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The theoretical results are presented here in detail for the atomic device proposed earlier by the author.
This device absorbs energy. from a continuous radiation source and stores some of it with atoms in metastable
states for a long time without any loss. At a later time, when the energy is required, the system can be
"triggered" by an external perturbing field to release the energy in the form of a strong pulse of radiation.

I. INTRODUCTION II. ENERGY-TRAPPING MECHAMSM

In an earlier'I etter' the author has proposed an
atomic device for trapping energy from continuous
radiation. Only a brief introduction to the device
and its working mechanism was given there. The
purpose of this paper is to present a complete
theoretical analysis of the device and to discuss its.
possible applications.

The device consists of a three-level atomic gas'
with two excited states. One of the excited states
does not decay to the ground state through emiss-
ion of radiation (we shall consider only single-
photon processes). The atomic gas is irradiated
by continuous radiation in the presence of an
external perturbing field' which couples the two
excited states. The perturbation causes the atoms
to be populated in both the upper states after ab-
sorbing the energy form the incident radiation.
These atoms at once start emitting radiation
through a resonance-fluorescence process. 4 But,
before this process is complete, the perturbation
field is turned off, which leaves the atom
with a finite probability of being 'in the nondecaying
(metastable) state. Thus, a finite amount of energy
from the incident radiation has been txaPped with
atoms in their metastable states, This mechanism
is discussed in Sec. II in detail for an exponentially
decaying field. '

The trapped energy can be stored for a long time
(as long as the lifetime of the metastable state) and
can be released at any time in the form of radia-
tion by tnggering the device through a static per-
turbation w'hich again couples the two excited
states. This is further discussed in Sec. III. Since
the total trapped energy is emitted in a very short
time, the released pulse is expected to have huge
power. This aspect along wii;h some df the pos-
sible applications is discussed in Sec. IV.

j

Here we want to find the probability of an atom
being in the nondecaying excited state after absorb-
ing the energy from the incident radiation in the
presence of a short-lived coupling field. This is
-achieved by solving the Schrodinger equation of
motion for the system. Initially, the atom is con-
sidered to be in the ground state e) and a beam
of continuous radiation is incident on it. The two
excited states Ia) and Ib), with Ia) the upper one,
are coupled by an external time-dependent po-
tential of the form

V(r, t)= V(r)e ", t~0 (1)
where V(r) depends on the nature of the coupling
field. For example, in the case of an electric
field, this would represent the electric-dipole in-
'teraction.

The excited state
I b) is assumed to be a non-

decaying (metastable) state. No coupling is con-
sidered between the ground state and the excited
states through the perturbation field.

The Schrodinger equation of motion for the
system is

za —„ ly(t)& = [0,+a+ v(t) j Iy(t)&,
8

where H, is the unpertrubed Hamiltonian of the
atom and the radiation field, and II represerits the
interaction of the atom with the radiation field.
This interaction, in the absence of multiphoton
processes, consists of only A p terms, ' where
A represents the vector potential of the radiation
field and p is the linear momentum of the elec-
tron in the atom.

The state vector lg(t)& of the system at any
time t can be written as a linear combination of
the eigenvectors of the unperturbed Hamiltonian
H, of the system:

lg«)& =e,«) Ie;0) e ' 0'+Q af, (t) Ia; ~o& e '"«'+ g by, (t) lb' -Ko) e '"ba'
ko ke

+ Ckokgg g c; -kyar; k'A, e '"c~&
kok'X

1976
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The symbols c,(t), a1, (t), bf„(t), and c.„;,„(t)
represent the probability amplitudes in the cor-
responding states which are given below in terms
of the product functi. ons of the unperturbed atomic
and. photon states:

ic;0) =- c) 0)„d,

~
a; -ko) -=a) -ko),~,

)

The state
~
0)„crepresents the initial state of the

radiation field with no photons being absorbed
whereas -ko)„c and ~k'X)„c represent the states
of the field with an absorbed photon of wave vec-
tor k, polarization o, and frequency e„and an
emitted photon of wave vector k', polarization A.,
and frequency e~, respectively. In general,
these states are written in terms of the Pock
states as ~ ~ N», ¹„„,,¹k„„, ), where the
N»'s represent the numbers of photons with their
corresponding wave vectors k and polarizations

