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Difficulties in the straightfoward application of the complex-coordinate method to the calculation of
resonance states in many-electron systems are examined. For the case of shape resonances, it is shown that
many of these difficulties can be avoided by using complex coordinates only after reduction of the system to
an effective one-electron problem. Further simplifications are achieved by the use of an inner-projection
technique to facilitate the computation of the complex Hamiltonian matrix elements. The method is first
illustrated by application to a model-potential problem. Its suitability for studying many-electron problems is '
demonstrated by calculation of the position and width of a low-energy P° shape resonance in Be™. We
discuss the modifications necessary to study core-excited (Feshbach) resonances.

I. INTRODUCTION

The calculation of the positions and widths of
atomic and molecular autoionizing states continues
to be a problem of considerable interest. In the
case of molecules, resonance parameters can be
used to model a variety of important processes
such as dissociative attachment, associative, and
Penning ionization.! ‘

While resonance effects can be studied theoret-
ically by solution of the scattering equations and
a search for the characteristic rapid variation of
the cross section in the vicinity of a resonance,
such an approach frequently involves calculations
over a fine energy mesh and the possibility of
missing narrow resonances. Furthermore, in the
case of molecules, such detailed calculations are
beset with numerous computational difficulties
and, in many cases, are beyond the scope of pres-
ent computer capabilities. This has led many in-
vestigators to search for direct methods of eval-
uating resonance parameters.

The stabilization method? is perhaps the simplest
of these approaches and makes use of the fact that
a resonance wave function is often localized, i.e.,
has large amplitude in a region close to the target
center and is thus well represented by an expan-
sion in terms of square-integrable functions.
While the stabilization method is quite successful
in finding the position of narrow resonance states,
it becomes more difficult to apply in the case of
broad resonances where the wave functions are
not necessarily well localized. Furthermore, the
stabilization method does not provide a rigorous
prescription for finding the resonance width, ex-
cept in special cases.?

Another frequently used technique is based on a
projection operator formalism, originally intro-
duced by Feshbach.* This approach provides a

“golden-rule-like” formula for the width involving
a matrix element of the Hamiltonian between a
resonance wave function Q¢ (which can be calcu-
lated by the stabilization method, for example)
and a background continuum function P.5 The

_principle difficulty with this method is that the

projection operators become difficult to evaluate
in many-electron problems when multiconfigura-
tion wave functions are used. Furthermore, rigor-
ous evaluation of the background function Py is
equivalent to solving the full scattering problem
and hence further approximations, such as the
use of unperturbed wave functions or the expansion
of Py in terms of normalizable functions, are often
required to make the problem tractable.®

A third approach to the study of autoionizing
states is provided by the use of complex coordi-
nates to analytically continue the Hamiltonian into
the complex plane. While such techniques have
been known for some time as a formal tool for ex-
tending the region of analyticity of the S matrix,”
complex-coordinate techniques have more recently
been used as the basis for new computational de-
velopments as well.® The method is based on the
analytic properties of the Hamiltonian under the
dilatation transformation »—~7e?. For a suitable
class of analytic potentials, this transformation
has the following effect on the spectrum of H (Ref.
9): (i) The eigenvalues corresponding to bound
states of H are not effected by the transformation.

: (ii) The branch cuts associated with the continuous

spectrum of H are rotated into the lower-half E
plane (assuming 0<6 <37) by an angle —26.

(iii) Resonance or Siegert states exposed by the
rotation of the branch cut correspond to discrete,
normalizable states of the Hamiltonian H (ve??).
Thus the problem of finding resonance states is
reduced to that of finding the ‘square-integrable
(complex) states of the rotated Hamiltonian H(re?®).
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The use of complex coordinates is deceptively
attractive in its simplicity, since it reduces the
problem of finding many-electron resonance states
to the solution of an algebraic eigenvalue problem
to which the well-established techniques of bound-
state configuration interaction can in principle be
applied. Indeed, the method has been very suc-
cessful in various applications to problems involv-
ing two-electron atoms.® However, efforts to ex-
tend the method to many-electron systems have
been hampered by problems of slow convergence.
A recent attempt to apply this method to study a
three-electron resonance was only partially suc-
cessful.l®

The slow convergence of the complex-coordinate
method when applied to many-electron problems
has never been adequately discussed. Such a dis-
cussion is given in Sec. IIB in terms of a simple
physical argument. We also suggest a method for
removing these difficulties which is illustrated by
calculations on a model-potential problem. To
demonstrate the applicability of the method to
many-electron problems, we calculate the position
and width of a 2P° shape resonance in Be".

