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By taking as an example ionization collisions between atoms with simultaneous excitation of one of the
atoms, a mutual relation between the impulse and the semi-quantum-mechanical approximation is made clear
in the case in which the electron-atom scattering amplitude is a function only of the momentum transfer. An
improved impulse approximation is proposed, which employs the smallest number of assumptions among the
various formulas and has an advantage of practical usefulness. It is shown that the formula can be simplified
to a single integral if an average of the cross section is taken with respect to the initial azimuthal quantum

number of an atom to be ionized.

- L. INTRODUCTION

Ionization collisions involving excited species
have been the subject of recent interest. These
processes between neutral atoms and/or molec-
ules in high-energy collisions® have been quite
successfully treated by the semi-quantum-me-
chanical theory or the impulse approximation.2=5
These-approximations have a great advantage.

A better-than-simple perturbation approximation
or a rigorous expression, if available, can be
employed for the two-body (electron-atom) scat-
tering amplitude so that the range of applicability
of the approximations is greatly improved.

These approximations, on the other hand, have
defects. First of all, they assume that the nucleus
of an atom to be ionized does not change velocity
relative to its electron before and after ionization.
Besides, in some instances, application of the
semi-quantum-mechanical theory may involve
lengthy computing time because' the integration
of the differential cross section for the two-body
scattering occupies the innermost position and
is branched into many cases depending on the
energy transferred to an atom to be ionized and
the velocity of an electron to be ejected.?’® In
the application of the processes involving highly
excited states, this part of the integration becomes
most cumbersome and time consuming. The im-
pulse approximation, on the other hand, usually
employs a mass-disparity approximation (mass
ratio of electron and nucleus is completely neg-
lected), even in the case of large-momentum
transfer.®* The practical usefulness of the im-

pulse approximation owes very much to this dis-

regard of mass ratio, since this enables the total
scattering amplitude to be expressed as a product
of an electron-atom inelastic scattering amplitude
and a form factor of an atom to be ionized. The
integration of the square of the form factor over
the angle of electron ejection can further be sim-
plified by using the binary-encounter approxi-
mation.® .

As far as the authors know, there has been no
discussion about the relation between the semi-
quantum-mechanical and impulse approximations
in spite of their apparent similarity. In this paper,
by using an ionization collision between atoms as
an example, the relation between the two approxi-
mations is made clear for the case when the elec-
tron-atom scattering amplitude is a function only
of the momentum transfer. This corresponds to
a special case of the semi-quantum-mechanical
approximation discussed by Flannery, but presents
an important class of problems in the atom-atom
scattering processes.? A relation is also in-
vestigated to the Born approximation. In Sec.

III, on the basis of these discussions, a new ap-
proximate formula is proposed for the ionization
cross section. This assumes the smallest number
of approximations among the various formulas.
This is essentially equal to the semi-quantum-
mechanical formula in the case mentioned above.
The principal difference is the integration order.
This simple difference, however, reduces the com-
puter time greatly, and makes the formula more
practically useful inthe application to the ionization
collisioninvolving transitions between highly excited
states. Especially inthe caseof the'cross sectionav-
eraged over azimuthal quantum numbers, the

1892



17 IMPROVED IMPULSE APPROXIMATION FOR IONIZATION... 1893
formula is very much simplified to a single in- in this paper: M,, My, m: mass of A*, B*, and
tegral, and the numerical effort required is es- electron, respectively;

sentially the same as that for electron-atom scat-
tering calculations. 'Flannery has discussed
somewhat a modification of the integration order & U,p =M, Mp/(M,+Mp);
to derive Eq. (60) in Ref. 2(b); however not as
fully as here, namely, put the integral over mo-
mentum transfer in the outermost position and M g=Mgm/(My+m)=~m;
thus reduce the computational effort required. M=m(1+m/MB) ~m

p=My+m)(Mg+m)/(M,+Mg+2m)

“eA=(MA+m)m/(MA+2m) ~m;

E k, initial and final wave vector of the relative

II. BORN, IMPULSE, AND SEMI-QUANTUM-MECHANICAL mot1on between A and B, respectively; R= k k
APPROXIMATIONS AND THEIR MUTUAL RELATIONS momentum transfer;
In this section we will make clear the relations K ox, min= |k +k ‘
between the Born, impulse, and sémi-quantum- _ o1 /2 1/z2].
mechanical approximations for the case when =@u/mey ](s"‘)llz L l ’
the electron-atom scattering amplitude is only A: internal energy difference between the initial
a function of momentum transfer. We use as an and final state of atom A (A>0 in the case of an
example the following ionization collision process excitation of atom A); €: internal energy trans-
between atoms: ferred to atom B; €, =12k, /21; €pp =€, - A:
) maximum internal energy transfer; €5: Kkinetic
A+B(@)~A’+B*+e(f). ' (1) energy of an ejected electron; tEfBl : ionization
potential of atom B, € =€+ |E}|; gi(Q): radial
For simplicity, each atom is considered to be part of the momentum (@) wave function of the
composed of one electron and a structureless initial atom B; $&¥, 2/ initial and final elec-
core. tronic wave funct1ons of atoms A and B, respec-
The following is a summary of the notation used tively.
—