However, this explicit form becomes very
cumbersome to write; therefore, the states in
Eq. (4) are normally preferred. Moreover, in
the radiation problems, we mostly deal with the
energy changes during the absorption or emission
processes; therefore, one can assume that the
initial energy of the radiation field is zero. This
is the case for the photon states defined in Eq.
(4), though the detailed forms of the states are
required t.n.computing the matrix elements of the
interaction Hamiltonian H;

The eigenfrequencies in Eq. (3) are defined as

(u, = &, /0, (u„=&, /0' —&, ,

~ac =E~/@ —&c~ 44ck=zc/@ +c+ +k ~

where &„&~, and E, are the energies of the atom
in states a), ~b), and c), respectively.

Combining Eqs. (1)-(3) we obtain the follbwing
equations of motion for the probability amplitudes:

where the different matrix elements in the above
equations are defined as

and

H;k, ,=—(a;kg H ~c.;0),
H;k;k, k, ,"k, —= (c; —ko", k X H a; —ko),

(1o)

(11)

V,„,, kk,
= (a; —k&r V(r) b; -ka)

=(a V(r) ~b). (12)

Here, it is assumed that the states a) and ~b)
are not coupled by the radiation interaction II and
neither are the states

~
b) and c) as considered

earlier. The diagonal matrix elements of V(r)
are assumed to be zero. Although, if they were
not zero, one could absorb them in the respective
energies of the atomic states, . and the final equa-
tions [Eqs. (21)-(24)] to be solved would not look
any different.

By making the following substitutions for the
probability amplitudes

A.„,(t) =— a„-,(t) exp[i((u, —co„)t],
B-„,(t) -=b„;(t) exp[i((u, —(o„)t],
C„;"„,,(t) -=c-„,„,(t) exp[i(~, —~„,)t],

(13)

(14)

C(&(t)
-=cc(t)

in Eqs. (6)-(9), one obta, ins

ihC (t) = Q H .,"„,A.„,(t),

(16)

(17)

+ V„B-„.(t)e-",
ih[Bk, (t)+i((u„-(u,) B-„.(t)] = V„A;.(t)e ",

(18)

(19)

b[Ck,k, ,(t) +i(~„, —~c)Ci,k, ,(t)]

ifjAk, (t) +i (~„—~,) A-„,(t) ]

= H,;.,C,(t).P H, -...-, , ,C„-.-„,,(t)

ibc,(t) =Q H...-„,a-„,(t) exp[i(u), —&u„)t ],

ibad, (t) = H;„, , c,(t) exp[i(&u„—ur, ) t]

+Z H k; k k'& c-..k'&(t)exp[i(&

(6)
= H, -„.„-, ,-„,A-„.(t), (2O)

where V„= (a
~

V(r) ~b) .
In order to solve for the probability amplitudes,

we Laplace transform Eqs. (17)—(20). Using the
initial condition that C,(0) = 1 and the other ampli-
tudes are zero at t= 0, we get

+ V,-k, , ck, b"„,(t) exp[-kt +i(e„—ark, ) t ],
tab„-.(t) = V,;...;.a-„.(t)

(7)
s Y,(s) = 1 i Q (H, ,

—;„,/b) 1;-„,(s),
ka

Y,(s)B,»„.[s+i(u)„—(u,)]1;k, (s) =i—(21)

&& exp[-kt +i(u)„—(o„)t ],
i~ck.k'«) = H.k k'k;.%. ak. «)

xexp[i((u„, —(u„)t],

(8)

(9)

JPckc:ckck' t y' (S)cko'k' X
k'X

i(V„/h) 1';„,(s+ ~), (22)
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[ S +t(N~g —QJO) ] Ypjg(S) = —'L
Ygfg (S+ 6) ) (23)

Y„(s)= e "A. (t) dt .

