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Expressions for the scattering amplitude of multiphoton processes occurring during the collision of electrons
with a hydrogen atom in the presence of an electromagnetic field have been obtained in several

approximations: the momentum translation, the space translation, and the Keldysh approximation for the
bound-electron wave function. We also propose a perturbation approach based on the space-translation
approximation to treat the hydrogen-atom bound states. Our results show that it is of fundamental

importance to consider the modifications of bound states due to the presence of the field.

I. INTRODUCTION

In the last few years a number of works have
been done concerning the electron scattering by
atoms in the presence of an electromagnetic field
(EMF).'-"

This process is very important in the study of
plasma heating by electromagnetic waves, ' "'"
in the study of atoms excited resonantly by
lasers, ' ' "gas breakdown, etc. One of the
principal difficulties involved in the theoretical
treatment of these scattering processes is the
description of the bound states in an EMF. In
particular, if the EMF is strong enough, the ex-
cited states of the atom can be so modified that
to ignore this change may yield nonreliable re-
sults for the multiphoton scattering amplitudes.

In this work we present a systematic discussion
of different approximation to treat electron scat-
tering by a hydrogen atom in the presence of an
EMF, and we obtain the expressions for the multi-
photon transition amplitude using the Green's-
function formalism. We remark that this same
problem has been studied previously by Perel-
man and Kovarskii, ' Bhakar and Choudhury, '
Macek and Hertel, ' Gersten and, Mittleman, '
Mittleman, ' and Mohan. " Our aim is to compare
different approaches proposed for the treatment
of systems in an EMF, and therefore present con-
clusions about these approximations.

In Sec. II we present the space-translation trans-
formation' "for the Hamiltonian and give a de-
tailed description of the general formalism yield-
ing to the scattering amplitude: the main diffi-
culty is to treat the bound state adequately, which
is of fundamental importance in the final results.
We propose a perturbation scheme for a consistent

treatment of the bound states in an EMF and carry
it out to first order (first-order space-translation
approximation or STA1).

In Sec. III the formalism developed in the pre-
ceding section is applied to the original Hamil-
tonian, and two different approximations are used
to describe the bound states in an EMF, namely,
the momentum-translation approximation (MTA)"
and the Keldysh approximation" (KA). According
to Reiss, " the MTA gives a good description of
the atomic system in an EMF as long as (d «c,
where v is the field frequency and c is a typical
energy of the atomic process; some criticism con-
cerning the MTA has appeared in the literature"'"
and we comment on this. The KA was previously
used by Bhakar and Choudhury' in the treatment of
this same problem. In Sec. IV we assume the Born
approximation and obtain simple expressions for
the scattering amplitude in the different approxi-
mations considered here. We present the compar-
ison of our results and those of other authors to-
gether with our conclusions in Sec. V.

II. USE OF THE SPACE-TRANSLATION APPROXIMATION
TO OBTAIN THE SCATTERING AMPLITUDE

The Hamiltonian for the scattering of electron 2

from the bound state of electron 1 and proton 3 at
the origin, in the presence of an EMF represented
by a vector potential X (h =c =1) is

H = (1/2m)(p, —eX)'+ V, (r, ) + (1/2m)(p, —eX)'

+ l, (r, ) + V,(r„r,),
where
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py = —2 V~~ p2 ——2+2

V, = - e3/3 „V,= —e'/r „V,= e'/
~ r, - r, ~

.
(2)

as the product of the exact solution for the r,
variable and Q„(r„t ):

4-„„(r„r„t)

e
n(t) = ——

m

eXOdt' g(t') = — ' sin &ut = -h, sin(dt,

Under this transformation the time-dependent
Schr6dinger equation takes the form

2

ite(r„r„t)=( ' (er,trai(te)]+ N, eeX)'

+ V(r, ) + V(r, +3(t), r, ))t (r„r„t)

(6)

The subscript 2 in the two-body spherically
symmetric potential V; denotes that the 2th par-
ticle is not interacting. We assume throughout
this paper the dipole approximation for the EMF,
so that X is a time-dependent spatially homo-
geneous vector potential:

X =X,cosa&t.

