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The close-coupling method has been applied to the electron-H, collision to obtain excitation cross sections
of the b X+, a Xg, e 'X+, c II„, and 8 'X+ states. Cross sections of the triplet states are presented at
several incident-electron energies between threshold and 40 eV, and those of the 8 'X+ state at 25, 50, 75,
and 100 eV. Vibrational levels are treated by the Franck-Condon-factor approximation, and the cross
sections are rotationally averaged. Cross sections by the Born-type calculations are markedly different from
those of the present calculation. Furthermore, the manner and degree to which they differ also vary from
state to state. Comparison with experiment is limited to a set of experimental data of total dissociation cross
sections.

I. INTRODUCTION

I

Excitation of the electronic states of a molecule
by electron impact is one of the simplest basic
processes in molecular-collision phenomena. The
importance of such excitation processes in many
areas of studies has stimulated considerable ex-
perimental efforts in recent years. However, the
progress in the theoretical aspects of the problem
has been much slower. In fact, the status of the
theory of electron-impact excitation of the elec-
tronic states of. diatomic molecules is in a rather
primitive stage in comparison with the corres-
ponding electron-atom processes. For a few dia-
tomic moiecules (H2, N„CO), systematic stud-
ies' ' of the excitation cross sections for a number
of singlet and triplet states have been made by
means ot the Born approximation and/or the modi-
fied versions of it. The modifications of the Born
approximation as introduced by Ochkur' and by
Rudge' enable one to handle the exchange inter-
action between the colliding and the target elec-
trons in a simple way. Excitation from a singlet
to another singlet state can be treated either by
the first Born approximation (referred to as the
Born approximation in this paper), or by one of
the modified versions when the exchange effect
is included. On the other hand, one must resort
to the Born-Ochkur or the Born-Rudge approxima-
tion for excitation to triplet states. In Refs. 1 and

2, it is suggested that Born-Ochkur approximation
be used for singlet-singlet excitation, but the
Born-Rudge scheme is recommended for singlet-
triplet processes. C omparison with experiments
shows satisfactory agreement for a few states, but
rather large discrepancy is found for some others.
Viewed as a whole, one can only regard the Born-
type calculation as a means of providing theoret-
ical estimates but not always cross sections of

precise quantitative significance. In the cases of
singlet-triplet processes, the excitation functions
generally peak at a few eV above the threshold and
decrease steeply with increasing energy. For
many applications, the major interest in triplet
excitation lies in the near-threshold region where
the cross sections are large, but this is also the
region in which the validity of the Born approxi-
mation becomes questionable. Recently a calcula-
tion based on "the first-order many-body formula"
(a form of distorted-wave approximation) was ad-
vanced, "which is yet to be tested against more
rigorous theories. Like the Born-Ochkur and Born-
Rudge approximations before it, this method, too,
takes advantage of relative simplicity in computa-
tion but also falls short of serious theoretical
justification. Collectively, these efforts are a
testimony that while the need for theoretical cross
sections is great, the means of obtaining them is
restricted —no doubt, due to the computational
complexity involved in the molecular problems.

The most rigorous and systematic formalism
commonly applied to the electron-atom collision
processes is the method of close coupling. "'
About ten years ago a very ambitious effort of
applying the close-coupling method to electron-
H, excitation was undertaken by Fajen." He cal-
culated the excitation cross sections of the B'Z'„,
C'II„, and E'Z,' states of H, by a multistate close
coupling scheme. To make the problem tractable,
Fajen neglected the exchange interaction between
the colliding and target electrons. The emphasis
of his work is mainly focused on the problem of
singlet-singlet excitation in the high and intermed-
iate energies, particularly the effect of multistate
indirect coupling on the cross sections of the
E'Z' state. Black and Lane"'" also calculated
the cross sections of the B'Z'„state by the close-
coupling method. The electron exchange was ap-
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proximated as an effective exchange potential by
the scaled Slater-Hartree-Fock form to simplify
the computation. " The latter work was primarily
concerned with the resonant excitation of the B 'Z'„
state at low incident-electron energies-(11-13 eV).

In this paper we apply the method of close cou-
pling to the electron-H, problem with the project-
ile-target electron exchange included, and calcu-
late excitation cross sections for several triplet
states as well as the 8'Z'„state. The theoretical
formulation and the computational procedures
parallel closely those of the atomic cases with
two notable differences coming from the axial
symmetry of molecule an& the two-center nature
of (homonuclear diatomic) molecular wave func-
tions. From the computational standpoint, these
differences translate into one additioria1 truncation
of an infinite sum beyond the atomic calculation.
In our calculations this truncation is fully justified
with a demonstrated convergence. Aside from this
point, all computations are carried out to the same
degree of refinement as the corresponding elec-
tron-atom problems.

factor approximation, by which electronic states
of molecules are considered "vibrationless. " This
simplifies the calculation, si,nce the vibrational

' wave functions now enter the computation only
through Franck-Condon (FC) factors so that the
scattering equations can be solved without the
knowledge of vibrational motion. A discussion
concerning the validity of this approximation will
be given at the end of this paper. In the present
work we will focus our attention to the electronic
motion and ignore the dependency of electronic
functions on the. internuclear distance. Thus, - in
what follows, all electronic functions are those
corresponding to the equilibrium separation of
the ground state.

An electronic state of a diatomic molecule is
defined by the angular momentum along the mo-
lecular axis A. , and the spin (sm). We use n to
distinguish different states which have the same
quantum numbers (Asm). Thus, we write an N
electron electronic wave function as

4 (nXsm ~x„.. . ,x„),

II. GENERAL THEORY
J

The development of the close-coupling theory dates
back to the 1950's." Since then this method has
been applied with increasing frequency to electron-
atom problems, ' so that the general theory of
the close-coupling met'hod is rather well known
now. Nevertheless, for the purpose of later dis-
cussions, we specialize it to electron-diatomic-
molecule collision processes which result in an
excitation of electronic states. The formulation
here parallels closely to.those already published
in conjunction with the electron-atom case, par-
ticularly, the work by Smith, Henry, and Burke."

In the field of electron-molecule collision, when
an excitation is.made from one electronic state to
another, we are interested in the excitation cross
sections that are averaged over the initial rota-
tional substates, and summed over the final ro-
tational substates. In order to compute such cross
sections, it is possible —in fact desirable from the
computational point of view —to formulate the
problem in the molecule-fixed frame of refer-
ence, "'"thereby ignoring the rotational structure
completely. However, in its stead, we average
the direction of the incident electron with respect
to the orientation of molecule. The only assump-
tion needed here is that the energy of scattered
electrons be much greater than the energy spac-
ings of the rotational states.