Combining Eqs. (22) —(24) yields

Y,f„(s)= [s+2 y(s)+i((o,, —(uo)]
'

x (-i(H;~.../h) Y,(s) —
~
V,„/h ~'

x Y,-„,(s+ 2e) [s+ e + i((u„—(uo) ] 'j,
(26)

where

I II -„. -„;„,, /h I'
~'Y(s~= ~ S + X((dg —R~)

(27)

.[s+ i(s)„x —~0) ] Y,-„;„~(s)

i (H, "„—;„.„;„,/I) Y,-„,(s), (24)

where the 1'(s)'s represent the Laplace transforms
of the new amplitudes defined in Eqs. (13)—(16):

Although y is a function of s, it can be' shown"'
that its real part is independent of s and represents
the decay constant of the unperturbed state ~a).
The imaginary part of Z, which diverges, repre-
sents the shift in the energy of the state. When
the energies are renormalized by considering the
self-energies of the state, the shift vanishes and

y becomes real. Thus, hereafter, y is considered
to be real and a constant representing the decay
constant of the state ~a) in the absence of pertur-
bation.

The exact solution of Y,.„,(s) from Eq. (26) is
not possible. Therefore, an approximate method
suggested by Fontana and Thomann' has been used.
When the argument s in Eq. (26) is repla, ced by
s+ 2&, one obtains an expression for Y,l, (s+2&)
in terms of Y,(s+2e) and Y,-„,(s+4e). Similarly,
one can write Y,~, (s+4c) in terms of 1;(s+4&)

and Y;~, (s+ 6e). Using this iterative procedure,
we can write the second-order solution, by
neglecting Y,-„,(s+ 6e), as

Y,g", (s) = -i(a,-„,.,/8) [s+ 2 y+i((s„—ur, )] '

x( Y,(s) —
~
V„/h ~'Y,(s+ 2e)([s+ a+i(ru„, —(u,) ][s+ 2m+ p y +i((u„—(o,)]j '+

~
V„/h ~'Y(s+ 4m)

x([s+ a+i(cu„—cu,)][s+2&+2 y+i(cu„—cu,)][s+3~+i(cu„—cu,)][s+4~+2y+i (u)„—cu, )]] ') .

(26)
This expression is substituted in Eq. (21) which yields the following recurrence relation for 1'0(s):

Y,(s) = [s+21'(s)] ' ~1+ " Y,(s+2&)V, ~

([s+2y +i ((u„—(u,) ] [s+a+i((u, g
—(u, ) ]

x [s+2c+ ~y+i ((u„—(u,)]] '- " Y,(s+4e)

x [s+ 2@+~y+i(cu„—~,)][s+ 3e +i(&u„—&u,)]

x [s+4e+2y+i(&u„—&u,)]j '
~, (29)

where

&

1 (s) Q IIIO. ;„ /5
~s s+ —'y+i ((o —(g )

(30)

ln general, I' appears to be a function of s as was y in Eq. (27). However, it can be shown"' again that
the real part of I' is independent of s and represents the decay constant of the initial state. The imaginary
part of I' diverges and can be neglected in the representation of renormalized states as discussed earlier.
Therefore, hereafter, 1'(s) is assumed to be real and equal to a constant I'."

The summations over k in Eq. (29) are replaced by integrals over the frequency &, of the incident photon
(Z-„- f p(&u, ) d&u, ; p(e, ) being the density of states. [See Eq. (16) on p. 179 and Eq. (14) on p. 200 of
Ref. 7]. The resulting integrals are evaluated by contour integration. The main contribution comes from
the poles. Since p(e, ) l&o.;„,(e, ) I in the integrals is a slowly varying function of e, near the poles, one
can easily replace it by a constant. The limits of integration for &, can, now, be extended from 0-
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to -~- ~ without significant error. The integrals, when evaluation through contour integration; yield
zero contribution. Therefore, Eq. (29) reduces to

I;(s) = (s + -' I') ' . (31)

Here, I' represents the decay constant of the initial state as mentioned earlier. It is interesting to see
that the decay of the initial state does not depend on the external-field which couples the two excited states.

