of the
spread in the molecular frequencies, which is the
time required for various components tobecome out
of phase. (b) Second, there occur T, processes, in-
volving relaxation of the energy into the other modes.
The dephasing effects are expected to be dominant in
the broadening, and they affect the amount of en-
ergy absorbed as well as the distribution of energy
among different moleeules. The T, processes,
on the other hand, determine the distribution of
energy within the molecule among the various
modes.

In the present model we address ourselves to
the dephasing problem. We thus assume that (i)
we have an active molecular mode which is taken
to be a harmonic oscillator; this mode and the
radiation field are the system; and (ii) the rest
of the molecular states (other than the active
mode) are the bath degrees of freedom and are
assumed to modulate stochastically the frequency
of the -active oscillator. Classically the bath may
be viewed as a collection of oscillators, with ran-
dom initial phases, exerting a random force on a
selected oscillator. The effect of the bath on the
system is taken into account by letting the oscil-
lator frequency ~ be a random process with char-
acteristic variance 5 and correlation time I ',
l.e. )
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of width g. However, in the Ma, rkovian limit
F»g the motional narrowing condition is obeyed
and the spectrum becomes a Lorentzian with
characteristic width g'/I'. We now solve this
problem for arbitrary field strength and for ar-
bitrary time scales of the bath.

Denoting by a~ (a) the creation (annihilation)
operators for the oscillator, we have for its
Ha, miltonian'

Ii= e,a~a+ 5(d(t)a~a+ 2Q cos(3)zt(a+ a~), (22)

where xl. , close to ~„ is the frequency of an ex-
ternal driving field. The Heisenberg equations for
motion for a and a~a a.re

and where

4 +40 (29e)

y, (t)= — +, (1 —e ")+,P,(t)), (30e)

y, (t)= —(1 —a ")——F,(t)+v'P, (t)), (300)
g2Q

E,(t) = I' dr e 'cosnr
J0

Substituting (29c), (29d), and (2lc) in (29b) and
integrating we obtain the results

da
i(ur—+ 5(d)a —2iQ cos&u~t

dt L

I'(1 —cosnte r')+ n sinnte r'
~2+ P2 (30c)

da a
dt

= -4GIm cos~~ta.

We can now invoke the rotating-wave approxima-
tion (RWA) which implies neglecting highly oscil-
latory terms jexp(+2te~t)] in the equations. These
terms do not contribute to the time evolution as
long as D«e~. Denoting

a= ae'"&t, (24)

t
E,(t)= I'

", dr e r'sinn'
0

n(l —e ' cosnt) —I' sinnte r'

The solution of Eq. (29a) is

(a) = e ' ' exp — dv y, (v)) (a(0))
Pp

da—= -zAa —z5+a —zQ,
cft

da'a
dt

= -2QIma

6= (d —CO

(25)

(26)

t
d7 +2 7 +zQ BXp

0

x exp — yj T dT

If, however, we use the chronological time
ordering, we get (see Appendix A)

d (E) d (a'a)
dt dt (28)

The algebraic manipulations are carried out in
Appendix A. We give only the final results for
d(a)/dt. Using first the partial time-ordering
method, we have

(29a)

Using the formulation presented in Sec. II, we
proceed to derive equations of motion for the quan-
tities (a), (a~a), where ( ~ ~ ) denotes averaging
over the stochastic part. 'The quantity which is
of interest to us is the rate of energy absorption
by the oscillator which is

d(a&
dt

= -it).(a) i Q — dr(5 ur(t) 5—~(r ))

where

x (t'(t —r) (a(7)), (32a)

. 6+@p(t-v)= exp -t (t —v))2Q 2

. 4 —n
2Q

exp —1 (t —v))2

(32b)

The COI3 integro-differential equation (32a) may be
converted to a system of ordinary linear differen-
ti.al equations with the substitution

where

(29b)

(29c)

(t),(y) = -Q(h —td, cosnr+in i snvn) /'n,

y;(t)= J «(»(t)ee(t v))0;(v), -
0

(t,(r) = [6'+ 2Q'(1+ cosnr)]/n',

t
(m) =g' dT e """ted, (t —r)(a(r)),

0

t
(e)=d' f ttv e'" 'tv (1 v)(a(v)),

0

and we have

(33)
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d(a) = -is(a) -(m)+(n) —in,
dt

d(m), a+ai(
) p . a+a)(

2Q 2

Equations (34a) can be solved with standard
techniques mith the initial conditions