A. Born approximation

In the Born approximation the cross section for process (1) can be written

2uez 2 ~Kmax }— M > 2 < MB )\2
O.Borﬂ(l f) ( ﬁz ) J’IEEI d€ mein dKI(S eA<J‘4A+nq’ K fdﬂ EB MB+m K ’ (2)
where _
€, (%) =@hle*[vl), a=A,B S ®)

and Q is the solid angle of the ejected electron. Here the last integral over Q can be replaced, with good
accuracy, by using binary-encounter theory®:

J agley02= ‘”’ 2 | lg5(@|*qdq, )
Q(Kse€)
~where
Q(K,€)=(m/nK)|e-n*K?/2M| . (5)
Thus the total ionization cross section can finally be expressed as
1 mm © .
()'IBOI‘!\(Z f) =3 7{— < ) f d f dK lfBorn(K) ‘2 f lgé(Q)‘szQ ’ . (6)
Hea/ 7 1Ef Qy(Kse)

where f# .(K) is the electron-atom A—scattermg amplitude in the Born approximation, defined as

1 /2p,,6%\° M 2
Ifgorn(K)I2=7{T< “ﬁeg > €A<_——A_~—_K>

M,+m (M

B. Semi-quantum-mechanical approximation

In the semi-quantum-mechanical approximation proposed by Flannery? the total éross section for the
same process can be written as follows when the general inelastic electron-atom cross section reduces
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to a function of the momentum transfer only:

: 1 M, \2 [, (7 » '
Osoli=f)= gy T (phn) [ e [ leb@1 @de [ a0 ax, ®)
rA 4 Hea 1251 0 b
where f4(K) is the electron-atom scattering amplitﬁde (can be an exact one), and
p.=max(py,p]), b, =min(p},p}), | )
where
- M Q@ YV 2 ]” S
+(=) = =2 - .
Py = Ko Kunga) s 13= {[‘(Mea) Yl fwgl - (10)

The upper (p,) and lower (p_) limit of the integration over K are dependent on the values of € and @. The
(@, €) diagram defining these is shown in Fig. 1 of Ref. 5.7

C. Impulse approximation

An exact scattering amplitude for process (1) is given by
F(i~f)= Yoi* )-“"P1 P dT,, dt, dp
(E=f)=- zﬂﬁz vi (rlA b (rzs e s ¥z, (rlA!r2B7 T4 @Tp0aP . (11)
The coordinate system used here is defined in Fig. 1. Equation (11) can be rewritten

F(Z_’f)"(zw)a ez fzpﬁ*(fm)gg*(af)e-ﬁﬁw

1 .
I[-M, (MA+m)]F1A+-5AI £5)

N M -> > -
Xexp(—z MB-fm K, rza‘”kf'p,q)

xrbki(qi,rlA,rZB,pA)derrZdeAdq,dqf (12)
Here we have used momentum representations of wave functions defined as '
Ph(T,5) = (@m)3/2 f gi@, efirtndy,
and
"1972'. (;1A,F2B,EA)=(2")'3/2 fg;(ai)‘bii(ai:;lA’;zB’BA)dai' . (13)

Assuming a free relative motion between B* and the rest of the system, we can employ the following ap-
proximation for IR

M - - > > > >
@3 (q.v 14> 213’ pA) exp[ < i m’f_’/; ki> ° rGB]¢(ki’ SITRSPY) pA) . (14)

This is one of the most essential approximations used in the impulse theory.? Substituting Eq. (14) into
Eq. (12), and using a mass-disparity approximation (m/M, and m/My =0), we obtain _
Fimgi=1) = (1 45/m) FAK) €5 (K) , ' (15)

where f4(K) is the electron-atom A-scattering amplitude defined as

e .
fA(K) == ;;%2 f ZP (rlA) e-zqf pA o ¢(ku q;, rlA: pA) drlAdpA (16)
The total ionization cross section can be expressed as
. L 2T 2 ren v
Opmpli=f) = ?(i@") f " e dKlf (K)|? den lex(®)]?, 17)
i m IEp| Ky

where prime means that the mass-dlspamty approximation is used in the-corresponding unprimed quan-
tities. Using the binary-encounter theory (4), we have finally

17 pl 2 (7 i 2
g~ f) = __fﬁ__Lf dKlfA(K)] fﬁ(m)dQ lgi@]|%Q. | (18)

=i Kinin
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FIG. 1. Coordinate system used in the derivation of the
impulse approximation. G4, Gg, and G are the center
of masses of the A* —1, B* -2, and A* —1 -2 system,
respectively.