The second-order solution of Y;„,(s) can now be obtained by substituting Y,(s) from Eq. (31) into Eq.
(28):

Y'g", (s) = -i(H;„,gh)[s+2y+i(&u„—~,)]
x([s+2~ I'] '—

~
V, /8 'l[s+2e+-,'I'][s+e+i(e, —&o,)][s+ 2&+2y+i(w„—e,)]) '

+ V„/h
~

'([s+4e+ —,'I'][s+ a+ i (v„—a&,)][s+2&+ ay+i (&o„—~,)][s+3e+i(~, —~,)]
x [s+4c+2 y+i(&u„—~,)]] ') .

Similarly, for Y&g,(s), we obtain from Eqs. (23) and (32)

Y'g (s) = -(V„,& f.../h ')([s+i(co„—cu, ) ] [s + c+ 2 y+ i (cu„- co,)]] '

x((s+~+'I') ' —IV /@I'&(s+3e+ —,'r)[s+2e+i((o, —(o,)][s+3e+—'y+i(u)„—(uo)]) '
i

V„/S~'l(s+5e+ 2 I') [s+2e+i (&o„—&u,) ] [s+ 3~+ ~y+i (&u„—&u,)]
x [s+4e+i(u)„—ur )][s+5m+ 2y+i((o„—(u,)]] ') .

(32)

(33)

The time-dependent amplitudes can now be obtained by the inverse'Laplace transforms of the Y(s)'s.
In fact, the Y(s)'s are the Laplace transforms of the redefined amplitudes in Eqs. (13)-(16). However,
they are directly related to the Laplace transforms y(s) of the original amplitudes (defined in Eq. 3) by

y„(s) = Y„[s—i(u)„—(u,)] .

In the present paper, we are mainly interested in the probability amplitudes at t- . These can be
easily determined by using the final-value theorem" which yields

b~", ' (~) = lim [sy„''-„' (s) ] = lim (sE",~', [s -i((o„-—' (o,) ]j
= -(V„&,I,,JS')[&u„+i (c+ 2y)] '

x ( [(o, —(u„, -i(e+ -' I') ]
' -i

~
V,„/8 I,'12m [&u„+i (3&+ -'y) ] [u), —(u„-i (3@+-' I') ]j '

— &„/@['(«'[co„+i(3&+ 2y)] [~„+i (5& 2+y)] [~, —(o„i(5&+ -21')]& ') (35)

c' «'(-) = ~m [»'Cr .i(s)] »m=&sY.'!.'.- ~ [s -i(~..~ -~0)]&

= {+ctet'~;aimed;0/@ )(~~ —~ +i 2 y)

x({(o,—u), +i~21') ~+
~ V,, /0 ~' f[u&, —(u, +i(2e+ 21')](u), —(o„+is)

x [~, -~., +i(2~+-'y)]k '+
I V.~« I'

x f[~, —co, +i(4~+41')][co, -cu„+i(2~+2 y)](~, —~„,+i~)(~& —~&, +»~)

x [(g~ ~„+i (4e + 2y) ]j '),
where

(36)

(37)

The other probability amplitudes c,(t) and e„-,(t) vanish as t-~.
Now the probability P~ of the atom being in the excited state

~
b) at f ~, after having absorbed the in-

cident radiation, is obtained by summing the probability ~bt;, (~)
~

over the frequency and polarization of
the incident radiation. The integrals are evaluated by contour integration. The result is

P = {V'/n')I"j(1+ 2~) [~',.+(~+-.' y)']]-'
x ( 1 -(V'/0'e)(1" + 2e) (3e + 2 y) ((I + 4e) [&u,', + (3& + 5 y) ']) '

+ ( V'/Sh '&')(I'+ 2e)(y+ 8&) (y+ 10&)((I'+6&) [g~, + (3@+ ~ y)'] [+~, + (5e + —' y)']] '), (38)
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P =1 —P) . (39)

Thus we see that by using a perturbing potential
of the form defined in Eq. (l) we are able to "trap"
some energy from the incident radiation with the
excited atoms in the metastable states. The
next step is to release the "trapped" energy when-
ever it is required. This process is discussed in
Sec. III.