We should like to point out that a method similar
to that discussed here has recently been formu-
lated by Junker and Huang!! and successfully ap-
plied to the (1s2s2p)?P° resonance in He". The
reader is encouraged to consult these papers for
further details.

II. THEORETICAL FORMULATION

A. Potential scattering
For simplicity, we first consider a single-par-
ticle potential-scattering problem for which the
radial Schrddinger equation is (in a.u.).

2
G%% +l(12:21) +V @) -E) ¢r)=0. @)
We wish to consider the properties of this equation
under the transformation v ~7e¥. If ¢,(r) is a
bound state of (1) with eigenvalue E, then the re-
quirement that £ be unchanged under the dilatation
transformation means that the corresponding solu-
tion of the rotated Schrddinger equation apart from
a normalization constant is simply ¢,(re®). In
particular, we note that a bound state of (1), which
has a simple exponential behavior for large 7,
picks up an oscillatory character under coordinate
rotation:

»,(r exp(i6))~ expl —i(sind)(2 E)*/ 2¢]
x exp| ~(cos8)(2 E)Y/2y] , @)

If one attempts to solve for the bound eigenfunc-
tions of H by an expansion in a set of basis func-

tions {X;(’i’)} and applications of the standard Ray-
leigh-Ritz variational method, one finds that,
whereas ¢,(r) may be accurately approximated in
terms of a few real Slater-type or Gaussian basis
functions, a larger set will be required to achieve
comparable accuracy in the determination of
¢,(re®) because of the oscillatory nature of the
function. One can, of course, expand ¢,(re¥) in
terms of the complex set of functions {x;(@e)}, but
this simply undoes the dilatation transformation
and gives back a real set of eigenvalues which are
independent of 6.

Now consider a continuum state of H. For large
v, the wave function will have the form

6,0)~ [F ()™ 1+ F (<k)e ]| @

where F(k) is the Jost function.’? Resonance or
Siegert states will occur at those complex values
of 2 in the lower-half plane where the Jost func-
tion vanishes. At these points, the asymptotic
wave function will only contain outgoing waves. If
we consider such a state with momentum -
k=|k|ei®, then it is clear from Eq. (3) that for
rotation angles 6 > a, ¢,(re*®) will decay exponen-
tially. However, the same considerations of the
convergence to be expected in a conventional basis-
set expansion apply equally to the resonance and
bound-state cases, since the states we are at-
tempting to calculate will oscillate as a function of
7 with an overall exponential decay.

Before concluding this section, we wish to point
out that, in using the complex-coordinate method,
we require matrix elements of the rotated Hamil-
tonian:

<¢,-IH(76‘0)1¢j>=qub’,."(r)H(re"e)(pj(r)dr. 4)

If we carry out the integration in Eq. (4) along a

" rotated contour and then make the simple change

of variable »—~7e®, we obtain
(¢>,.]H(1<e‘9)|¢j)=e'i9f oXre*®*)H(r)p ,(re”¥)dr .
. 1]
(5)

For this simple case, we see that the rotated-
coordinate method is equivalent to a calculation of
matrix elements of the real Hamiltonian H(7) using
the complex basis {e7%/2¢ ,(re”®)}.** It is this
identity that will allow us to make progress in the
solution of many-electron problems.

B. Many-electron problem

We consider the elastic scattering of an electron
by a many-electron target which is described by a
ground-state wave function ¥y(r,,...,7y). We as-
sume that there is an energy range over which the
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incident electron can be temporarily captured into
an autoionizing negative ion state. For simplicity
we only consider shape resonances which can oc-
cur in symmetries where the effective potential
seen by the incident electron contains a barrier.
For certain values of the initial momentum, the
electron can tunnel through the barrier into an
attractive potential well and be temporarily trapped
in a pseudo-bound-state. We are not considering
Feshbach resonances which are associated with
virtual excitation of the target. The modifications
necessary to treat these types of resonances will
be mentioned in the concluding remarks.

The elastic wave function for the N +1 particle
system is antisymmetric under interchange of the
coordinates of any pair of electrons. As any one
coordinate becomes large, the wave function has
the asymptotic form

T N et LU ORELE)
i

x[AR)e #"i + A(<k)e*mi] . (6)

Note that we have suppressed any dependence of
the wave function on angular coordinates and, for
simplicity, assumed it to be a function of radial
coordinates only. This is only done for purposes
of keeping the notation simple.