As to the treatment of the vibrational motion,
it is a common practice to use the Franck-Condon-

where x, represents the spatial (r, ) and spin (v&)
coordinates of the ith electron. 4's are fully
antisymmetrized products consisting of one-elec-
tron molecular orbitals P&(n&X&~ r) with o.'or P
spin, and they are assumed to satisfy the Schro-
dinger .equation exactly

H~4(nksm) = E„~4(nXsm), (2)

N-.z

+ r~~r
1=a y= +x

where Z is the nuclear charge, and r„and r~ are
the position vectors of the two nuclei. The scatter-
ed-electron wave is characterized by angular mo-
menta (fm') and spin (s = —,', m = +~).

The essence of the close-coupling method con-
sists of expanding the total (N + 1)-electron func-
tion of the collision system in terms of a suitable
set of basis functions. Due to the axially sym-
metric field in which these N + 1 electrons move,
the total angular momentum projected on the mo-
lecular axis A = X+ m' is a constant of the collision
pr'ocess. As we deal only with spin-independent
Hamiltonians, the total spin (SM) are good quan-
tum numbers. Infact the cross sections are inde-
pendent of M.

Accordingly, we adopt a basis set which are
eigenfunctions of (SMA), i.e.,
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= QC(s, —,', m, M -mlSM)

x Y( ~ y(r()$( 2M m
l
(7()

x 4(nh. smlx„. . . , x, „x,„,. . . , r,„„),
(4)

where C( j,j,m, m,
l
JM) is the Clebsch-Gordan co-

efficient, y, is the spherical harmonic and $ is
n- or P-spin function. We also used two shorthand
notations: X ' indicates that the x,. coordinate is
missing in the basis function as shown and the
channel index p =-(nial). " The total (N+ 1)-electron
wave function is now expanded in an explicitly anti-
symmetrized form as

symmetry of the target, this is equivalent to re-
quiring orthogonality between the scattered radial
functions ~ 'F„.„and the target orbitals of the
same /. This orthogonality relation offers a, great
deal of simplification to the scattering equations.
For molecular systems, the requirement of
x"'F, being orthogonal to the relevant molecular
orbitals would certainly ensure the orthogonality
of the colliding-electron wave function to the tar-
get states, but the former is somewhat more
stringent than the latter. However, in this work
we adopt the former version in order to take ad-
vantage of the simplification in handling the ex-
change terms in the scattering equation, i.e.,"

Upon expanding

and &f&)(n;&;l r) = Q &, ~ (r)Qq, (nqA) lr),J ~
4

lay yet yg

E(I. (11)becomes

(12)

xE,, „(r,)gs," (X '), (6)

where r 'E„,„(r) are to be determined by solving
the scattering equation. In this paper we will not
consider the bound (N+ 1)-electron states in the
expansion of E(I. (5). Inclusion of such bound states
allows for the possibility of electron capture into
the target molecule, "and would be essential in
the studies of resonance behaviors of excitation
functions such as in Ref. 20. We seek the solution
of the Schrodinger equation,

(H —E)kr(x„. . . , x„„)= 0,
where the (N+ 1)-electron Hamiltonian H is

g 6(, ( ~ bi, -v ~g, ((n&X&lr}r 'E&„, (r)r'dr=0,

(13)

for all molecular orbitals P&(n&X, lr). This ortho-
gonality condition may be treated by means of the
Lagrange undetermined multipliers M„.~, . This
amounts to adding to E(I. (10) the following e(lua-
tion:

5 Q Q 5( ( 5 .M„((b~ ((n~k~lr)

(14)

H=H, (
—~V'~„+ V(r„. . . , rs, (), (8)

N

v(r„. . , r„„.)=-z(lr„-r...l

'+ lr, —r„„l ')

From E(Is. (10) and (14), we obtain the familiar
set of integro-differential equations.

(
d' I'(l'+ 1)+k" F,, „x

In lieu of E(I. (7) we apply the variational principle
to the integral (a standard prescription here), '+ Z (. ( ~g, ~ ~ .)~,(&~,(("x~~lr) (16)

x (H —E)@r(x„.. . ,x„.,) = 0, (10)

with a subsidiary condition that the scattered-elec-
tron functions bg orthogonal to all the relevant
target one-electron orbitals (t, . (Imposition of
this orthogonality condition precludes the possibil-
ity of electron capture into those orbitals. ) For
electron-atom problems, because of the spherical

where the direct (U) and exchange (W) potentials
are

x p
8A/A (X-( N+ ( ) ) dr

(16)
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W„. ..(rS,1)F ~ „(1'M,1)

0,'"' (& "b'M'F, ",(&M) pM —rM„i '
'I

x IiisM~(X '""')d r, . . . dr„dr"„„, (17)

and

scattering amplitude is

f (nII.ls-n'X'l 's'ik, 1"')

=(kk, ) g
&' ' I'g*, 1(k)I'I~, , (&)T,'"„, (20)

where the transition matrix T is

(18)
Tst g SsMA (21)

We will not attempt to simplify Eqs. (16) and

(17) until we come to a specific application. How-

ever, we point out here that these coupling poten-
tials vanish between channels of differing parity. "
Parity of a channel nkvd associated with n~ elec-
tronic state may be defined as (-1)' for "gerade"
states (ZS, IIS, . . . ), and (—1)"' for "ungerade"
states (Z„,II„,. . . ). As a result, the scattering
equations separate into two sets according to even
or odd parity just as in an electron-atom collision
problem. The solutions F„,„(r) are subject to the
boundary conditions,

The differential cross section in x direction is

I(nks - n'X. 's '-i k, 1"')

4g2 ~ 2S+1
k' ~s2(2s+ I)

x 2 I yI.A-z(k)~I', A-1' (1"')Ta' 1' I', »11 I

'.
err'

(22)

Integration over the scattered angle yields a
total cross section for a given incident direction
(k). As stated before, we are to average the cross

A,

sections with respect to k, i.e. ,

F., „(r)-0 as~-o, Q(nIIS - n'A. 's') =— dk dr f(nXs —n'&'s'i k, 0)
4m

ei(Mr-&1i2)I'r]$SMA] as t co (18)

where S„.„ is the scattering matrix. Following a
similar analysis. of Blatt and Biedenharn, "the

I

m ~ 2S+1 ~ iTs~~
k2 ~ 2(2S + 1)~ I e Ai I', aAI I

(23)
For the purpose of later discussions, it is con-
venient to have cross sections expressed as

2S+ 1
Q(nks n'&'s') = g P g Q

sM (nasl-n'X's'l'),
S ( S+ ) A=-~ I=IA-11 I'= A-8 I

with

Q
"

( Ansi-n'X's'I')= —', iT&1.I. (25)

Q(nksv -n'X's'1I') = q„„,„,„Q(nIIs -n'X's'),

q„„gg = X„*t„.R g„„RR dR

In accordance with the FC approximation, Eq.
(23) is viewed as the cross section from any one
vibrational level of nXs to al/ vibrational levels
of the n'X's' state. Therefore, cross sections
between a pair of vibrational levels are to be scal-
ed by the appropriate Franck-Condon factor
q„„&„., l.e. ,

where II (R) is the vibrational wave function of
the ne state.