III. ENERGY-RELEASE MECHANISM

Here we discuss the "release" mechanism of the
trapped energy with the atoms in their metastable
states. This could easily be achieved by applying
a static field' which couples the metastable state
with the decaying one and causes the atom to decay
to the ground state through emission of radiation.
Thus the trapped energy is released in the form of
a radiation pulse.

In fact, this problem has already been studied
by Fontana and Lynch. " However, we shall pre-
sent here the important steps of their calculations.
The only difference between the present problem
and theirs, is in the initial probability of the meta. —

stable state. Fontana and Lynch assume the above
probability to be unity whereas in our case it is
P~ [see Sec. II, Eq. (38)]. Our main interest here
is to find the frequency and angular distribution
of the emitted radiation. For this, w'e have to
solve again the Schrodinger equation of motion for
the system.

The total Hamiltonian for the system is

w'here V,~ has been assumed to be real and re-
placed by V.

The above probability depends on the coupling
perturbation V, the decay constant e of the per-
turbing field, and on the frequency difference ~„
between the excited states. It is evident from
Eq. (38) that the probability is maximum when the
two excited states are degenerate (i.e. , ~, = ~, ).
The expression for P, in Eq. (38) is a second-
order solution which converges very rapidly for
small perturbations such that V/he is less than
unity. When &-0, Eq. (38) is valid only if V/8'e

(1. However, an exact solution ca,n be obtained for
e = 0 and VWO (see Ref. 4) which yields P~ = 0.
Further discussion on P, is presented in Sec. IV.

The probability P, of the atom being in the
ground state

I
c) after having absorbed the incident

radiation and having emitted a photon is obtained
by summing the probability c„,„,~(~) I' over the
frequency and polarization of the incident radia-
tion and over frequency, direction, and polariza-
tion of the emitted radiation. This probability" is
also obtained very simply by the normalization
condition and therefore it can be w'ritten as

K=HO+H+ V' (40)

with the corresponding eigenfrequencies +„&,,
and &,» where

(42)&Ca =&C++~

and lo)„d and Ikk&, d represent the states of the
radiation field with no photons present and a photon
being emitted with wave vector Q, frequency &~,
and polarization X, respectively.

The state vector of the system. at any time t can
be written:

(&)& =&.(&) I&'0) e '" '+bo(&) Ib; o& e

+ Q~ t Q' ~ g CtdCil (43)

where a,(t), b,(t), and c"„~(t) are the probability
amplitudes in tl.e corresponding states.

The Schrodinger equation yields the following
equations for the probability amplitudes.

i&a,(t) = Q a„.,-» c»(t) exp[i ((u. —(u„)t ]

+ V,', b,(t) exp[i((u, —(u, )t],
ih b,(t ) = V,', a,(t) exp [i (&u, —w, ) t ],
inc»(t) =H, „-~,„a,(t) exp[i(v, i —a&,)t],

where

If„.,» =(a;0 IH Ic;m&,

v., =(~tv ib&.

(44)

(46)

(46)

Here again it is assumed thatH does not couple
the states (a) and ) b) (i.e., no radiation transition
between tg& and ) b) is assumed) and also the ex-
ternal perturbation V' does not mix the ground
state with the excited states. The diagonal ma-
trix elements of P' are considered to be zero iri

Eqs. (44)—(46), though the case of nonvanishing
diagonal matrix elements of V' can be treated
easily as described in Sec. II.

By making the following substitutions for the
amplitudes:

A. „=a„exp[i ((u, —u)„)t], (48)

where H, is the unperturbed Hamiltonian for the
atom and the radiation field, H represents the
interaction of the radiation with the atom as de-
fined in Sec. II, and V' is the static external coupl-
ing field.

The following states represent the eigenvectors
of the unperturbed Hamiltonian H, :

O&„„, b;0) =- b) 0)„, ,
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(49)

(50)

(51)

1

where a„stands. for the original amplitudes, Eqs.
(44)-(46) ~educe to

in~(t) =Q H..,g, cg, (t)+ v.',B,(t),

ih [B,(t) + i((u —(a), )B,(t)] = V„',A,(t),.

ih[Cp~(t)+i(v, ~
—u, )C&~(t)] H,gq. „&&&(t).