D. Mutual relations

Here we investigate the mutual relations of the
three approximate formulas (6), (8), and (18). It
is well known and obvious that Eqgs. (6) and (8)
coincide if we use the mass-disparity approxi-
mation in Eqg. (6) and replace f4(K) by f4,m(XK) in
Eq. (8). Except for the apparent differences in
the-mass factors and the approximation for f4(K),
the main difference between the Born or impulse
approximation and the semi-quantum-mechanical
formula consists in the integration ordering. By
interchanging the order of integrations, we will
show here the essentjai equivalence of the Born
approximation with the seimi-quantum-mechanical
formula. It is shown that the only difference be-
tween the two is the Born approximation for f4(K)
used in Eq. (6) and the neglect of 4 certain mass

QolK.E)
QolK .€)
+
Qo(K.E)
Q-
’ . K
0 K Ko K*

FIG. 2. Lower limit @ (X, €) of the integral over @
in Eq. (6) as a function of K. Qy(K,€) =(m/h)|e/K
-n2K/2M]|.

factor in Eq. (8).

The lower limit @,(K, €) of the integral over @
is given in Fig. 2 as a function of K. It easily
can be shown that

K> K, for 0<e<e .., (19)

Kpn>K, for 0<e<e, or €,<€ <€, (20)
and ’

K. in<K, for ¢,<e<¢,,
where

(€ )M (€nM/B) 2% [(1+M/ )€ = €, 172

, 1+M/u
(21)

and

K,=(2Me/n?) 2,

Thus the following two cases should be considered.
(i) 0<e<e; or €,<e€<€,,,. In this case we have

K w Q¥ FE*Qie)
f"“”‘dx dQ=f 0 de dK
K Qo Kre) Qpin Kmin ‘

min
0 . K.
[ 1@ [ ax,
anx Xmin
(22)
where
min_ m ﬁthznin .
o - ﬁKmin M -€, (23)
max _ m [ hszanx_. - ) . 24
% ‘ﬁxm( s <) (@4)

and K*(Q, €) is an inverse function of Q}(X; €)
(Fig. 2) given as

c@o= T+ ()
ST e

(ii) €;<€<€,. In this case we have always
Qanax > leln and

o

Kmax g Qg'“d x+io,sid
K Q=f Qf K
f Qq (K, €) 0 K "{Qi¢)

Kmin
- Qax Kkt e
+fm de K
Q" k

min

© ~ K
+ f dae max dK ,
ngax Kmin

(26)

where
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Qs A ( Kmin, Kmax)
(Kmin. K+(Q.€ ”
Q, Q.
Q
¢ 2 3 /<
3
(K™ (Q.E)K*(Q.E) .

. ¢ .

O. eb 81: ed €rmn(

FIG. 3. (Q, €) diagram defining the range of the inte-
gration over K. Shaded region is forbidden.

- _M Q Q \?
K (Q’i)_ f{— MeB +[<]weB )
2€¢ [My+m\27/2
<5 (B
@7

From the above equations we can obtain the (@, €)
diagram defining the range of the intégration over
K as is shown in Fig. 3. The integration range of
K is shown in brackets in each region. Curves
"1, 2, and 3, and the coordinates of the various
points in Fig. 3 are given as follows:

imm 1w =1)= g T () [ ae [ ax )

i Feoa EL| Kmin
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.curve 1:
Q@ =Qr* [Eq. (24)];
curve 2:
Q=Qr® [Eq. (23)] fore> S Kiy:  (28)
curve 3:
min 2
Q=QM*" [Eq. (23)] fore< 2MKI2nin;
Q.= (3 W2 (m/M) ()% = (€ma)*'?], -
e SR (T T R

Qe=[7n/(2 “)1/2](€1n)-1/2[(“7M)€m_ €max] s
Q= (& W 20m D[ (€)1 + (6gu)'?],

¢ - =@M/ 2< €, A )1/2
o T oiyu/M T\TH /M

As is seen easily from Fig. 3 and Eqs. (28) and
(29), the integration range of K and @ in the Born
approximation (6) coincides with that of the semi-
quantum-mechanical approximation (8), which is
given in Fig. 1 and Eqgs. (6) of Ref. 5. The only
difference is that a mass factor (M, +m)/M; is
missing in the semi-quantum-mechanical approxi-
mation. This discrepancy simply comes from
the fact that the semi-quantum-mechanical theory
assumes that the nucleus of an atom to be ionized
does not change its velocity before and.after the
transition. The relation between the impulse and
semi-quantum-mechanical approximations is now
obvious. That is, both coincide with each other
if we neglect mass ratios m/M, and m /My ev-
erywhere in the derivation.