- A resonance state of the many-electron system
corresponds to a complex value of £ for which the
coefficient A (k) in Eq. (6) vanishes. Such a state
will be square integrable when evaluated at com-
plex values of 7, for which |arg(r,)|>|arg(®)|.
Formally, such states can be obtained by trans-
forming all the radial coordinates and looking for
the discrete, normalizable eigenvectors of the
Hamiltonian H(r,e¥, ..., 7y,,e%). From a practical
viewpoint we can see that this expansion will be
slowly convergent from the following considera-
tions.

Suppose that the ground state of the target is
well described by a Hartree-Fock, single Slater
determinant:

‘IIO(’rl’ M "7N)~a(¢1(71)..'¢N(’VN))' (7)

After coordinate rotation, the wave function which
gives the same value for the Hartree-Fock energy
is simply that given in Eq. (7) with all the coordi-
nates replaced by 7;e*®. To represent this function
accurately in terms of real Slater functions, it is
necessary to expand each orbital in (7) in terms of
a new one-particle basis. This amounts to doing

a full configuration-interaction expansion just to
obtain the Hartree-Fock energy and is clearly im-
possible for systems containing more than two or
three electrons. It is easy to see from the discus-
sion of Sec. IT A that in the independent-particle
model, the period of oscillation for fixed 6 will be
proportional to the square root of the orbital bind-
ing energy, and hence that the tight core orbitals
will be the most difficult to represent in a basis
set. This is disconcerting since one would hope
that it would be a good approximation to describe
the core electrons in an independent-particle mod-
el, since they contribute minimally to low-energy
resonance formation.

Consideration of the asymptotic form of the
(N +1)-electron wave function given in Eq. (6)
shows that it'is only necessary to make the coordi-
nate dependence of a single-electron complex in
order to render the solution square integrable.
Recalling the discussion at the end of Sec. II A, we
see that this can be accomplished by using (N +1)-
electron configurations of the form

. ,,,N)e-ie/z(bi(,,e-w))
(8)

to expand the wave function. Because of the anti-
symmetrizer in Eq. (8), these configurations are
in general nonorthogonal. Furthermore, although
we have assumed that ¥ (r,...,7,) is a single-
determinantal wave function for the purposes of
this discussion, we see that this is by no means
necessary in actual computations, as ¥, can be an
arbitrarily complex multiconfiguration wave func-
tion.

This procedure is not equivalent to computation
with the usual complex many-electron Hamiltonian.
It does, however, correspond to an analytic con-
tinuation of the effective one-body Hamiltonian one
obtains by first integrating over the coordinates of
the target electrons. Because of the need for anti-
symmetrizing the entire wave function, this effec-
tive Hamiltonian must necessarily be nonlocal.
The advantage of this approach is that the accuracy
achieved in the original specification of ¥, is
maintained in the resonance computations, since
complex basis functions are only used to expand
the open-channel one-particle function.

There is one additional approximation we should

Xi(rly e y’rN-r-l) =@(\IIO(7'1, .

‘like to discuss. Consider a matrix element of H

between two configurations of the kind used in Eq. (8):

X |H|x)=e® f QPF0ry) o)ty e NHEy, .o, 7y) Gl (r) Sy (ry)d ,(ry, e70))dr, »* ~dry,, .

9)
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If the Hamiltonian is first projected onto a real set

of N +1 electron configurations T';(r,, ..., 7y,.),

H~ Z TrWyy oy Yy Hy Ty, ooy 7y,) , (10)
Ryl :

then we can approximate the matrix element in Eq.
9) as

alHx =2 x| TOH(T X)) (11)
ijkl

The simplifying feature of this approximation is
that complex orbitals are only used in the evalua-
tion of an overlap matrix.!* The fundamental one-
and two-electron matrix elements used in the
evaluation of the Hamiltonian in Eq. (10) are all
performed using real functions. From a more
practical viewpoint, this means that we can calcu-
late the Hamiltonian matrix elements using stan-
dard bound-state codes without modification, an
important consideration in calculations on complex
atoms where the evaluation, transformation, and
storage of large numbers of two-electron integrals
is a limiting factor. This is especially true in
molecular applications. The evaluation of complex
overlap integrals is by contrast a relatively simple
task.