It is worthwhile to draw the contrast between
the electron-atom and e)ectron-molecule systems.
An obvious difference is that the electronic wave
functions of a diatomic molecule are centered
around two nuclei. This causes difficulty in com-
puting the coupling potentials, which will be dis-
cussed in Sec. IVA. The other point of practical
interest is the following: In an electron-atom col-
lision, the scattering equations are diagonal in
L=1,+I and Mi (T, and 1 being the angular mo-
menta of the atom and scattered electron, re-
spectively), and the cross sections are indepen-
dent of Mi. Accordingly, the cross sections cor-
responding to Eq. (24) are (apart from the parity
consideration) given by

+lg

S+ ZO a+ 1 r I I I ~ = Z 1'I-a - a
(27)
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Thus, once the number of target states nE, is de-
cided on, one set of scattering equations corres-
ponding to a given pair of L,MI are solved at a
time, yielding partial cross sections Q~s. Further,
for a given L, / and l' are restricted to a finite
number of values as shown in E(l. (27). Strictly
speaking, L runs from 0 to . In practice, since
the partial cross sections Q~~ diminish with in-
creasing L for large L, the series in E(l. (27) may
be terminated after summing a finite number of
Q~s for L=0, 1, . . . , L . The point we like to
emphasize here is that L is chosen —and may
be increased later —according to the knowledge of
partial cross sections Q~s already calculated for
L L

However, for the electron excitation of molec-
ules considered in this paper, only A is a good
quantum number. " Thus the scattering equations
for a given A would in principle contain an infinite
number of channels corresponding to /= ~A —)(~,
~A —)(~+2, . . . as shown in Eq. (24). Again, trun-
cation of channels (with respect to /) is inevitable.
However, in this case the truncation must be made
before the scattering equations are solved. In
other words, whether or not a sufficient number
of channels were included in a calculation can be
ascertained only after the calculation had already
been completed. This is an additional burden in
the calculation of molecular excitation. We will
discuss this further in Sec. III.

III. APPLICATION TO ELECTRON-H2 COLLISION

Within the theoretical framework outlined in
Sec. II, we made a series of two-state close-cou-

pling calculations by including the ground state
X'Z' and each of the B'Z'„, a'Z', b'Z'„, e'll„, and
e 'Z'„states. With the number of electronic states
thus limited to two, we must still decide how many
partial waves (//') are to be included in a calcula-
tion, as pointed out at the end of Sec. II. After
some test calculations we found that for the sing-
let-triplet excitation it is quite adequate to include
three partial waves or less per electronic state in
the energy range (up to 40 eV) of incident electron
considered here. However, in the case of excita-
tion to the singlet state (B'Z'„), it appears that a
very large number of partial waves would be re-
quired. Therefore we adopt the following practical
scheme" to carry out the close-coupling calcula-
tions with a limited number of partial waves while
maintaining sufficient degree of accuracy.

4

A. Special treatment for singlet-singlet excitation

Let us denote the close-coupling (CC) cross sec-
lon of X ~g + ~u excltatlon

Q(cc )(B 1Z+) g g Q(cc))((/ /I)
jf' A

(28)

This is a shorthand version of E(l. (24) with 8=M
=& and s=s =0. We assert. here that for suffic-
iently large /, /'& L, Q'cc' (/, /') approach the cor-
responding partial cross sections Q(8""'~(/, /') by
the Born approximation. Barnes, Lane, "nd L".;i"
verify this in their work on electron-Na collisions
with a qualitative physical reason behind it.
Therefore we may calculate Q' c)~(/, /') for /, /'
~ L, and substitute Q(~"")~(/, /') for Q(cc) (/, /')
for (/, /')& Lviz. ,

Q(cc)(B )Z+) g g Q(cc ))((/ /r) + g g Q(Born)A(/ /I)
ll &L A

(29)

We will substantiate this claim later.

B. Coupling potentials

The electronic wave functions used in this work
are as follows:

4 (X 'Z' s = m = 0) = [1o n (1)le P(2)],
4(B'Z'„;s =m=0) = VT (le n(1)lo„P(2)]

—5o,p(1)lo.n(2)]j,
4 (a 'Z' s = 1,m = 0) = ~{[io n(l) 2o~P (2)]

+ [lo p(l)2o n(2)]],
C (a 'Z~; s = m = 1)= [lg n (1)2o n(2)],

TABLE I. Threshold (vertical excitation) energies in eV.

a 3Z' c 3II„' e 3Z'
//

0.0 10.50 11.80 13.22

and similarly for /)'Z'„, e'Z'„, and e'H ()(=+1)
states with 2cr replaced respectively by 1o„, 2p„,
and 1))„(A.=+1) orbitals. Here, we used the brack-
ets to represent the normalized determinants. The
detailed form of the molecular orbitals will be
given later. The threshold energies of these states
are listed in Table I, which should be viewed in
the context of the FC approximation. Let us con-
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TABLE II. Coupling potentials for (x 'Z', B 'Z„') system.

x 'z'

B 'Z„'

x 'z'

2(lg, lg ) + (lg, lg }
~2(lg, lg„) + (1/~2)(lg, lg„}

B 'Z'

~2(lg„, lg ) + (1/~2){la„, la }

(1o, 1 o ) + (1o„, 1o„)

sider a process in which an incident electron (s
= m, = 2) impinges upon an H, molecule in the
ground state (s=m, =0). Consistent with this, we
construct basis functions as in Eq. (4}, which are
spin eigenfunctions of S=M=2 with N=. 2. For ex-
ample, with the X'Z' state we have

V'„„,, (r) = dr" Y( ~(r")Y,. ~ ~. (x)

(35)

g
s"~(X ') = 1' (~ )o.(3)4 (X 'Z' s = m = 0),

and likewise for the 8'Z'„state. In the case of
a 'Z~ we write

y.',~',(X-')= Y. ..(~,)[~P(3)C(a'Z,', s=m=1)

—~3n(3)C (a 'Z', s = 1,m = 0)]

(32)

The basis functions associated with other triplet
states are obtained similarly. With these explicit
expressions [Etls. (30)—(32)], the potentials [Egs.
(16},'(17}]may be reduced to the following:

(~}= 6 .8 [Y.kl .~ v I d ( }+Y Xt.. ' v i d (~}]
(33)