(34a)

of the bath motion and thus the damping term is
not affected by the driving. ""

The solution for the line shape is in this case
t

(a) = -e() f de'exp ( (a—(l e')]
0

x exp[-(g'/I") (t —T')],

exp[(-in. -g'/r)t] —1
a) =in

(a(0)) = a, , (m(0)) = (n(0)) = 0 . (34b)

Our general results, i.e., Eq. (31) and the solu-
tions of (34a), can be substituted into Eq. (28) to
give the rate of energy absorption by the oscillator
from the field. Let us consider nom several
limiting cases.

(i) The Mahkovian limit (i.e. , fast modula-tion
oh motional-nahhou)ing limit). In this limit the
bath is assumed to have an extremely short cor-
relation time, much shorter than any time scale
of the system, i.e. , I'»g, o. (g'/I' finite). For
this condition, one can carry the integrations in
Eq. (29b) to infinity, which implies no change of
the system during the correlation time. In the
POP we get

,
— -in/(i~+ g2/r),

d(z) ., g'/r
-2nIm(a) = 2n'

dt t~ dl 6 + g /I (42)

We see that in this limit the line shape becomes
Lorentzian and that no saturation is observed
(i.e. , the rate of energy absorption is always pro-
portional to the light intensity n').

(ii) The line shape in a u)eak Chiving field. In
order to get an expression for the line shape in a
weak driving field, we have to solve for (a) to
lowest order in Q. In addition, we have to smitch
the field adiabatically. We shall thus use the fol-
lowing linear-response expression for the line
shape'.

y, —I dT (5u)(t)6(d(t —T)), y, - 0,
0

whereas in the COP we have

(36)

(a(T)a(O)&I(n) = Jt «COSSET
( ( )2)

where

(a(T)a(0)) /(a(0)')

(43)

d(a) = -ia(a) —I"(a) —in(a), (38)

where

-t
dv 5cot 5&r ar

0

de(I!a(e)ata(l —e))) (a(l)) . (37)
0

Thus, in this limit, both the COP and POP equa-
tions of motion reduce to the form

(
(a(7 )a(0))

rod
«(y)Tl

(44)
= exp ——(e "'+ rT —1)p2

Substitution of (44) in (43) results in

is the zero-field correlation function for the po-
larization in the interaction representation. It is
obtained as the solution for (a) [Eq. (29) or (34)]
by setting n = 0, 6= 0, (a(0)) = l.

Using the POP me get

d7' 5v t 5(d t-v
0

(39)

OO 2
l(a)= de eaeae exp —'d, (e '+ pe ()) .

0
(45)

and for the particular form (21c) we get

r =g'/r (4o)

Equation (38) contains a dephasing term -I'(a)
which is the net result of the rapid-frequency fluc-
tuations. Thus we find that in this limit the equa-
tion of motion contains additive terms of driving
and dephasing. The reason for the additivity is
that the bath motions are so rapid that no signifi-
cant driving occurs during the correlation time

Equation (45) reduces in the Markovian limit
I'»g, n to the Lorentzian [Eq. (42)J, whereas
in the reverse, static limit (or slow modulation,
I' «g) we get

(46)

I(t)d) = dT COSt)T e

)
(2&/g2) il 2e-d t ag

Turning now to the COP, we have, setting 0= 0,
n, =o in Eq. (34a),
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d &a) d &m)= —&m&, =g'&a) —I'&m),

&a)
0 (y ex t y exp')0

X» —X

where

X, =-,' [-I"+ (I' —4g'}'~'].

