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Rydberg states in strong electric and magnetic fields
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We have previously presented a semiclassical treatment of highly excited atoms in a magnetic field (for
application to an analysis of the observed Zeeman eA'ect in the Bal absorption spectrum) and a similar
treatment of a one-dimensional Coulomb field with an electric field in the same direction (of interest for the
study of far-infrared emission from Si inversion layers, and also for the discussion of electrons outside a free
surface of liquid helium). Since the latter experiment has also been carried out in the presence of a magnetic
field, an. analysis is now presented, based on the simultaneous presence of both electric and magnetic fields,
which is applicable to low-lying as well as highly excited states.

For atomic electrons in high Rydberg states,
the influence of a typical laboratory-size field of
-10 G can be as string as the Coulomb field. In

fact, the Ba spectrum was observed under such
circumstances and it was found' that the magnetic
field 8 px'odueed a pattern of equally spaced lines
with a separation —,.'S+ (where ~=eB/mc). We
have already given a semiclassical explanation of
this result. " Recently, our semiclassical method
was applied to electric field effects ' in one-
dimensional hydrogenic atoms, which are of in-
terest for the analysis of various recent experi-
ments —in particular, the study of far-infrared
emission from Si inversion levels' ' and the
spectra, of electron states outside liquid helium
in the presence of an electric field. ~' Since the
latter experiments have also been carried out in
the pre-sence of a magnetic field, "we are thus
motivated to extend our previous work to the case
where both electric and magnetic fields are si-
multaneously present. Brief discussions of this
problem already exist"" but here we wish to pre-
sent a more detailed analysis. Our results will
be applicable to both low-lying and highly excited

)states.
For definiteness, we will, first of all, consider

that the Coulomb potential is three-dimensional.
However, as we will later point out, the results
we obtain hold also, with minor modifications, for
the case of the one-dimensional Coulomb potential.

The appropriate Hamiltonian for a hydrogenic
atom in magnetic (B=B,) and electric (g=h„)
fields may be written as

I

1 e ' ze'P+ —A. — +e8x,
C

where P, m, and -e denote the momentum, mass,
and charge of the electron.

Even in the case of just two of these fields, the
Schrodinger equation cannot be solved analyti-
cally. Of course, if one of the fields dominates

and the corresponding radius of the "true circular
orbit" is

R =(2nB /B) ~ a, ,

where

(u = eB/mc,

is the cyclotron frequency, ao is the Bohr radius,
and

B,= (m'ce'/—h') =2.350x10' G. (5)

Since we are interested in treating a range of
total energies E, we will assume that the magne-
tic field either dominates or is always at least
about as strong as the other fields (while em-
phasizing that, in situations where the other fields
are dominant, one may modify the procedure in
an obvious way, as we shall see later). Thus, we
are led to write the total energy as

where E is given in Eq. (2),

E, = ze'(1/r) = ze'/B-—
1E„=eh(x)= ~ ~3-- ehB

then perturbation theory may be used. However,
we are interested in treating situations'where all
of these fields may be, more or less, equally
important. For this purpose, we will use the
semiclassical approach outlined in Ref. 2, be-
cause of its success in treating the highly excited
states in Ba (Hefs. 2 and 3) (where we had h =0)
and the spectra outside helium in the presence of
an electric field ' (where we had B=0).

In the ease of a pure magnetic field, " the energy,
E say, is given by

E =n6(u (n=0, 1, 2, . . . ),
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and where the + refers to the sign of x.. Noting
that

6E 1= —(z.——,z, +-,z, ) .
6n n (17a)

and

8 /Qo = If 4l(B/Bo) (9) Next, using Eq. (6) to eliminate Z„wefinally ob-
tain

e8a, = (e '/a, )(8/8, ),
where

(10) 6E =n (2z +z~ —pz) ~

6n

It follows that, for E=O,

(17b)

8 —= e/a', = 5.142 x10' V/cm, (11)
I

we use Eqs. (3) and (6)-(8), to obtain [in a.u. (Ref.
14), where e =m = 8' = 1 so that a, = 1 and 8, = 1]

z = ~[a n-'~2m(2B/B )-'i'

y pg~&~(2 )~t'28(B/B )
~i ] (12)

It is now convenient to define "critical" fields
/

(13)

8 = -'3'~'~'h = 0.43~'g .c (14)

As we shall see later, in the case where n = 1,
B„and8, a.re approximately the same a,s 8* and
8*, respectively, [see Eqs. (37) and (39)], where
B* (8*) denotes the value for which the magnetic
(electric) field becomes a,s dominant as the Cou-
lomb field.

It follows that the energy ean be written in the
simple form

z=a~[n-n "(B/B,)-"
+ ~'i (8/8. )(B/B, ) 'i']. (15)

=- @~[I+2n 'i'(B/B )
-"—-

en C.-.' -"(8/8, )(B/B.)-"].
Hence

(16)

This is one of our key results. Of course, the
last two terms on the right-hand side of Eq. (15)
are off by unknown numerical factors but this is
not of primary interest to us. What is of interest
is the spacing between energy levels (particularly
at Z = 0) and this is determined essentially by the
power dependence of n in the various terms. In
fact, in the case of E~ =0, this was verified by
Garstang" who obtained a, different numerical fac-
tor than us'' for the n ' ' term but still obtained
the same energy spacing of & 6o) for the Ba spec-
trum in the region of E=0. In fact, we suggest
that the simplest way to interpret our results is
to take Eq. (15) for Z as being exact in form, but
where the critical fields, as defined in Eqs. (13)
and (14) are uncertain by numerical factors (which
we expect are not too much different from unity).