The Kronecker delta in Eq. (33) restricts the di-
rect-coupling potentials to those between channels
belonging to electronic states of same spin, with
the obvious consequence that a singlet-to-triplet
excitation is achieved only through electron-ex-
change. The potential due to the nuclear charge
V is diagonal in electronic states as shown in
Eq. (34}. The part due to the molecular electrons
V' is a sum of integrals involving one-electron
molecular orbitals (MO)$&, Q,' with numeiical
factors f, . Analogous to this, we find

gg g r Y). g g.- I' 1 —1

Qq(r)Y,*~ ~(r)(~x') 'E...„(r')df dr'.
(36)

where

n&" n}g s, n' }t ' ) ' s' ~+ ~ ~ ( n}t), &
n' }t' }

dy Y&,x-z(f')Yv, x-v (/)

For convenience we use shorthand notations:

(Ag, 4'g) = 4p(r')
~

r-- r'~ 'p,'(r')dr',

8,', ~,j=- ~,*( ')Y. ..(-')I -"I '

(37)

and

x [/r„-r[-~+ /r, —r/-'1,
(34)

x Q)(r)Y,*~,(x)(xr') 'F, , „„(x')df dr'.

(38)

We display in Tables II-IV the coupling potentials

TABLE III. Coupling potentials for (X 'Z', a Z') system. '

x 'z'
E

a 3z'

x 'z'
S

2(la, lg )+ (lg, lg }
W (la, , 2g, }

a 3z'

W (2a, lg, }

(lo, lo ) + (2o, 2o )
—

—,
'

[1g, la }—
—,
' (2a, 2a }

'Tables for (X 'Z', b Z') and (X 'Z', e Z„') systems are similarly obtained by substituting lo and 2o„
orbitals respectively for the 2o orbital.
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TABLE IV. Coupling potentials for (X 'Z', c II„)system. '

x 'z'

2(la, la ) + (la, la )

c 3II„(X=+1)

Ws (ln„", la

c II„(X= —1)

V-,'{1»„-,la, )

c sII„(X= +1) V s (la, Ia„' )
(lg, lg ) (lm„', lm'„')

(in„, ln'„') —— {Ivr„, I»„)

c sn„p. = - I) V-' {la, 1»„) (ln„', Iw„) —
—,
' {Iw„', Is(„)

(1g, lg ) (lm„, 1vr„)

(la, la ) —
—,
' {ln„, I»„)

'One-electron orbitals m' and m refer to m'(X = +1) and m(X = —1), respectively.

between channels with respect to the electronic
states to which they belong.

In order to express these potentials more ex-
plicitly we use the following well-known expan-
sions, with the origin of the coordinate system
chosen at the center of homonuclear diatomic mo-
lecule as shown in Fig, 1. That is,

{39)

of r and &8, and z& and x& for greater or lesser of
x and x'. With these expansions we find

N 2
Yn)(j s, n' )(' ) ' s' (r ) 5(nx), (n' )(' )

l+ $'
K

x p c» (l'A —)(.', /A —X) —'
K= Il l'

/

(K= even)
(42)

x y»(P„P~~r), (43)

(40) where we used the notation of Condon and Short-
ley, "i.e. ,

-

(s-I"('= —g ( ) (
—') Q)'J, „(d')v, , (d);

(41)

1/2
c~(l'I', )I)=

t
dP Y,* (r)Y» „
x(r)Y,.„,(P), (44)

where R& and R& stand for the greater or lesser and the yK function is

1/2 K

y»(y~, p~ ~r) = (-1)'J 's
1 p~*(n~, )(,

~

r')Y», „.(r') — —' pq(np, '~ r') dr'

1/ 2.

( 1)k&-)(& r-»-z r d»r d2 dPd + r»
2K+ 1

(

~l E«1~I2 dy p

x dg' &*n&X& r' k'K
~ )„. 0'

& n&X& r' (45)

where )(.
&

is the angular momentum along the molecular axis of a molecular orbital P&. Similarly,

W„„,(r)Z„.„„(r)= pg, g-, r dP Y„*,(P)Y,*, ,(P)y,'(r)
Kyg

x r' dPd Y»s(P')Y; ~ „,(P')(t)~*(r') (46)
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To simplify this we use the relation
t

(~) (~) f' (2l, +1)(Rl,+1))'~'
~x"a &2 2 ~ (, , ) 4p(2L+ l)

x C (l,l,m,m,
~

LM = m, + m, )

x C(f,f,oo iL0)i;„(f), (47)

and define a function Zz, viz. ,

4~
Z~(g&lm v)=( r dF Y (f)F&„(f)pg(r)

~+' 2)+ y
C(Klgm

~
LM)

K' ll +

x C(Kl00iLO)

R
2

B

I

1

x
dent~„(P)gg(n~x~~r).

(48)

The 13.st integral in the above equation restricts
M=X&, which in turn sets g=, X&-m so that the sum-
mation over g is merely formal in Eq. (46). Com-
bining Eqs. (47) and (48) into (46), we find

0

FIG. 1. Coordinate system showing the expansions of
/r —r'[ ', Jr„-r/-', and /rs--rf '.

w„„.(~y'„.„.. (~|= —p@ Qz;(gyes. —~ Ir) r'"F„.„., (r') .dr'

+r" r' r 'E„.„"(r')dr' &„(peal'A —x' r')
0

We note that the parameter K in Eqs. (42) and (43)
and L in Eq. (48) are limited to a finite number of
values so that those series [Eqs. (42), (43), and
(48)] can be summed without any omission as in-
deed done in this work. The. exception to this oc-
curs in Eq. (49) with regard to K, where K has no
upper limit. As a practical matter this 'infinite
series must be truncated, and we found it suffi-
cient to retain the three leading terms in this work.

tered at A and B with exponents a, b (see Fig. 2),

G(a, A) -=exp(-a[(x -A„)'+ (y -A,„)'+ (s -A, )']]
= exp[-a(-,'R'+ r '+ Rr cos8)] (50)

G(b, B)= exp[-b( ,'R'+ r' —Rr—cose)]. (51)

The Gaussians shown above are known as s type,
from which p, —, p„-, and p„-type GTO can be de-

IV. METHOD OF COMPUTATION

In the usual approach of expressing the mole-
cular orbitals (MO) by linear combinations of
atomic orbitals (LCAO), the molecular wave func-
tions are centered around the two nuclei. The
greatest (if not the only) difficulty with an elec-
tron-molecule calculation arises from this two-
center nature of molecular furictiori, the conse-
quence of which needs no elaboration here. In
this section we develop a computational technique
suitable for the 'potentials by exploiting the ad-

l

vantages offered by the Gaussian-type orbitals
(GTO).