(49a)

(49b}

&a(i)a(0)) X,e'-' —x e"'
2

~ ~
C0

~

~

~~ »
~I

~t

~
~

~

I1
~

~ ~ t
I

&a(O)&'

As for the line shape, in the Markovian limit
I'»5 we have

(
&a(r)a(0)) &,2( r ),

&a(0} & cop

(50)

(51)

and the line shape is again Lorentzian (same as
POP). In the other limit, g» I', the line shape
becomes oscillatory

X, = —,
' (-I"a 2ig),

= —e r '~'(—,I' sing 7'+g cosgr),
&a(0) ) coz

(52)

(53)
+00

I(4)= — d7' e r'~'(2I sings cosn7.
& "o

+gcosgT' cosn7') . (54)

We note that the two correlation functions (44) and

(50) show very different behavior. In the narrowing
limit I'» g they both reduce to exponential behavior,
varyingas exp[-(g'/I')t]for COP and POP. However,
the POP goes smoothly into a Gaussian, exp(-g'i2],
in the static limit (I'«g), whereas the COP cor-
relation function becomes oscillatory (as X, be-
comes complex) when g)1". This difference is due
to the fact that the two "Gaussian" processes de-
fined by COP and POP are different. In fact, they
have the same first three moments but from there
on they differ.

A "COP Gaussian" has the property

m,„=(m, )" . (55)

A "POP Gaussian" has a Gaussian singlet distri-
bution

P'"((o)- exp( —(u'/g') (56)

From this example we see that we can introduce
a variety of different "Gaussian processes" by
truncating the various types of cumulant expan-

or alternatively

&a&+ I &a&+g'&a& = 0.
The solution of Eq. (48) with the initial conditions
&a(0)& = a„&a(0))= 0 is

d&a) . g' -r~
dt I'—i&-—(1-e ) &a) —iQ. (57a)

The term 1 —e ~' switches on the damping so that
if I' » 0, 4, we again get the Lorentzian line
shape; but when I' is comparable to 6, 0 the line
shape is modified. In the COP we obtain, by ex-
panding (34a) to lowest order in 0

d &a)

dt
= —ib, &a& —&m& —iA,

(57b)
d

=g'&a& —(I'+ ia) &m),

ol

&a) + (I'+ 2i b ) &a) + (iaI'+ g' a') &a&—= 0 . (58)

In concluding this section we note that we have
been able to derive and solve equations of motion
for a driven harmonic oscillator in a strong elec-
tromagnetic field whose frequency undergoes a
stationary Gaussian process, by using two time-
ordering methods, CQP and PQP, in the cumulant
expansion. In the weak-field limit we regain the
expression of Kubo. We note that in the narrowing
limit the absorption is proportional to the field in-
tensity and no nonlinear effects in the field are
found. The solution for the case of bath correla-
tion time comparable to that of the system con-
tains, however, nonlinear terms. This is reason-
able: the fluctuations in the molecular levels
destroy the harmonic nature of the oscillator when
these fluctuations are on a time scale comparable

sions, corresponding to different time ordering,
at second order. If we want the Gaussian process
to have a Gaussian stationary distribution, then
we must use the PQP. This point clarifies a re-
cent attempt by Tokuyama and Mori" to establish
the relation between the Zwanzig-Mori-Pano'"'"
formulation and the frequency modulations of Kubo.
Tokuyama and Mori started from an equation of
motion of the form (19) (with memory) and inverted
it to obtain an equation which looked formally like
(12). However, their expressions for K„ involve
the operators &U) and &U& ', which require knowl-
edge of the full dynamics. Our analysis shows
that the operators of Mori and the line-shape for-
mulation of Kubo correspond simply to the COP
and PQP of the same cumulant expansion, and
Eqs. (13) and (18) provide a simple comparison
of the operators in both cases.

(iii) Line shape in the sudden limit. Another
interesting limit is one in which the field is weak
(0 «a) and we are applying a pulse (sudden rather
than adiabatic switching). In this case we get, us-
ing the POP, by expanding (29a) to lowest order
in Q,
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to that of the electromagnetic driving field (part
of the system).