III. APPLICATIONS
A. Model problem

The complex-basis-function technique-is first
illustrated by application to a model problem in-
volving s-wave scattering from the potential

V=V, (12)

This same problem has been studied previously by
Bain, Bardsley, Junker, and Sukumar using com-
plex-coordinate methods.!® Our purpose in reex-
amining the problem here is to illustrate the inner-
projection technique discussed in Sec. II.

The s-wave Hamiltonian, —3(d?/dv?)+V(r), is
first projected onto a set of N square-integrable
real functions, {xn} These are chosen to be nor-
malized Laguerre functions, ‘

A%/ 2, )
-— T2 =ar/2
X,7) = (s Dol L3(\r)e , (13)

which are equivalent to the functions used by Bain
et al. in their trial function A.'°® We then chose a
basis set of M complex functions with which to
diagonalize the projected Hamiltonian. For this
purpose, we have used the same type of Laguerre
functions given by Eq. (13), with X replaced by

re ¥, As previously discussed, the final computa-
tion of the Hamiltonian matrix only involves eval-
uation of the complex overlap matrix elements

s - A3gi36/2
™ m +1) om +2) 00+ 1) fe + 2) ] 2

x| “rLzomLzore ) ar, (14)
(o]

in terms of which the Hamiltonian is written,

H®=ST+H-S ’ (15a)
=AY

with
Hyy= X Hx,) : (15b)

For a value of V,="7.5, Bain ef al. find, by direct
integration, a shape resonance with a position £
of 3.426 39 a.u. and a width I" of 0.025 55 a.u.,
which can be associated with a complex eigenvalue
of the rotated Hamiltonian at E — 3iI". ' It is not our
purpose here to study exhaustively the convergence
of the expansion as the scaling parameter A, the
rotation angle, and the number of functions are
independently varied. This has already been done
by Bain et al. What we have found in our studies
is that their results can be reproduced essentially
exactly, provided that the number of functions N
used in the inner projection of the Hamiltonian is
greater than the number of complex functions M

used in the outer projection. This of course is not -

surprising since the inner-projection technique
simply invokes closure in inserting a quasicom-
plete set of states into the calculation of an M XM
matrix. For this approximation to be valid, it is
necessary that the inner set be essentially com-
plete over the region spanned by the outer set. In
our calculations, we found this condition to be well
met as long as we choose N>M +2. We emphasize
that our only criterion of success here is the ac-
curacy of the computed resonance eigenvalue and

TABLE I. Position and width of s-wave resonance for
model potential V(#)=7.57 %" as a function of rotation
angle. Results are given for a basis of 20 Laguerre
functions of the type ¥L2(Ar)e /2 used to expand the
Hamiltonian. Fifteen such functions with » replaced by
re~i% are used in the formation of the complex Hamilto-
nian. For these calculations, A=8. The exact answer
is E=3.4264, I'=0.025 55,

Rotation angle Energy Width
(deg) (a.u.) (a.u.)

5 3.4240 0.026 96

10 3.4262 0.02558

15 3.4264 0.02542

20 3.4264 0.02552

25 3.4264 0.02554

30 3.4264 0.025 56

35 3.4264 0.02578

40 3.4264 0.00846
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TABLE II. Dependence of model-problem resonance
parameters on the number of real functions used to
represent the Hamiltonian. In these calculations, 18
complex functions are employed with a rotation angle of
15° and A=8. ) . '

N Energy (a.u.) Width (a.u.)
‘12 3.4028 0.000 05
15 3.4139 0.014 68
18 . 3.4236 0.023 96
20 3.4264 0.025 51
22 3.4264 0.025 50
25 3.4264 0.025 52
30 3.4264 0.02555
35 3.4264 0.025 55
40 3.4264 0.02555

that we are not concerned with other properties of
_ the matrix.

Some typical results are presented in Table I,
where we show the behavior of the resonance pa-
rameters as the rotation angle is varied. For
these calculations, the values of M and N were 15
and 20, respectively. The scaling exponent A was
taken to be 8. The accuracy achieved in these

calculations is comparable to that obtained by Bain

et al., who used the same expansion parameters.

In Table II we show how, for-a given complex
basis, the computed resonance energy depends on
“the number of functions used in the inner projec-
tion. For these calculations, 18 complex functions
were used with A =8 and the rotation angle was 15°.
We see that the results rapidly converge as soon
as N is increased beyond 18, as expected.