III. IMPROVED IMPULSE APPROXIMATION

From the discussions in Sec. II we propose
here the following cross-section formula of prac-
tical usefulness which adopts the good parts of
each approximate formula:

dQ g1 @)|%Q. (30)

QK e)

This, like the Born formula, does not use any mass-disparity approximation, and, like the semi-quantum-
mechanical and impulse formulas, includes the electron-atom scattering amplitude 4 (X) which can be an
exact one. Finally, as in the Born and impulse formulas, the most cumbersome part (integration over K)
is not in the inconvenient innermost place. It is better to c‘hange the order of the integrations over € and
K, considering the fact that the integration over K is the most time consuming and cumbersome. This

results in

) 1 mm Lo\2 Ko
O g (i~ f) = g T f aK | fA(K) |2
imp smo € - 5 (um> o K17

where

e(K) © i
[ [ aelsi@le, (31)
1E4 Q, (K e)



17 IMPROVED IMPULSE APPROXIMATION FOR IONIZATION... : 1897

Kmexemins (9 /o) 2] (€ )2k (€0 - | B )2 . (32)
and ‘
€ (K)=-(2/2u) K2+ 2[(7%/2pn) €, ]2 K- A. (33)

Equation (31) assumes the smallest number of approximations among the various formulas, besides having
a great practical advantage. Hereafter we call formula (31) an improved impulse approximation. For the
sake of making the formula much more practically useful, it is better to further change the order of the
integrations over € and 9. This reduces the expression to a double integral, since the integration over

€ can be done analytically. For later convenience, we introduce here the following quantities:

€3Q,K)=+(n/m)QK + (1n*/2M)K?,
Qi (K)=(m/n)[e K)/K - (n*/2MK], Q.K)=-Q%K),

\

QL E)=m/M(|EL|/K-n2K/2M), Q3 K)=-Q%4K),

72 1/2 72 w2 /1 1 1/2) 7wz /1 1
Klf{(ﬁ“) frre- e Y/ T (e o)

72 /2 72 w2/ 1 2 . 1/2 n2
K§<Eﬁ“> Lo - T (e ar)e- 150 7 (

(34)

The double integral over @ and € can be classified defining the classification of the integral over
according to the following criteria: Q: ‘
(Aa) (h'2/2p)<m<§ﬁ2(l/M+1/p.)A, (A-1) F(A_l)_m
~B-1)— () for K™ <K<
(2/21) €, > S 21 /M +1/p) A (A-2) oot
or min(Kz, K"T;ax) <K< Kl(r)\ax
(B)(KZ/ZM)K§> IEiBI , (B_l) (A)— an for (D-2) and K?<K<K§
D)
(ﬁ2/2M)Kf<lE,'3|<(7Z2/2M)K§, (B-Z) —un for (D—l)‘,ox:'B N
i (D-2) and K<K] or K<K
(T2/2M)K2< |Eb|; (B-3) . ’
: L «A~2) —(B) - (B=2) - (IV)  for Ky " <K < K.
(©) K2>ki=[(2#/7i2)€m]1/2=%(f({,"“ +K{)““'), : M for mil?(KZ, RGP <K < KkpH
(1) for (p-2) and KB <k <kB
C-l 1 2
. ( ) )EHH) for -(D-1),
K2<k,' H (C‘z) or (D-2) and K< K}i or K< K};
‘{(B-3)—(C) - (C-1)—(1V)
(D) (72/2p) €, <5 7°(1/p+2/M) (A~ [ES]), " Leau
(D-1) Here the Roman numerals at the end of each
(72/2p) €,> 512/ p+2/M)(A = IE; ]). l;rar;ching imply the following integrals? respec-
ively:
(D-2)
The integral further branches into a few cases M I= J.E(K)de Jm aQ
depending on the region of K, and then the in- 1ES Qg (K, €)
tegration over € gives the following functions: .
- Q) ©
f10,Q) =€) - €5 @, K), =[P aer @+ [ aer.@),
FK)=<(K) |E‘ | QLK) Qp &) ‘
2 = - Bl ,
N e - i Qg ) Qrw)
S R)=€5Q,K) - €5 @, K, (35) 1= [ aer,E @+ [ aer,®,e)
fE,Q)=¢5@Q,K) - |E}]. ! R
According to criteria (A)—.(D) and th? region of + J Q£ ,(K), (36)
K, we can have the following branching diagram MI9)

€
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Qg (x) ’ Qg (K)
aw 1= [ a0+ [ F " aor.,0)
o €
) dl K),
+jo§<m QF oK)
(v) 1= j de &+ [ aor.).