IV. RANDOM MODULATION OF A DRIVEN TWO-LEVEL

SYSTEM

g,(r) = (6'+ 4Q' cosnr)/n',
Qa . 0

Q (r) = (1 —cosnr)+ i —sinnr .
Q Q

(61e)

The driven two-level system is a basic model
in quantum optics. ' 'The line-shape problem in
the Markovian limit has been treated by Karplus
and Schwinger2x and van Vleck and Weisskopf.
The basic feature in which the solution differs
from the previous one of the harmonic oscillator
is in the appearance of saturation. The solution
of this model for perturbations with ar'bitrary
time scale is of interest for line-shape prob-
lems, ""'pressure broadening, ' radiative col-
lisions, "and multiphoton processes. " The Ham-
iltonian is'

"=~. le&&~l+ ~~ I»&t I+ 5~«) I»&& I

+ 2Q cosmist( I
a) & I) I+

I
0) &a

I ), (59)

where E, and Eb are the energies of the two states
la) and»; 5(d(t). is a stochastic random variable.
In the rotating-wave approximation, the equations
of motion for the density matrix are'

o xs a column vector whose three components are
o„—o», o,b, and ob, . Assuming

&5(o(t)6(o(t r)) =g'e "',
we get

(62)

402 . g~
y, (r)= —,(1-e ")+ . E,(r) —,

n n I (68}

y,(r)=, (1 —e ') —,E,(r)+i —E,(r) —,

"o o 0

where E,(7) and E,(r) were defined in Eqs. (80c)
and (30d).

Turning now to the COP, we get the following
reduced equation of motion (see Appendix B):

dt 4()
i&,o--g' ' dr y(t —r)o(r)e r" ", (64a)

where

p = -2iQ(p z
—p o P(t —r)= 0 y, (t —7') y, (t —r)

'-o y,(f-r) y,*(t-r)
(64b)

—p„= -iQp, —id p„-i +5(t)p„,

—p„=iQp, +imp„+ i5(d(t)p„,dt "'

(60a.)
4&' cosh, (t —r)+ 8Q'[1+ cos&(t —r )]

~ +4Q'

where

P,=P —P(,( P (, =P z exP( z(dl,f)—
p„=p„.exp(i(d~t), 4= (d~ —(E, —E,) . (60b)

dt
—o = -zA o —I'(t)o (61a,)

where

In Appendix 8 we carry out the algebraic mmipu-
lations for obtaining the equations of motion for
the reduced-density matrix. When we use the
POP ordering the result is

-2i —sink(t —r),
(

y,(t —r) = (8Q'/n') [cosh(t —r) —1].

(64c)

do'

dt
—= -zA (y-ro (65a)

where

0 0 0

We make the following remarks regarding these
results: (i) In the narrowing limit I'»g, Q both
the POP and COP results reduce to the Bloch
equations:

0 -2iQ 2iQ

-zn -z~ 0 (61b)
r= 0 1~ 0

o o r,
and where

(65b)

0 0

(61c)
(65c)r= y,(f) y, (i)

y.*(f) 0 y, (i)„

(61d)y(t) fdic(5~(T)a,.w(0=))p(r), ,.
0

(ii) In the weak-field limit the line shape for this
model coincides with that of the harmonic oscilla-
tor (iii) In t'h. e general case (strong field, non-
Markovian} we have to solve numerically Eqs.
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(61a) or (64a) to get the line shape. (iv) The POP
and COP correspond here to different statistical

. properties of the bath, as was discussed in detail
in Sec. III.

V. CONCLUDING. REMARKS

APPENDIX A: DERIVATION OF THE EQUATIONS

OF MOTION FOR THE HARMONIC OSCILLATOR

Equation (25) is inhomogeneous. Let us first
introduce a second variable b(t) = 1'and rewrite
it as

In this paper we have studied the role of the
choice of the ordering prescription in the deriva-
tion of master equations for strongly driven quan-
tum systems. The general way to proceed in ac-
tual problems is as follows: we start with a
stochastic equation for the system of interest in
which some part of the Hamiltonian is taken to be
randomly fluctuating (due to the degrees of free-
dom of the bath which we do not consider ex-
plicitly). The statistical properties of the ran-
domly fluctuating (stochastic) part (i.e. , its cor-
relation functions) should be evaluated with some
simple model for the bath. The examples con-
sidered here (namely, random frequency shifts
which behave as a stationary Gaussian process)
were first used in magnetic resonance by Ander-
son and Weiss" to interpret the motional narrow-
ing in liquids observed by Bloembergen, Purcell,
and Pound. " In these systems, it is reasonable
to assume a Gaussian random process for 15m

since the frequency shifts 5u due to dipolar inter-
actions are sums of many small contributions from
all neighbors.