B. 2P° shape resonance in Be

Electron scattering by the group IIA and IIB
metal vapors has been the subject of recent exper-
imental work.’® The elastic cross sections for
these systems show broad resonance behavior at
low energy, which has been ascribed to the forma-
tion of short-lived 2P° negative-ion states. These
atoms all have (ns2) closed-shell ground states,
so that the resonance states could be associated
with a negative ion of the configuration (zs%p)2P°.
Atomic Be is unfortunately not among those sys-
tems that have been studied, but it would be ex-
pected to show the same type of behavior.

In all of our calculations, we have considered
the attachment of a p electron to a ground-state Be
atom that is described by a simple Hartree-Fock
wave function. While it is true that use of a more
elaborate target function or an attempt to include
polarization effects may well have an effect on the
position and width of the resonance, we wished to
confine our attention to a model that we could also

solve numerically. We did have access to a nu-
merical Hartree-Fock program?!® and, as we will
show, the low-energy phase shifts obtained in this
manner are entirely consistent with the results
obtained using the rotated-coordinate procedure.

We begin with a self-consistent-field wave func-
tion for the (1s22s2)1S° state of Be. For this pur-
pose, we use the 5s set of Slater functions given
by Clementi.!” The Hartree-Fock energy of Be in
this basis is —14.57301 a.u. For the Be~ calcula-
tions, this basis is augmented with an additional
set of 14 p functions. The calculations reported
here were performed with Slater functions whose
parameters are given in Table III. We wish to
point out, however, that equivalent results were
obtained in calculations using different sets of
functions. ,

We next form a matrix representation of the five-
electron Hamiltonian using all configurations of the

“form

rn(,rl’ MR 1’5) =a(¢ls(,kl)a1¢ls(72)B2¢23(73)
X a3¢2s(74)34¢np("’5)0‘5) . (18)

In Eq. (15), ¢,, and ¢,, are the Hartree-Fock or-
bitals of neutral Be. The {¢>np} constitute an
orthornormal set and are formed by ordering the
Slater functions according to the magnitude of their
orbital exponents and sequentially Gramm-Schmidt
orthogonalizing them starting with the tightest
function. Thus ¢,, is a function containing n modes
and spans a larger region of » space than ¢,.,,.

TABLE III. Slater orbital parameters used in Be”
calculations. Numbers refer to basis functions of the

 type v "e"*" Y, (T).

Orbital n l @
Sy 1 0 3.5297
S, 1 0 6.4072
S3 2 0 11.1956
Ss 2 0 3.2341
Ss 2 0 0.8198
Py 2 1 5.0
P, 2 1 4.2
Ps 2 1 3.4
P, 2 1 2.6
Ps 2 1 1.8
Pg 2 1 1.0
Py 2 1 0.787
Pg 2 1 0.620
Py 2 1 0.487

Py 2 1 0.384
P 2 1 0.302
P 2 1 0.237
Pis 2 1 0.186
Pu 2 1 0.147
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The complex-coordinate configurations are then
chosen as

Xl <79 = D1 ()01, )y, ()
X as¢2s("4)34‘17"9(7,'53-‘9)“5) . (17)

We use fewer functions in this second expansion
than we do in the original specification of H, for
the reasons discussed in Sec. IIIA. Furthermore,
because of the way in which the functions are or-
thogonalized, it is most reasonable to delete func-
tions from the end of the list.

The results of a series of calculations using 10
complex orbitals are shown in Fig. 1. The real
and imaginary parts of an eigenvalue which is
clearly a resonance is plotted as a function of ro-
tation angle. We note that this root is quite sta-
tionary over the broad range of rotation angles
50°<6 <80°. This behavior contrasts sharply with
that of other nonresonant roots which show no sign
of stability as the rotation angle is varied. A typi-
cal nonresonant trajectory is also shown in Fig. 1
. for comparison.