To begin with, we define Gaussian functions cen-

+Z

A(0, 0, ~)
R

B(00-—)-

FIG. 2. Gaussian-type orbitals in the Cartesian and
spherical coordinate systems.
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rived, i.e. ,

G~ (a, A) = (z —A, )G(a, A) = (r cos8 ——,'R)G(a, A),

G& (a, A)=(x —A„)G(a, A)=rsin8cos(tG(a, A), etc.

(52)

Crucial to our computational procedure is the fact
that the exponent in Eq. (50) is rational; in con-
trast, for the Slater-type orbitals (STO) the ex-
ponent would be &rational. In terms of these Gaus-
sian functions, the one-electron molecular orbitals
appearing in Eq. (30) are expressed as

6

, = g c&[G(a&, A) +G(a&, 8)]
10

+ c&[(r cos8 —~R)G(a&, A)
c7

The expansion coefficierits c's are determined by
the self-consistent-field (SCF) calculations for
each of the X'Z'„B'5'„, a'5,', O'5'„, c'lI„, and
e'5'„states at R = 0.74 A- corresponding to the
equilibrium separation of the ground state (X 'Z').
These coefficients are listed in Table V along with
the corresponding exponents of six s-type and
four p-type Gaussians. " The general procedure
of SCF calculation is discussed in the literature. "
In case of (1(T,)(2o„)e '5'„which is the second lowest
state of this symmetry, the SCF procedure is ap-
plied to the second lowest root of the secular equa-
tion; the 20„orbital so obtained is found to be
orthogonal to the lo„orbital of the (lo )(lo„)b'5'„
state. In all cases the orbital coefficients are
converged within 10 '.

w (r cos8+-,'R)G(a~, 8)], (53) A. Coupling potentials

(54)

with 0 and o„ taking the upper and lower signs,
respectively, and

10

p, = e"~ g c,r sin 8[G (a&, A) + G(aj, B)].
f (=7

With a substitution of Eqs. (53) and (54), re-
duction of the last integral in Eq. (48) becomes
possible. For example, we have

2ff

dry»(r)$, *(A., = 1 ~r) = — dP e"" "~P c, exp[ —a(—,'R'+r')]
0

sin8d8[0»(cos8, sin8)r sin8][exp(-a&Rr cos8)+ exp(a, Rr cos8)], (55)

and similarly with other MO. Thus, a typical
8 integral has the form of

sin8d8 O»(cos8, sin8)f(cos8, sin8) exp(yr cos8),

y=+aR. (56)

In practice the products O»(cos8, sin8)

x f(cos8, sin8) always turn out to be an even sine
function (sin'"8) so that we have to deal only with
the following integral:

r sin8d8(cos" 8) e" '"~ =P„(x)e "+Q„(x)e",
0

where

TABLE V. Expansion coefficients of molecular orbitals as defined in Eqs. (53) and (54).

Exponents lo (X 'Z') 1 o(B 'Z') 1 o(b 2') 2o (e 2') 2o (a Z') lm(c „)
(

s type
t

1 0.082 217 0.008 161 0.014 707
2 0.224 660 0.056 787 0.012 820
3 0.673 320 0.109 047 0.013 728
4 2.346 48 0.099 505 0.017 342
5 10.246 5 0.065 448 0.012 806
6 68.160 0 0.035 669 0.006 979

0.072 015
0.114 357
0.097 461
0.065 106
0.040 253
0.021 938

0.085 134
-0.041 434
—Q.047 528
-0.029 563
-0.018 133
-0.009 883

-0.079 538
0.097 826
0.023 497
0.047 893
0.017 078
0.009 308

7
8
9

10

0.020 i 85 0.000 047 0.002 002
0.055 713 -0.000 204 0.010 115
0.174 21 1 -0.001 571 0.014 5 15
0.733 825 -0.021 730 0.016 108

p type

0.000 336
0.004 223
0.009 789
0.025 107

0.007 021
-0.013 251
-0 019 582
-0.006 282

0.013 628 0.001 276
-0.032 689 Q.Q07 44Q

0.012 642 Q.Q14 973
0 032 281 0 022 637
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n

Z„(x)= (-1)""g TABLE VI. Step size of integration regions' in ao.

(58)

The angular integrations for the y~ function in Eq.
(45) are performed in a similar manner; the only
difference is that there are two MO in the inte-
grand so that the number of terms is increased.
However, the form remains the same.

Thus, with the angular integration completed,
r integration is carried out numerically by Simp-
son's rule for yr function in Eq. (45). From this
V' are assembled in accordance with Eq. (43),
and subsequently by combining V' and V~, . we ob-
tain U„„.(r) in Eq. (33) in a, tabular form from
x= 0 to 31a„beyond which U», (r). are fitted to a
two-term asymptotic. form, i.e. ,

This curve fitting is based on 50 data points be-
tween y'= 31 and 41a, with a maximum error of
0.1% for the worst case. For numerical integra-
tion we start with a mesh size Q = 0 0125ao and
double it after every 80 quMrature points until
5m=0. 1a, is reached as shown in Table VI. This
quadrature scheme is common to all. numerical
procedures, i.e. , withy~, Z~, and the scattered
wave F,&

of Sec. IVB, so that the potentials are
fed into the scattering equation as they were cal-
culated without further manipulations, except the
asymptotic fitting of U„„, described above.

Similarly, the Z~ functions are tabulated as pre-
scribed by Eq. (48) from r = 0 to a suitable cutoff
value x,„„beyond 'which the exchange potentials
are set to zero. The effective range of exchange
is expected to be roughly the extent of the molec-
ular orbitals. In our test, calculations we found
no appreciable difference (less than 0.2/g) in cross
sections when we used x,„,=20, 25, and 31a,. For
the sake of s'afety, however, we settled on r,„,
= 25a„accepting the waste of "overkill. "

To ascertain the effect of truncation in the sum-

0.0125
1.0125
3.05
7.1

0.0125
0.025
0.05
0.1

1.0
3.0
7.0

'
r& and r& are the starting and final points of a region.

mation over K of Eq. (49), we performed test cal-
culations with the O'Z'„state at E =15 eV by re-
taining one, three, and five Zz terms in Eq. (49).
W'ith five Z~ terms, the partial cross sections for
A = 0 are 0.01807, 0.1204 ~ 10 ', 0.1473 && 10 'a,',
respectively, for (l, l')= (0, 1), (2, 3), and (4, 5) as
shown in Table VII. The corresponding partial
cross sections with three Z~ terms are 0.01810,
0.1210~ 10 ', and 0.1141& 10 ', and with one term.
they are 0.01829, 0.1816& 10 ', and 0.2725&& 10 "
The difference between the three- and five-term
results is quite negligible with respect to both the
partial cross sections and the total cross section.
%'ith regard to the one-term calculation, the
larger discrepancy in the (2, 3) and (4, 5) partial
cross sections over the (0, 1) may be understood
in the following way. Namely, the last integral
of Eq. (48) is nothing but a decomposition of MO,