In the derivation of the master equation for this
problem, if we were to use the COP, we must ~

take the cumulant expansion [Eq. (19)] to infinite
order as none of the O„vanish. However, using
the POP [Eq. (12)), we have K„=0, n ~ 3 for this
model and thus a second-order cumulant expansion
is sufficient. In general, for Gaussian processes,
if the pertinent time-dependent bath quantities cou-
pling to the system are functions (e.g. , momentum)
of commuting operators, we should use the POP;
if the bath quantities are noncommuting operators
(e.g. , angular momentum) we should use COP.

The two models considered here demonstrate
how to solve a problem of a strongly driven sys-
tem coupled to a bath with arbitrary time scale.
'The models are of direct interest for the problems
of line shapes and multiphoton molecular pro-
cesses where intramolecular perturbations play
an important role. The method used here and the
comparison of the two ordering prescriptions may
be of use for a variety of other quantum statistical
problems which have common formal features.

Q
= -iA 0

—jA' (Al)

where

0 0
(A2)

5(d 0

0 0
(As)

a(0) = a, , b(0) = 1 . (A4)

The form (Al) is equivalent to Eq. (5) and we can
now directly apply the results of Sec. II.

(i) Partial ordering (POP). Utilizing Eq. (15)
we can write

d (a) . (a)
0

d7 (5(u(t)5(d(t —7)) y(T), (A5)
&b&

where

10 10
G(7) G(-~), (A6)

0 0 0 0

G(r) = e (A7)

(@+ ~)e fE+r (E- ~) jE-
G22(r) =

g( feE v e-iE v)
G„(7)=

(AS)

G„(7)= 0,
where

G(v) can be evaluated using Green's-function
technique (or diagonalization of A, ). The result is

v, + i'Q V r. - -iEEe —Ee
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(g2+ 4il2)1/2

Substituting (As) in (A6) results in

(A9)
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0
(f) (T) =—

2 [6(1—coscir)+ 'L,Q slnciT] ~

(A10)

b.'+ 2Q2(l+cosnT) b, '+ 2Q'(1+ cosa.T)
A'+ 4Q' n'

we define the transformation

~+) -sin-'8 cos-'8 ~a&

cos-,'8 sin-,'8 ib&

(B4)

d (a& .A (a&

(b& (b&

~t
d7 (5ur(t)bur (7 )&

0

Substitution of (A10) in (A5) results in Eq. (29).
(ii) Chronological ordering (COP). Making use

of Eq. (20), we have

where

2Q
sin8= —,

Q
cos8= —,

(B5)
(y —(g2~ 4Q2)1/2 Ek 4+@

2

The appropriate transformation in Liouville space
is

where

0 1 0j(t 7) = G(t - r) (A12)

p++ —p

p+

-cos 8 -sin8

-2 sin 8 -sin p 8

-asin8 cos'& 8

Paa —Pbb

-Sln8

cos &8

-sin~~ 8

,

0 0 0 0,
and G is given by (A8). Substituting (A12) and
(A8) in (A11) results in Eq. (32a).

. APPENDIX B: DERIVATION OF THE EQUATIONS
OF MOTION FOR THE TWO-LEVEL SYSTEM

We start with Eqs. (60a); let us write them in
a matrix form

Pab

Pba

so that in the new representation we have

1 0 0

eiAox 0 ~ 0

cia!Y

(B6)

(B'r)

8—p= —iA pBt (B1)

A. =AD+A ',
where

0 0 0

(B2)

A' = 0 5+(t) 0

0 0 -5 &u(t)

(Bs)

For evaluating the reduced equations of motion

where p is a vector whose components are p„p,b,
and p„,. We first separate 4 into the fluctuating
part (A') and the rest (A, )

In the POP we have to evaluate the following pro-
duct of matrices:

A'(t}Se '"O'SA'(t —r)Se'"0 S,
where S is the transformation matrix defined in
(B6) and e'"0' is given by (BV). Carrying out this
multiplication and substitution in Eq. (15) results
in Eq. (6la).

For the COP we have to evaluate the following
product:

A'(t)S exp[-tA, (t —r )]SA'(r),

and substitute in Eq. (20), which results in Eq.
(64a).
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