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Inner-shell photoionization of the beryllium isoelectronic sequence
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Time-dependent Hartree-Fock theory is used in conjunction with the Stieltjes imaging method t6 calculate
the inner-shell photoionization cross sections of the beryllium isoelectronic sequence.

I. INTRODUCTION

TABLE I. Oscillator strengths of the transitions
1s 2s 1g-1s2s np and 1s 2s $-].s22snp p of beryllium.

Final state
Oscillator strength

TDHF RPA c

1s2s~2p
3p
4p

ls 282p
3p
4p

0.375
0.035 2
0.011 8

l.378
0.022 7
0.001 02

0.374
0.035 4
0.0117

1.36
0.023 2

0.001 10

"Reference 1.
Reference 2.
Reference 3.

The equations of time-dependent Hartree-Fock
theory (TDHF) have been solved for several mem-
bers of the beryllium isoelectronic sequence using
numerical' and variational' methods. The numeri-
cal study provided oscillator strengths of the out-
er-shell transitions and for neutral beryllium the
outer-shell photoionization cross section. The
variational, study provided oscillator strengths of
inner- and outer-shell transitions, the results for
the outer-shell transitions agreeing closely with
the numerical solutions. Neutral beryllium has
been investigated using the random-phase approxi-
mation' (RPA) and a comparison of the TDHF and
RPA transition oscillator strengths of beryllium
is presented in Table I. The values are in harmony
as they should be since for closed-shell systems
the two approximations have the sa~e physical
content.

Amusia et al. ' also calculated inner- and outer-
shell photoionization cross sections of beryllium,
and their outer-shell cross sections agree closely
with the numerical TDHF cross sections, ' the re-
mark to the contrary' arising seemingly from the
different units employed.

In this paper we calculate inner-shell photoion-
ization cross sections of the beryllium sequence
by applying the method of Stieltjes imaging to the
variational study' and we use the RPA results of

Amusia et a/. ' for beryllium to assess the validity
of the procedure. The cross-section data are im-
portant in the description of the interaction of as-
trophysical x-ray sources with the ambient gas'
and in the interpretation of high-temperature plas-
mas.

II. CALCULATIONS

The variational procedure for the solution of the
TDHF equations has been described in detail. ' It
leads to a set of eigenvectors P',. and eigenfre-
quencies e,. in terms of which the TDHF oscillator
strength for a transition from an initial state with
eigenvector Po to a final state represented by
Q',. is given by

N

f;= .~; &4'l -P r, lk', &

where r& is the position vector of the jth electron
of the N-electron atomic system and atomic units
are used. Many of the states P'; have eigenfre-
quencies &,. which locate them in the continuum.
To obtain an estimate of the differential strengths
we used the TDHF oscillator strengths and transi-
tion energies directly in the formula4

df f...+f;

The values that we obtained with the simple formu-
la are consistent with those given by the more-
elaborate moment method, 4 which is usually of
higher accuracy but yields fewer data points.

The TDHF and RPA cross sections for beryllium
are compared in Fig. 1. The good agreement es-
tablishes the. effectiveness of the discrete varia-
tional approach to the calculation of inner-shell
photoionization cross sections within TDHF theory.
Close-coupling calculations of the inner-shell
photoionization cross sections of beryllium have
been carried out by Bely-Dubau et al. ' Their
more-elaborate calculations take into account the
interference between the discrete inner-shell ex-
citations and the background continuum. At
threshold, the close-coupling cross section is
1.6 && 10 " cm', about 10% smaller than the TDHF
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FIG. 3.. Inner-shell photoionization cross sections of
beryllium in Mb for photon energies E in '1
= 27.2 e.2 eV). The full curve is the RPA cross section cal-
culated by Amusia et al. (Ref. 3). The X's are the
Stieltjes imaging TDHF cross sections.
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FIG. 1. Inner-shell photoionization cross sections
(Z —1.35) 0.(E) in Mb as a fun, ction of E/(Z —1) in, a u

1

and BPA values.
The TDHF inner-shell cross sections for the

beryllium sequence are shown in Fig. 2. Our cal-
culations do not yield accurate ionization thresh-
olds. At large Z, the ionization thresholds scale
as (Z —1)' and in constructing Fig. 2 we assumed
that the thresholds were located at 0.53(Z —1)'

a.u. , 4.73 a.u. being the TDHF threshold for beryl-
lium. The experimental value for beryllium .is
4.53 a.u.'

The cross sections o'(E) are shown as a function
of the energy E of the absorbed photon in atomic
units in the form (Z —1 35)'o(E), where Z is the
nuclear charge. The screening model' suggests
that a' should scale as (Z —s) ' where s is a
screening parameter and a value somewhat larger
than unity is physically plausible.

Because of perturbations due to the occurrence
of pseudoresonances in a limited basis set, the
imaging procedure failed for FVI. However useful
values for all Z can be obtained from a plot of
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FIG. 2. Inner-shell pho-
toionization cross sections
cr(E) in the form (Z —1.35)~
xa.(&) in Mb for photon en-
ergies F. in a.u.
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(Z —$.35)'o as a function of E/(Z —1)'. Figure 3
presents this plot for the beryllium sequence.
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