P& by angular momentum, i.e. ,

P) 1, (n~A( ~r) = d&Y' ~ ~(P)(f&~ (n)X) ~r) . (80)

For the MO's of H, considered here, we find that
the largest concentrations are in P„„P„„etc.,
over other higher-angular-momentum components.
These large components will enter into the summa-
tionof Eq. (48) onlyif K=/, la 1 sothat, viewedfrom
thispoint, Z~, and Zg, y are important terms. In
the above example with only the Z~, term, other im-
portant terms Z~, and Z~ 4 are not taken into ac-
count, and this omission may explain the unsatis-
factory results for (l, l') = (2, 3) and (4, 5). Since
these higher partial waves contribute much less
to the total cross section than the lower ones, the

TABLE VII. Par'tial crosssections' Q~= (l, l') in& defined as in Eq. (25) for the 0 Z' state at
E= 15 eV.

3 4

0
1

2
3
4
5

0.413(0)

0.319(-2)

0.768(-4)

0.181(-1)

0.583(-2)

0.138(-4)

0.129(- 1)

0.735(-3)

0.597(-5)

0.779(-4)

0.120(-3)

0.368(-4)

0.913(-5)

0.317(—5)

0.305(-5)

0.181(-7)

0.180(-7)

0.147(-6)

'Numbers jn parentheses indicate powers of 10.
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net effect on the total cross section is merely 0.5%
in this case even with only one Z~ term. We ex-
pect some minor fluctuations in this discrepancy
(0.5%) as we change the incident-electron energy,
and consider different electronic states. There-
fore, in order to leave ample margin of safety to
cover such variations, we decided to retain three
leading, nonvanishing Z» terms in Eq. (49) (e.g. ,

K=0, 2, 4; 1, 3, 5; or 2, 4, 6, etc. ) with % ~ 9 in all
succeeding calculations presented in this paper.

B. Scattering equations

For the purpose of discussion here, we rewrite
the integro-differential equations in Eq. (15) as
follows:

0')P ( &+a, I', ~

= 2g [v&„(r)+w&„(r)]F„&(r)
n

+ . &l, l&~)I&, (a-)t&)
&(orbi tal) l( ~ )

(61)

where we used i,j for the scattering and incident
channels, respectively. The summation J is over
the molecular orbitals, and l(J) covers even or
odd values as dictated by the orbital (Z».~).

Once the V(r), W(r), and P~ &(r) are made avail-
able, the procedure. of solution becomes quite
analogous to atomic case. We solve this set of
integro-differential equations by the noniterative
integral equation method (NIEM)." Here, we give
just a brief description of NIEM as applied to our
problem, while the readers are referred to the
paper by Smith and Henry" for details. We ex-
pect two sets of arbitrary constants which. are to
be determined by the boundary conditions. For the
moment we look for the solutions P&&(& ) of Eq. (61)
without regard to boundary conditions, in place of
F«(r), which satisfy the boundary Conditions. By
means of the Green's-function technique, the solu-
tion can be expressed in an integral representa-
tion, i.e. ,

r
&)&, (y) =6& G«'&(k&z)+2 dxGI""(rlx)

0

&& g v&„(»)q„,(&&) gg-g, g z»(p,*&„&l„A—~„l»)
n n 9(fn)

X x OO

g y dg —x y dy+g y
0 0 0

x z»(e~«&f« && ly)&.&(y-)

(62)

with

G&'&(k, & ) =k,"rj, (k,~), .

G" (k x) =k' 'ry& (k&&'),

G&"'&(~ l») G&'&(k ~)G'"(k x) G', "(k,~)G-"'(k»)

(63)

y 'z»(g&«&i&A —x& ly)&)'~s(y) dy
0

Since Eq. (61) is linear in g«, it is possible to

(64)

where j, and y, are the spherical Bessel functions
of the first and -second kind, respectively. In Eq.
(62) the summations&«„& indicates the pair of MO

&&&&~&„& and Q~«& appearing in the two Z» functions
are dictated by the electronic states to which
channels i and n belong. Equation (62) above cor-
responds to Eq. (12) of the paper by Smith and Hen-

ry. As they point out, the right side of Eq. (62) is
known except the Lagrange multiplier M and the
term

I

treat these unknown terms as as inhomogeneity,
and seek the complete solutions as appropriate
linear combinations of the homogeneous and par-
ticular solutions. There is no point in attempting
to reproduce their elegant treatment" here. We
might note in passing that with K and p(in) each
taking three distinct values and nine channels,
this amounts to in excess of 80 inhomogeneities
including the orthogonality terms. However, all
particular integrals as well as homogeneous solu-
tions are processed simultaneously in the actual
computation.

From the solutions &I&«(r), the scattering matrix,
may be determined as follows. For large distance
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x, we may write

g, )(r) - k, ' '[sin(kp ——,'l, a')A&~

+ cos(kp' '- ,'f, —w)B,&], (66)

Therefore,

R=BA ',
and

+ cos(k(r —2fg&)R)y] . (66)

(6V)

S = (1+zR)(1- fR)-'. (68)

A and B matrices are determined numerically by
matching (,&(r) at two adjacent points r„and r„
+ 5x, that is, by setting up two simultaneous ma-
trix equations for-the two unknown matrices A
and B. In practice we chose r„=31 and 45a, for
the triplet cases, and y„=45, 55, and 65a, for
the B 'Z'„state to observe the proper convergence
of the R matrix.

V. RESULTS AND DISCUSSION

We present the cross sections of the triplet
states and the B '5'„state separately, as the two
cases differ in treatment as well as in the energy
range of interest.