The probability of the atom being in the ground
state I c) after having emitted a photon of wave
vector k, frequency ~, and polarization A. is
given by

I cg „( )I' =
I H.Z ~,o/h I

'I Vbb/@I'P b

xQ((o, —cu.,)(cu, —cu„) —
I V.',/h I'] '

(60)

Now, Laplace transforming the above equations
and using the initial condition

b, (0) =P', t', a,(0) =cg~(0) =0,
one obtains

[s+-,'y] Y.,(s) = -i(V.', /h) Y„(s),

(52)

[ s + i((vb —~.)] Y„(s)=P,'~' —i(V,'./h) Y.,(s),
(54)

[s+i((o, —~,)] Y,g (s) = i(H,-f, „.„/It)Y„(s),

(55)

where the Y„(s)'s are the Laplace transforms of
the amplitudes (A„'s) in Eq. (48). The constant
y in Eq. (53) is, in fact, a function of s and de-
fined by a relation similar to that of Eq. (27).
However, using the same argument as discussed
earlier in Sec. II, we can consider y to be con-
stant representing the decay constant of the un-
perturbed state I a).

Equations (53)-(55) can, now, be solved ex-
actly, yielding the results

Y.,(s) = -i(V.',/h)P t'

x((s + —,'y)[s +i(&u, —&u, )] + I V,',/h I']- ', (56)

Y,.( ) =["-.'y]PY'

x((s+-,'y)[s+i(cub —cu, )] +I vb', /hl'j ', (57)

Y,g „(S)= -(H,g X .bovbblh')Pb

x([s + i((u. ~
—&u.)]((s+-', y) [s+ i(orb —(u,)]

+
I V../h I')) —'. (58)

Using the inverse Laplace transforms of the
above Y(s)'s, one can determine the time-depen-
dent amplitudes„However, since we are interested
only in the frequency and angular distribution of
the emitted radiation, we find the amplitudes at

Thus, using again the final-value theorem, "
we obtain

cg~(~) —(H, q~ ,bv, b/h' )P,''.
x[(~g ~bb+b2y)(~g ~bb) I vbb/hl ]

This result is the same as Eq. (27) of Ref. 13,
except for a factor of P, . The angular distribution
of the emitted radiation would depend on the factor
IH,g;.,bl' which in turn depends on the interaction
Hamiltonian H. In the absence of multiphoton
process, it contains only p A terms as mentioned
earlier. When the state la) is connected to the
state lc) through an electric-dipole transition, the
angular distribution of the emitted radiation de-
pends on l(al rlc) eel', where r is the position
ve ctor of the electron in the atom and e ~ is the
direction of polarization of the emitted photon.
The total emitted energy E per atom is obtained
by summing the probability Icy„(&u)l' in Eq. (60)
over frequency, direction, and polarization of the
emitted photon:

E =h(uZ lcg„( )I',
kZ

l.e.,

E =hzP&,

(61)

(62)

nE/4m = nh eP b/4m, (63)

where n is the density of the gas.
In the present problem, we have completely

ignored the collision effects even though collision
effects are quite prominent at moderate pressures.
However, one can reduce the effects by reducing
the pressure of the gas to a minimum and still
"trap" a significant amount of energy. This will
be further discussed in Sec. IV with some specific
examples.

where + represents the average frequency of the
photon. The summation over k in Eq. (61) is re-
placed by integrations over frequency ~ and the
direction of emission. The integral over frequency
is evaluated through contour integration.

In the presence of large numbers of atoms and
in the absence of a quantization field (such as a
magnetic field) the emitted radiation has equal
probability in all directions. Thus the energy re-
leased by the atoms per unit volume per unit solid
angle is given by

where &u„and &u„are defined in Eq. (37). The
other amplitudes vanish at t-~.

(59) IV. DISCUSSION

The variation of the probability Pb [Eq. (38)]
with the decay constant e is shown in Fig. 1 for
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FIG. 1. Variation of I'& with e for constant P.
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&u,, = 10y and I' = 0.05y [I' is very small compared
to y for not very strong radiation (see Ref. I)].
The value of P is chosen to be 0.25hy which is
always less than he used in the graph [the con-
vergence condition for Eq. (38) is V&he]. It is
observed that the probability decreases mono-
tonically with the increase in e.