We introduce the space-translation transforma-
tion' "

T =exp(-i[a(t) p, +n(t)] j,
where

= exp(i k ~ [r, —Z(t)]].exp [-i (k'/2m)t] (t)„(r„t ),
(8)

where k is the momentum of electron 2, and
(t)„(r„t) satisfies the equation

(9)
No exact solution can be obtained for the states

P„(r„t) and usually one assumes the so-called
STA, which consists of neglecting completely
n(t) in that equation, and therefore P„(r„t) is
taken as the solution of the field-free problem:
(I)(„')(r„t) Tha.t approximation is justifiable' only
for the region 3, »o. , =)(/mrna, where a is the size
of the bound system and X =eaA, is a dimensionless
parameter whose square is a measure of the rad-
iation intensity (values of )( up to 10 ' can be
achieved presently in the laboratory). Since the
bound functions (I)„are well concentrated within
the region x, -a, the STA is acceptable only if a

An improvement over this approach consists of
treating Eq. (9) within perturbation theory in the
parameter no In the Appendix we present a dis-
cussion for a first-order perturbation theory,
which is to be applied specifically to the hydrogen
atom, and using this result we write the solution
of Eq. (9) as

The asymptotic solution of Eq. (6) (~ r, ~

-~) is
obtained from

~(r)(~r )e lrttr e p cottttrtd (10)

p'
+V [r +n(t)]+ (p —eX)' C =i —.

2m ' ' 2m ' at (7)

From now on we assume high-energy collision;
in this case, neglecting the exchange between the
electrons the solution for Eq. (7) can be written

where (t)„' is a linear combination of the unpertur-
bed degenerate functions P„' of energy c„. To
carry a simple notation we omit the superscript
(1) in Eq. (10).

Using (10) in (8) the Green's "unction is readily
obtained:

G(r,', r,', t', r„r„t ) =
(

„Zr d'k 4 * (r,', r,', t')@k „,(r„r„t )p(t t )

(2)()3
d 3k (I) + (rt) (I) (r )eik (r 3-r 3 ) P(t tt)n' y n'

xexp -i '2

dt "e„+ ——k ~ X(t")-p„(r) sin(dt"
2m m

The approximate solution of the Schr5dinger equation associated with Eq. (6) is
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(t)t( .,„(r„r»t ) =4'), „(r„r„t)-JI d'r,'d'r, 'dt' G(r,', r,', t', r„r„t)

x [ U, (r,') +V,(r,'+o'(t'), r2)] Q)(, „(r,', r2, t ') (12)

=St „(r„r„t)-
( ), f d Sd''r', '

d,'rd'ttt(r, ')tt(r ) 'e

x exp( i[-q(%, n', t) —q(R, n', .t')]].[ V, + V,] Q), „(r,', r,', t'), (13)

where we have defined

k2 k
g(~, n', t) = 2+—e„e t+e '

. sin(dt+ p„t coscot

(14)

~ )d, )(o (r„r» t) -=exp [t )8$„%,n, n', t)] (t))t „(r„r„t )

e )~ r r
g: ~oo

and the relations

or, in a more convenient form,

q(%, n', t ) = (k'/2m- k', /2m+a„—eq)t

+P(%„%,n, n', t)+pecos(dt,

with

k2
t„)((tn)t, n', t)-=" +e„)t+n' iesinnt.

Using the periodicity of the function"

(15)

itdsintttt r t ). iiwtei tdcos(dte e
l=-~

(i)i g (~ )eii(et i

l =-~

V, (r, +cT, r, ) =e'" &V,(r„r,)

= g [J, (n, p, )V,(r„r,)]e' "
l=-~

the integration in t' of E(l. (13) can be readily
performed, and we get

(18)

„+ 2™Z (i)' f d Sd'r'd'r'dt„" (r') (dr
)e'"'t' ' '

e '" ~ "' ' d (n )
n'l
gs

&& [Z, (no ~ p, )V, (r,', r,')] tlat &, „(r,', r,') k, (20)

where we do not include the term V, since it does not contribute for the inelastic transition amplitude.
Energy conservation comes from the integration over t [the 5 function in (20)], since

k'(v) k', —&„i+&„—vv with v= j —l +s.
2m 2m

(21)

(22)

The parameter v& 0 represents absorption, and v & 0 represents emission of
~
v~ photons bythe e-H sys-

tem during the scattering process.
After performing the integration in % we obtain .

lim Q), „(r„r„t) =Cg „(r„r„t)+g f„"O„t"' (t), ())))e""' '" ' exp —i t Q„(r„)
I r l~

where

f ' " (tt)= ——g (—i)'(i)' f dr,'d r e'"" '' dn(r, ')d', '(n„, )
l s=-

P.( . p, )V,(;, :)l~-""-„;„,.„(;, :), (23)

k(v) k(v)r= (24)
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From (22), f „"o„',""' is identified immediately with the scattering amplitude of the process in Which the
scattered electron goes from state ko into state k(v). The atom suffers a transition from state &t into state
n', with simultaneous absorption (v&0) or emission (v&0) of

~

v
~

photons by the system.
The scattering amplitude (23) can be written in a more convenient expression if we use Eq. (17) to get

0

2v/ a)

e i~-&(v+& s)q-n', n (r r t)
k(t ), k

0
(25)

which leads to

2S /td

f.";;"")(tl)= —,~. +(-1)'(t)" d«'" )""'&,(p. ) &,(p. )(c~&.&,.i&.(~. p, )V.(" ")ls&..)
)sP 0