A. Excitation to triplet states

The cross sections of the triplet states have been
calculated by including partial waves ll' & 5, and
A=0, 1, 2, 3 at several incident-electron energies.
Typical breakdown of cross sections by l$' at two
different energies are shown in Tables VII and
VIII. First, we note that the partial cross sections
Q (l, f') are much larger when &l = (f —l') =+1 than
others. This is reminiscent of the dipole-selec-
tion rule applied to atomic excitation, in which
cross sections are again found to be largest when

where we used the asymptotic form of the spheri-
cal Bessel functions j, and y„and A and B are
constant matrices to be determined. On the other
hand the required asymptotic form is

F,&(r) -k&' '[sin(k, r —~l, &)6,
&

&l =+1. Next, for a. given sequence of &f, Q (f, l')
decreases with increasing ll', although the ef-
fectiveness of large partial waves lingers on longer
at high (40 eV) energy. There is no surprise here;
the. present results merely conform to the long-
held view that only the low partial waves are ef-
fective at low incident-electron energies. In Table
IX we show the breakdown of cross sections in
terms of A, i.e. ,

QlL Q QA(f fI )
. (69)

Since Q~'" are identical there is no need to repeat
calculations with negative values of A. The de-
creasing trend of Q~ with increasing A is assured
by the foregoing discussion as the low partial
waves Y, ~ „are eliminated with increasing A.
Overall, it is evident from these tables that we
have included sufficient number of partial waves
even at the highest energy (40 eV) considered in
this paper. We fourid a similar pattern in the par-
tial cross' sections with other triplet states. The
total cross sections of the four. triplet states are
presented in Table X. We also included in this
table cross sections by other theoretical calcula-
tions for comparison. There are some unexpected
features as well as predictable ones in the excita-
tion functions of these states. We now discuss
these points as we compare the present close-
coupling (CC) results with other theoretical cal-

culationss.

1. b ~Z+ and e 3Z+
Q Q

The lowest excited state 5'5'„ is a repulsive
state, which dissociates into two H(ls) atoms.
The cross sections of this state are shown in
Fig. 3. We have previously calculated these cross
sections by using the Born-Budge approxima-
tion', they are included in Fig. 3 for comparison.
The wave functions used there' are identical to
those employed in the present work. These Born-
Rudge (BR) cross sections are in essential
agreement with the earlier calculation of similar
nature by. Cartwright and Kuppermann. ' A dif-

TABLE VIII. Partial cross sections' QA= (l, l') in a defined
as in Eq. (25) for the b Z„' state at E = 40 eV.

TABLE IX. Partial cross sections QA(b Z„') in a defined
as in Eq. (69) at E = 15 and 40 eV.

1

2 0.475(- 1)
3
4 0.278(-4)
5

0.250(- 2)

0, 102(- 1)

0.372(-5)

0.244(-2)

0.145(-2)

0.448(- 5)

0.48 1(-3)

0.192(-3)

0.308(- 5)

0.675(-4)

Sum'

E= 15 eV

0.454 019
0.271 013
0.002 737
0.000 038

1.001 595

E= 40eV

0.077 405
0.064 906
0.006 672
0.000 721

0.222 003

'Numbers in parentheses indicate powers of 10. 'Q A = Q'A (A 4 0) are included in the sum.
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TABLE X. Total cross sections of triplet states in units of 10 ' cm .

Energy

(eV) CC' BR DW-RPA'

e 'Z„'

CC BR CC

a 3Z'

BR DW-RPA.

c 3II„

CC BR

13 219 4 47
14 2.56 4.41
15 2.80 4.18
16 284 388
17.5 2.81 3.41
20 2.53 2.69
25 1.82 1.70
30 1.26 1.10
40 0 622 0 525

8.24
9.23
8.89
8.44

5.49
0.620
0.500
0.301
0.192
0.0902

0.421
0.357
0.234
0.152
0.0717

1.285 0.330
0 914 0 417 0.889 1.22 1.18

1.35
0.715 1.06
0.552 0.854 1.31
0.364 0.534
0.268 0.342
0.135 0.160

0.269 1.07 0.571 4.63 1.96

5.63 1.98

3 44 1.19
1.95 0.702
1.10 0.433
0.410 0.196

'Close coupling of this work.
Born-Rudge approximation of Ref. 3.

'Distorted-wave with random-phase approximation of Ref. 11.
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FIQ. 3. Excitation cross sections of the b Z+ state
calculated by means of (i) the close coupling (solid line)
of this work; (ii) the Born-Rudge approximation (uni-
form dashed line) in Ref. 3; (iii) DW-RPA reduced to
one-half (long-short dashed line) in Ref. 11.

I

40

ference of about 20%%up in magnitude was attributed
to the usage of different wave functions. Compari-
son of the present CC and the BR calculations
shows that the former gives an appreciably broad-
er excitation function and much smaller (-30%)
cross sections below 20 eV. However, these two
sets are in good agreement above 20 eV. We will
not discuss the Born-type calculations of still
earlier days" as the works described in Refs.
3 and 4 are representative of the' Born-type cal-
culations. Recently, Rescigno et al." calculated

cross sections of the O'5'„state by means of the
distorted- wave approximation with random-phase
approximation (DW-RPA) to compute the inelastic
transition density. Their results are shown in
Table X and also in Fig. 3. (In this figure the
magnitude of their cross sections are reduced by
a, factor of 2). These authors" attempt to account
for the distortion of the incident electron by means
of the Coulomb'and exchange operators for the
molecule in the ground state. The same operators
are used for the distortion of the scattered elec-
tron instead of the operators appropriate for the
excited state. They justify this procedure based
on the previous application of DW-RPA to electron-
atom cases." Besides this point, it is difficult
to assess to what extent the static distortion in
DW-RPA can represent the dynamic process. At

any rate, their excitation function is rather simi-
lar to the BR calculation cited above, except the
magnitude is about twice as large.

In drastic contrast to the O'Z'„state, the excita-
tion function of the e'5'„state shows an extremely
sharp peak as shown in Fig. 4, even though these
two states are of the same symmetry type. The
cross section at 14 eV is considerably larger than that
at 15 eV, but we did not attempt to locate the maxim-
um. Compared with these CC results, the BR cross
sections' are much smaller (factor of 4) near the
threshold, but the difference becomes smaller
at high incident energy (-20/o at 40 eV).

The large difference in shape between the ex-
citation functions of O'3'„and e'5'„ found here,
which is not revealed in the Born-Rudge calcula-
tion, is somewhat puzzling. One possible explana-
tion is as follows: A singlet-triplet excitation
involves an exchange between the colliding elec-
tron and a molecular electron. Its cross sections
decrease drastically with energy if the colliding
electron is found in the vicinity of the target for
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FIG. 4. Excitation cross sections of the e 3Z+ state
calculated by means of (i) close coupling (solid line) of
this work; (ii) the Born-Budge approximation (dashed line)
in Ref. 3.
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FIG. 5. Excitation cross sections of the a 3Z~+ state
calculated by means of (i) close coupling (solid line) of
this work; (ii) the Born-Budge approximation (uniform
dashed line) in Ref. 3; (iii) D%-RPA gong-short dashed
line) in Bef. 11.

less than a certain critical time, which may be
viewed as the range of interaction divided by the
velocity of the colliding electron. The e 'Z'„state
has both electrons in bonding orbitals whereas
5'3'„ involves one antibonding orbital. Thus the
b'3'„state has a more diffuse electron-density dis-
tribution, hence a, larger range of interaction.
This may account for the fact that the decline in
the O'Z'„excitation function sets in at a higher en-
ergy. On the other hand, when the Born-Ochkur
approximation is used, the 1/k' factor (k being the
wave vector) in the scattering-matrix element gives
such a steep energy dependence that it obscures
the difference in the range of interaction.