Figure 2 shows again the variation of the prob-
ability P, with e but this time the coupling potential
V is also varied so that the convergence condi-
tion is satisfied (V =0.5hz and 0.3M'). It is in-
teresting to note that a maximum exists in P~ for,
a certain value of V and e. The decrease in the
probability with decreasing q is due to the fact
that the coupling field stays for longer time and
thus the nondecaying state ~b) gets more time to
decay via. the state ja). Similarly, at large e, the
probability decreases because the coupling field
is only present for a very shmt time. During
this time not much probability is transferred by
the coupling field to the state ~b) from the state
~a) in the absorption process. An increase in V'

for the same q increases the probability as shown
in Fig. 2. These results suggest that suitable
values for I/" and q can be chosen to obtain a max-
imum probability for trapping the atom in the
nondecaying state. In the case of two degenerate
upper levels, the probabilities in Figs. 1 and 2

would increase by a factor of 100 for the same
'

V and e fp& cx [e & +(zy +6)'] '; see Eq. (38)]..
The energy released by the atoms per unit vol-

'I

ume per unit solid angle is nh (a)pq/4m as mentioned
earlier. This energy is quite significant and more-
over it is emitted in a very short time; thus the
power produced by the device would be quite large.
For example, if H atoms were used in the device

. where the metastable state 2'S,
&~ arid the de-

caying state 2 'P, &, are coupledby an electric field
(the other higher states are assumed to be barred
irom the absorption of radiation'), the energy re-
leased per unit solid angle by 1 cm' of gas would be
-1 erg/cm' atapressure of 0.001 atm and tem-
perature of 300'K for V=0.25hy, q=0.5y, and

I =0.05y. The corresponding power would be
-100 W/cm'. Thus, it is apparent that if such a
device is constructed, it would have numerous
applications. However, there is a practical dif-
ficulty of finding such a system with an infinitely
long-lived metastable state. In fact, in the ab-
sence of collisions, the hydrogen atom chosen in
the above example has —,

' -sec lifetime" in the 2 'S,&,

state due to the two-photon decay to the ground
state (1 'S,~,). The collisional decay of the 2 'S,~,
state of H atom is also quite significant [10 'n

atoms/sec (Ref. 14)]. Therefore, H atom would
not be a very suitable candidate for a device to be
used for storing energy. An extensive investiga-
tion is desired to look for suitable candidates.

Besides using the device for storing energy, one
might speculate that the effect may be used in con-
s)ructing "solar lasers. " Here, we do not realjy
need the lifetime of the metastable state to be
infinitely large. For this, one has to consider a
four-level system: two lower and bvo upper states
with one of the upper states being a metastable
one. The 'system is excited to the metastable
state through the energy "trapping" mechanism
by absorbing the solar radiation. For a suitable
energy difference between the ground state and
the other lower state, population inversion be-
tween the lower state (other than ground state)

l

and the upper (decaying) state may be achieved
at the triggering time. This would cause the sys-
tem to lase. Molecular systems seem to be more
suitable for constructing such "solar lasers, "
where the higher vibrational states of the ground
electronic state may serve as the fourth state
for the laser action.

Another possible application may be in constructing
"solar lamps*' (which would emit monochromatic
radiation), where the lifetime of the metastable
state, again, does not have to be infinitely large.
For this, a continuous flow of the gas (three-level
atomic gas which has trapped the solar energy '

by the mechanism described here) has to be main-
tained through a trlgger1ng zone where the em1s-
sion of radiation is desired. The only limitation
would be that the time between the events, when

'I
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the solar radiation is trapped and when it is re-
leased (in the triggering zone), has to be less than
the lifetime of the metastable state.

Although the above discussion has been presented
on the basis of a hypothetical model, it is quite
encouraging to see that there are many atomic
and molecular systems (e.g. , H, He, Be, N, 0,
Hg, I2, O„etc.; see Refs. 15 and 16) which might

behave like the one described here. The next
task which ought to be pursued is to investigate
these systems in detail.
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