(26)

Using (18) and (19), summations over sp/ can be performed immediately, resulting in

2''/ co

f o'„~'"'(0)= —,„dt (4g&„& ~V,(r, + c&(t), r, ) ~(I)@ „),
j 7T/ 0

(27)

where the symbol (~ ~) denotes integration over
r encl r

The usual STA is obtained assuming p„-0 and
Q„")- &)&)&o' in the asymptotic solution of Eq. ( t):

&k t:r -e(t)3 -(k /2m)t Z(0)(r 5e «nt

and the scattering amplitude in the STA is given
by Eq. (27), where, for consistency, V,(r, +n(t),
r, ) should be approximated by Vs(r„r,), with the
above expression for the C-k(„) ~.

III. MOMENTUM TRANSLATION AND THE KELDYSH
APPROXIMATIONS

X y
&0) (r)e &ant

and for the Keldysh approximation"

= e~k rr2-e(t) 3 -f(k'/2m)te-fan coSMt
'V%, n

(28}

The sap)e procedure we have described in Sec.
II pan be used to obtain an expression for the
scattering amplitude when one uses the MTA or the
KA to describe the bound states of the hydrogen
atom. For the MTA" we have the a,symptotic
( ~r,

~

- ~) solution for Hamiltonian (1):
e&% t:r2-0.(t) le-i(k /2m)teieA(t) ~ r

k, n-e

Equation (30) clearly shows that the MTA is not
adequate to treat this type of problem since the
corresponding scattering amplitude is completely
.independent of the effect of the EMF on the bound
states. The whole contribution to multiphoton
processes appears from the interaction between
the EMF and electron 2. The MTA has been-under
criticism, "&' and a word must be said about the
objections concerning this approximation. Cohen-
Tannoudji et al."and Decoster" argue that the
multiphoton amplitudes given by this theory can-
not be consideredas reliable. The condition of valid-
ity of the MTA according to Decoster" is basically
v&d« ~ (instead of &u« ~) for all field intensities.
This is the case here, if most of the energy in-
volved in the atomic transition is provided by the
colliding electron and not by the EMF. Our re-
sults show that even for this case the MTA does
not introduce any modification in the bound state.
We should note that in the present treatment the
asymptotic region is characterized by no inter-
action between the electron and the atom, but

. both always interact with the EMF, contrary to
Reiss'" treatment, where no collision process is
involved, and the asymptotic condition is given
by an adiabatic turning on and off of the EMF for
t= -~ aIlcl t =+~.

)& ~(o)(r)e &s„t (29}

where 0„ is the Stark-effect parameter defined
by Keldysh i4

No unitary transformation is applied to the
Hamiltonian in Eq. (1}so that for these cases the
scattering amplitude takes the form'

fQ, t(( &(g)

), dt(C-„(„) „, ~V,(r„r,}~)t)~ „). (80)
0

)

IV. RESULTS IN THE BORN APPROXIMATION

To better compare the different approximations
previously discussed we will assume high-energy
collisions and treat the scattering amplitude in
the Born approximation, substituting the exact
solution P-„, „by its asymptotic expression 4g, „,
within the specific approximations. Firstly, we
present the calculations for the scattering amp-
litude within the STA1 and from it trivially obtain
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the other transition amplitudes.
For convenience we will introduce the following

quantities:

the bound states in the EMF, and

q(v) = k(v) —ko,

1
V, ( )=(2,), V, (K)e ' "d'K, (31)

the transferred momentum.

A. First-order space-translation approximation (STA1)
e (K -r ~( i ) 4( r) y

( i)
( r)

where (i) denotes the order of approximation for
Using the above definitions together with Eq. (27)

and (19), we get

[fpk, k(v)
(fl)]HA

m(()
V (q( v))p (1 )

x g a,[n, q(v)]
$ mCO

I

. k'(v k'
df exp j ( ~ e, 0 + E„+s(d fexp[ , L(go -' q'(v) sin(()t]

2m " 2m

We define

~. q(v) -=~(v)

x exp['E(p„, —p„) cosh)f] .

f0" )(q(v)) = -(m/27()V, (q(v))E~(„'(q(v))5[k'(v)/2m —k2/2m+ e„,—e„+g„+ v(o] .