From Eq. (15) it immediately follows that the
energy spacing is given by

6E 3 2
(1'1c)

ZF = —,'(3vn8)'i' (n=1, 2, 3, . . .). (18)

Thus, in the case where all three fields are pre-
sent but with the electric field either dominant or
at least about as strong as the other fields, we
may use Eq. (6) again, with Zz given by Eq. (18)
and with

2gx/3
Eg —— —

( )Q/3

and

E(2) +E(l)
m m m

8 & (& +T )+i~(Ls)

3vz) h8- l + &u(L
1 B 1

16 Bo , 2
(20)

where the superscripts 1 and 2 on E indicate the
terms linear and quadratic in B and, where L,, is
the z component of the angular momentum opera-
tor (f'or the particular case of highly excited
states —large n values —E ' is often negligible
compared to Z ' ). It follows that

This formula gives a generalization of our pre-
vious result" for the energy spacing in the
region E =0. It will be noticed that, for positive
(negative) values of x8, the effect of the electric
field is to increase (decrease) the energy spacing
in the region of E =0. An experimental verifica-
tion of this prediction would be of interest.

Turning now to the ease of the one-dimensional
Coulomb potential, the results will be exactly the
same, except that Eq. (7) will be modified to re-
flect the fact that (x ') = +3 'i'R '. However, in
the case of the spectra of electron states outside
liquid helium, for example, x&0 is the only situa-
tion of interest. So, from now on, we will assume
that x&0 and thus we can use all the above results
without essential modification.

It is also of interest to consider the one-dimen-
sional problem in the ease where the electric field
generally dominates. In the case of a pure electric
field, the energy levels are given by" (for x& 0)
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1 (3pg)2/3 ~2/3 g-1/3 -2/3
(3w)'/3

2

(3 )2/3 g-4/3 4/3 4 E(l) (2 1 )
8

E= ——n — —~-n —~ — n +Ez, 482 2 B '
4 ()

z z BQ

—= —2z'[n ' —(g/g,")n —(8/84 ) n ]+E ', (31)

We will now introduce critical fields B,' and E,'
in such a way that they are of the same order as '

8, and E, (and also of the same order as 8," and

E,", to be introduced below for the case where the
Coulomb field generally dominates). We are thus
led to choose

where

B"—= 2 B =1.4BC C '
C ~

$11 —3 1/2g ~ 0 58/

In addition

(32)

(33)

B,'—= B, (22)
—= —(—2E, + 2E~+ 4E ' ), (34)

g'=—(311)' 2 ' z g ~0.53$ =0 23z g (23)

so that, using Eq. (6) to eliminate, say E~'), we
obtain

Hence, using the fact that 2" '(311) ' '=0.33, we
may write Eq. (21) in the form

—[E + —,E ——,E)+—, E ].5E - 6. . . ()
c, . F fn (35)

E =-,'(311$)' '[n' ' —0.33(g/g,') ' '

+ (8/8i ) (g/gi) -4/3] 4 E(1) (24)

Hence, for E=O,
6E 3z2l 1 EF 2 E'1
en n' 3 Z, 3 E,

(36)

We now return to Eq. (21) to evaluate energy
spacings between levels of the same (I,&. Hence,
we obtain

On n
(25)

Next, using Eq. (6) to eliminate E„weobtain

(26)

Hence, for E=O,

E, = -z '/2)2' (n = 1, 2, 3, . . . ) . (26)

Thus, in the case where all three fields are pre-
sent but with the Coulomb field either dominant
or at least about as strong as the other fields, we

may use Eq. (6) again, with E, given by Eq. (28)
and with

(29)

E = —.'(u'&x'+y'&+E'")

4+ E(Z) (30)

Hence

Finally, we consider the one-dimensional prob-
lem in the case where the Coulomb field generally
dominates. In the case of a pure Coulomb field,
the energy levels are given by" (foi x &o)

g*-=-,'n 'z'=g,"n ', (37)

as we had previously noted. In the case of liquid
helium, for which the appropriate value of z is"'
7~10 ', this corresponds to a value of

/*=44121 ' V/cm,

so that for n = 1, 2, 3 we have that 8*= 441, 27.5,
and 5.5 V/cm, respectively, which in turn implies
that the present experiments' which use fields as
high as 300 V/cm are already in the strong-elec-
tric-field region. In fact semiclassical analysis
in the latter region was shown to give agreement
with the experimental results, in the case of
B=O.

We turn now to the liquid-helium problem in the
presence of a magnetic field. From Eq. (31), we
see that the magnetic field dominates over the
Coulomb field for B values greater than about

The question of which of the variety of results
we have obtained should be used in a particular
instance is answered simply from a knowledge of
the parameters appropriate to the particular prob-
lem being considered. As already noted, in the
case of h =0, Eq. (17c) gives the —,'51d spacing, at
E = 0, observed by Garton and Tomkins' for the Ba
spectrum in B fields = 104 G. It would be of in-
terest to extend this work to include the presence
of an electric field.

In the case where B=O, the appropriate formulas
to be used are either Eqs. (21)-(27) or (31)—(36)
depending on whether the electric or Coulomb
fields dominate. From an examination of Eq (31), .
we see that the electric field dominates over the
Coulomb field for 8 values greater than about
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2-1/2n -3&2P + -3 JPn0 c. '

&+=8.5x104n ' G,
so that for n =1, 2, 3 we have that &*=8.5
x104, 1.1x10~, and 3.1x10' G, respectively.

(40)

In the case of liquid helium, this corresponds to
a value of

Thus, we see that the existing experiments, "
which use fields as high as 2 kG, are close to the
strong-magnetic-field region. Since much' higher
fields than 2 kG are now available for laboratory
experiments, we urge their use for the liquid-
helium experiment, in anticipation that phenomena
as fascinating as those occurring in the Ba spec-
trum will manifest themselves.
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