The complex root shown in Fig. 1 stabilizes at a
value of (-14.5450, —0.0205) a.u. When referenced
to the Hartree-Fock energy of Be calculated in our
basis, this corresponds to a resonance position of
0.76 eV and width of 1.11 eV or a % value of
(0.250, -0.082) a.u. We have also evaluated the
p-wave-continuum Hartree-Fock functions of Be
numerically, and in Fig. 2 we have plotted the I =1
phase shift as a function of incident energy. The
phase shift is seen to rise rapidly from threshold
to a value near 37 and then decrease slowly. It is
difficult to obtain a meaningful fit of this data with
a Breit-Wigner form, since the resonance is ex-
tremely broad and occurs at a low energy where
the background phase shift is also varying rapidly.
It is possible, however, to use the effective-range

T T T T

\35
\
—~0.03 -0.022 ‘\
78 : +30
o 70 i
-0.020| 80.4/-&2 4 \
55/ 60 i l
82 700 | %
__-0.02 -0.018 - /
5 Loa o, |45 |
s 1455 1254/ o $20
w / |
30/ i15
~0.01}F II | .
I
f 90 °
10!
0.0 i 1 1 !
—-14.60 ~14.58 14.56 1354 1452
E, (a.u.)

G

FIG. 1. Behavior of the Be~ resonance’ eigenvalue as a
function of rotation angle (solid line+ insert). Shown for
comparison is the trajectory of a nonresonant root
(dashed line).
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FIG. 2. Numerical p-wave phase shifts for e"+ Be in
the static-exchange approximation.

formula to obtain the desired resonance parame-
ters, as suggested by Henry, Burke, and Sin Fai
Lam.!®

In the absence of polarization terms, the low-
energy p-wave phase shifts will possess the be-
havior given by

k3 cotd=-1/a +5pk?, (18)

where a is the scattering length and p is the effec-
tive range.!® This formula should also be valid for
complex"k near zero energy. Now, as Henry

et al.»® point out, at a resonance the T matrix,
which we write as '

T,(k)~ e* sind = (19)

cots =1’

has a simple pole so that cotb =7. Thus the reso-
nance corresponds to that value of 2 for which

k% =~1/a +3pk?. ‘ (20)

If we now substitute the value of 2 obtained in our

0.030 T T LI B | T T T T
S
i °
0.025 b -1
\.\
< o.
3 r e 4
S
MX (
0.020(~ B
- —
0.015 n L 1 1 1 1 1 " 1 1
o 0005 0.010 0015 0.020 0.025 0.030

k? (a.u.)

FIG. 3. Numeriéally obtained values of %3 cotd vs %2
(dotted curve) and the theoretical curve obtained using
the computed complex value of # and Eqgs. (18) and (20)
of the text (solid curve). )



complex-coordinate calculations [% = (0.250, —0.082)]
into Eq. (20), we obtain values for a and p of -33.97
and -0.521, respectively. In Fig. 3, we plot the
numerically obtained values of %* cotd vs k2 along
with the values obtained using our values of a and

p in Eq. (18). The agreement between the two sets
of data is seen to be quite good and shows that the
resonance energy given by the complex-coordinate
technique is, in fact, the correct one for this
frozen-core model.

IV. CONCLUSION

We have argued that the slow convergence ex-
perienced in straight forward application of the
complex-coordinate method to many-electron prob-
lems is associated with the use of square-integra-
ble functions to expand oscillatory core orbitals
and have shown how a modified complex basis
function technique can be used to sidestep this
problem. We have outlined a method for using .
complex basis functions in the calculation of shape
resonances in many-electron atoms and applied it
to study on autoionizing 2P° state of Be . In this
approach, the (N+1)-electron Hamiltonian is re-
duced to an effective one-body problem by inte-
grating over the coordinates of the target wave
function. Complex basis functions are only used
in calculating matrix elements of this one-body
operator.

The approach we have used calls for a coordinate
rotation in the basis functions referring to a single
active electron. While we have only illustrated
the case of elastic-shape resonances in this paper,
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it should be clear that the same techniques can also
be applied to core-excited Feshbach resonances.
Such states can be idealized as being formed when
a bound target electron is excited into an unoc-
cupied orbital, thereby providing the energy re-
quired for the temporary capture of a second elec-
tron. The configurations necessary to describe
such states correspond to virtual excitation into
closed channels and can certainly be included with-
in the framework we have suggested. If the total
energy of the system is high enough to allow for
decay of the resonance into excited target states
plus a free electron, we have to extend the asymp-
totic form of the wave function [Eq. (6)] to include
all such open channels. The technique of using
configurations with a single complex orbital simply
allows one to render the open-channel parts of the
resonance wave function square integrable. The
closed-channel components of the wave function,
which decay exponentially even for real #, could
in principle be described by a set of purely real
configurations. The use of a single rotated orbital
in all configurations would then be more a matter
of convenience than necessity.
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