Integration over t is readily done using Eq. (18) and we obtain

[f@„"")(&)];"„,=f,"'(q(v)) g g (i)'~,(-r(v))&. . .(r(v))~, (p„, —p.) (35)

B. Zero-order space translation approximation (STA)

As previously remarked the STA is obtained
from the STA1 by taking p„=p„, =0 and o.(t) =0 in
Eq. (27). In this case Eq. (36) reduces to

[f+'„"("'(&&)]:," =f."'(q(v))&.(~(v)) . (37)

C. Keldysh approximation

A comparison between (27) and (30) shows that
for the KA as well as for the MTA no sum over s
as in Eq. (35) is present in the scattering amp-
litude. To obtain an expression for the scattering
amplitude in the KA from (35), we simply ignore
the sun~ in s and substitute p„by a„as given by
(29):

[fQ, k(v)(fl)]BA

=f,"'(q(v))&.f[() (v))'+ (o„.—e,)']'"). (38)

Finally, using Eq. 8.530 of Ref. 17 the scattering
amplitude (35) is reduced to a simple form (except
for an irrelevant phase):

If~'.""'(]'TAi =f."'(e(v))~,(p. —p.) (36)

D. Momentum-translation approximation

From Eqs. (28) and (30), the MTA can be readily
derived from (35), since no summation over s or
l must be performed, resulting in

If ' '"'(Q)] " =f' '(q(v)) J„(y(v)). (39)

I( is interesting to observe that the final expres-
sions for the scattering amplitude in all the ap-
proximations considered in the present work were
brought into the product of a factor which reduces
to the field-free scattering amplitude for v=0 and
a Bessel function of order v, whose argument de-
pends on the specific approximation. As we men-
tioned previously, the KA was also used by Bhakar
and Choudhury for the treatment of this problem,
and their result in the BA differs from (38) only
by the argument of the Bessel function; this is
due to the fact that they have mistakenly chosen
the same phase for the vector potential and the
electric field. Our result (38) is in complete
agreement with Perelman and Kovarskii's [Eq. (6)
of Ref. 1].

For small-field intensities, all the approxima-
tions we have considered give a dependence for
the differential cross section with the number of
photons involved in the process of the form
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da/dO ~ y' ', where y' is the intensityparameter of
the EMF, which clearly shows that for weak fields
multiphoton processes are not relevant, as it is
well known.

V. DISCUSSIONS AND CONCLUSIONS

It is clear that onr re. ults can be separated into
two physically different treatments: the MTA and
STA are not sensitive to the the structural modi-
fications of the bound states caused by the EMF,
end therefore can not be considered as adequate
to treat the intense EMF limit as the STA1 and KA.
As discussed in the Appendix, both the STA1 and

KA are valid only within the dipole approximation,
i.e., X» a. This is the only restriction for the
KA, while for the STA1 besides that condition we
must have a»no=eE, /muP, therefore the region
of validity of the KA is less restricted than that
of the STA1. The only manner to determine th6
best one is a comparison with experimental results
for an EMF within their common region of validity.

For the hydrogen atom, a-10 ' cm, . and typical
values of co are 10 ' cm for a Co, la,ser (Xco
= 10~ cm) and 10~ cm for a Nd-glass laser (&„„
= 1.06 x 10 ' cm). Both can be treated within the
dipole approximation, however, . as discussed, the
STA1 is not adequate for the CQ, laser.

In the treatment of vibronic transitions in mol-
ecules, the large mass of the system yields val-
ues for zo orders of magnitude smaller than those
presented here for electronic transitions, and a
STA-type treatment may become valid even for
high-intensity or low-frequency laser fields.
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APPENDIX: HYDROGEN-ATOM BOUND STATES

IN AN ELECTROMAGNETIC FIELD

Under a, space-translation transformation (4),
the Schrodinger equation for the hydrogen atom
in'an EMF is'written

+ V'ir+ a (f)j y(r, f) = i—(
P' .

, „.e- (r, f)
2m ) ' =

e~

In the usual STA Vfr+ e(f)j-V(r). Let us con-
sider the expansion

(Al)

V(r+ri) =V(r)+(~ V)V(r)+ ~ ~ ~

and treat the second term in (A2) as a perturbation
to the field-free hydrogen-atom Hamiltonian. We
call this approximation the first-o"der STA
(STA1).

In this case (Al) is approximated by

where

eA
E(f) = — = ~A, sin&et =-E, sin&of . (A4)

I

The wave function of the nth level (g-fold degen-
erate) of the hydrogen atom, corrected to first order
due to the EMF can be written

~(l)(r f) P & (f)~(o)(~&)e-Es„t

where one easily obtains

a„,(t) =C„,exp( —ip„cosset) (A6)

and p„ is one of the roots of the secular equation

. d«l~&.~ s+ v. sl =0,
V ~=(e'/mug)(n lE ~ r/r'lp),

(Av)

(A6)

V ~= -e(n lE, r lP) (Alo)

is obtained directly from the. dipole approximation
for the interaction Hamiltonian.

The KeMysh approximation does not include the
sum over the degenerate levels for the spatial
variables, but has the same time-dependence
structure.

y„"'(r, f) =P g„p„"'(r)e "~' exp( —ip„cosset) .
m=1

(A9)

Thip result is very similar to the one obtained
by Kovarskii and Perelman". where
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