It may be criticized that the branching is quite

AND Y. NAKAI 17
the diagram for a given process (1). The number
of the cases to be actually considered is at most'
four. '

If we are interested in the ionization cross sec-
tions averaged over lg, Eq. (31) can be simplified
further to a single integral. Since we have®

1 .
b %j(zzan)igs(mlz

32| Ep| %2

complicated, and that the formula becomes unprac- = L T 3 7, (87
) 4 . ) EL|+ 2M,
tical. As is easily seen from criteria (A)~-(D), ™(@M,)**(E5[+ Q%/2M, )
however, we do not have to follow all the cases in we can easily obtain from Eq. (31)
J
1 .
O mpimp (Mala = 1yl mp: 8> 0) == 2 Cly+ )0 oy impli~1)
! B 1p : :
w2 K
= 4Bl ) [ @I EOP KGO - a0, (38)
Ri \Mea/ Jgmin
-
where for the electron-atom scattering calculations. We
3 can improve easily the cross-section estimate by
J(y) " | o3 ‘)2 2‘ AN Z TTESD employing a better-than-simple perturbation ap-
(»* BILY B proximation for f*(K) without introducing any fur-
. 3 tan-! — 2 (39) ther complexity or numerical difficulty.
2|EL[? |EL]V2 2 So far we have been discussing only the ioniza-
. 2 vz (&) 2K Q: (K) tion process (1) with simultaneous excitation of
Ve= <2M‘ ﬁ2> ( K " oM > = (21!/; Y72 ) atom A. Process (1) with simultaneous deexcita-
¢B el tion of atom A (A <0) also preserits an interesting -
and (40) problem, since the excitation transfer is expected

_(_m* \V*/IER|  RK\_ Qh(K)
Ve~ \ oM, ji? K ~2M )T @M,
This is a very useful formula because the numeri-
cal effort required is essentially the same as that

to enhance the process greatly. The derivation of
the cross-section formula for this case is not very
different from that of the excitation case. We only
give here the final expression for the cross section
corresponding to Eq. (38): ‘

A R e 1 2/ K0 .
Ginlphnp(nAlA’”AlA>”a§A<0,IAI>IE33|)=%IEB|3/Z P < H> (J' dK[J(ye)-J(ye')]
i 0

where

N C S S

In the case of |A| <|E%| the cross-section formula
coincides with Eqg. (38).. The detailed discussions
of the process will be given in a future publication.

IV. SUMMARY

Mutual relations between the Born, impulse, and
semi-quantum-mechanical approximations were

Hea

K([J(37) - J(yan) IFARIPK, (1)

made clear for the case when the electron-atom
scattering amplitude depends only on the momen-
tum transfer by taking as an example the ionization
collisions between atoms with simultaneous excita-
tion of one of the atoms. An improved impulse ap-
proximation '_is proposed, one which assumes the
leastassumptions. Exceptfor the mass ratiofactor
m/Msg, this is essentially equal to the semi-quan-
tum-mechanical formula and modifies the integra-
tion orders in that formula. This has, however,
an advantage of practical usefulness in reducing
the computation time. Especially formulas (38)
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and (‘31) are very simple and useful in the applica-
tions to the processes involving highly excited
states. A series of applications of the formulas
derived in this paper will be made in future publi-
cations not only for the case of the simultaneous
excitation, but also for the case of deexcitation of
one of the atoms. Use of the Glauber approxima-
tion for the electron-atom scattering amplitude in
Eq. (38) or (41) will also be interesting to test the
validity of the Born approximation for the ampli-
tude. As pointed out frequently in this paper, we
have discussed only the case when the electron-
atom scattering amplitude reduces to a function of
the momentum transfer only. This is, of course,
not the most general case, but a very important
case in atom-atom scattering problems. In gener-

al, the scattering amplitude depends not only on
the momentum transfer but also on the relative
velocity of the two particles. A similar modifica-
tion of the semi-quantum-mechanical approxima-
tion could be made together with clarification of
its relation to the impulse approximation.
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