2. a 3Z+ and c3II„

Figure 5 shows the cross sections of a'Z' com-
puted by close coupling, the Born-Rudge approxi-
mations, ' and DW-HPA. " The difference in shape
of excitation function is not too severe for a'Z'
between CC and BR calculations. Again, we see
a large difference in magnitude at low energy
( 40% at 15 eV) but a better agreement at high
energy ( 20% at 40 eV). The cross sections by
DW-RPA are much larger than CC results ( 50%).
However, the shift in the position of peak may well
be due to the different values of threshold energy
used in the calculations.

The cross sections of c'II„presented in this
paper are based on the three-state close-coupling
calculations technically, as we included the X'Z'
and c'II„(X=+1) states in the scattering equation.
However, at one energy (15 eV) we also performed
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FIG. 6.. Excitation cross sections of the c 3II„state
calculated by means of (i) the close coupling (solid line)
of this work; (ii) the Born-Budge approximation (dashed
line) in Bef. 3.

a two-state calculation, from which we obtained
a cross section of 5.95 x 10 "cm' as compared
with 5.63 && 10 "cm' from the three-state calcula-
tion. The slight difference (6%) indicates that the
mutual interactions between channels belonging
to the c 'll „(X=+1) and c 'll „(X= -1) states have no
great effect on the cross sections. The results
of c'TI„cross sections by CC and BB are compared
in Fig. 6. Here, the discrepancy is mainly on the
magnitude of cross sections. The BB cross sec-
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tions' are much smaller than the CC counterpart.
Although the discrepancy diminishes with increas-
ing of incident-electron energy, the BH cross sec-
tion is only one-half of the CC cmss section even
at 40 eV. We can offer no particular reason for
this discrepBncy beyond the inadequacy of the Born-
type approximation already discussed.

3. Comparison ~vitII, experimentaI dissociation cross sections

The formation of two H(ls) atoms by electron
impact on H, arises from direct excitation of
b'Z'„and from excitation of other triplet states
followed by cascade to b'Z'„. It has been shown in
Ref. 3 that a'Z, and e'H„are the two major cas-
cading states to b 'Z'„and that e'Z'„and d'II„play
only minor roles. Thus we take the sum of the
cross sections of O'Z'„, a'~~, c'Il„, and e'Z'„
as the theoretical cross sections for the dissocia-
tion process H, '- H(ls}+H(ls), which are shown in
Fig. 7. Experimentally Corrigan" has obtained
dissociation cross sections {via the excited states
of the neutral H, molecule) which cover the forma-
tion of the excited-state H(nl) atoms as well as
H(ls). In Ref. 3 efforts were made, to subtract
from Corrigan', s data the experimental cross sec-
tions for, producing the excited-state atoms. The
"corrected" experimental data given in Ref. 3 cor-
respond to the formation of two H(1s) atoms and
are reproduced in Fig. V for comparison with the
theoretical values. The agreement is seen to be
quite good. However, it must be cautioned that
there is a considerable uncertainty in Corrigan's
data (see Fig. 2.of Ref. 32) especially at the high-
energy side. The close agreement between theory
and experiment, therefore, should not be regarded
as having much quantitative signif icance.

IO—

CROSS SECTIONS FOR

H~ = H(ls) + H(ls)

E

O
CO

0
I-
C3
LLJ
CO

M
CO
O
lK
C3

0— I

10

I I, l

ZO. 30 4O

8, Excitation to the 8 Z „+ state

As described in See. IIIA, our close-coupling
calculation for the X'Z, -8 'Z'„excitation has been
carried out with the aid of a parallel partial-wave
analysis of the Born approximation. The essential
assumption made in Sec. IIIA was that for large
l l',

lNC IDENT ELECTRON ENERGY (eV)

FIG. 7. Theoretical cross sections of this work
(solid line) for the dissociation process II2- H{1s)+ H(1s)
as compared with experimental values (dashed line) of
Ref. 32 corrected to represent the production of H(1s)
atoms only as described in Ref. 3.

(

cedures leading to the Born-Rudge or Born-Ochkur
method. Indeed, the present close-coupling cal-
culation shows that the shape of excitation functions
is not alike for all triplet states whereas a much
higher uniformity was seen from the BR results.

/

4. Summary
q(cc )(I Iz) q(Born)(I I(} (VO}

With a limited number of case studies made
here, only a tentative conclusion can be drawn
on the perfoxmance of the Born-type approxima-
tions. Nevertheless, we see a pattern emerging.
First, at a moderate energy (say, 20 eV or above)
of incident electron the agreement between CC and
BR results is reasonable in most cases. While
this comparison reaffirms that the Born types are
basically "high-energy" approximations, it also
puts a limit of their applicability on a more quan-
titative basis as well. The other is much more
serious, that is, at low energy the discrepancy is
not only large, neither does it appear to follow
any clear trend. We can say neither BR over-.
estimates nor underestimates cross sections since
the details of the exchange potential, which must
reflect the characteristics of electronic states
involved, are lost amid the approximate pro-

with

Q(l, l') =Q Q (/, I') . (Vl)

In order to discuss how this assumption may affect
the total excitation cross sections, we display in
Tables XI and XII the partial cross sections of Eq.
(Vl) summed over A = —6 to + 6 at the incident-
electron energies of 25 and 100 eV. In addition to
the Born and CC cross sections, we also included
in these tables a set of cross sections calculated
by the close-coupling method without the electron-
exchange (CCNE). It is evident from these tables
that the partial cross sections Q(l, l') of the singlet
state do not decrease with increasing l as rapidly
as the triplet counterparts. This is due to the
presence of the long-range direct potentials in the
singlet-singlet excitation, hence the necessity of
a special treatment referred to above. We show
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TABLE XI. Partial cross sections' Q(l, l') defined as in Eq. (71) for the B'Z„' state at E = 25 eV iria .
I

Q(l, l' = l — 1) Q{l, l' = l+ 1)

CC CCNE CCNECC Born'Born

0.887(- 2)
0.159{-3)
0.320(- 2)
0.341(-2)
0.239(-2)
0.124(-2)
0.687(- 3)
0.344(- 3)

0.67 1(-3)
0.161(-1)
0.169(-1)
0.162(-1)
0.738(-2)
0.295(- 2}
0.107(-2)
0.384(- 3)

0.355(-2)
0.329(- 1)
0.248(- 1)
0.213(- 1)
0.639(-2)
0,416(-2)
0.912(-3)

0
1

2
3
4
5

6
7

0.943(—1)
0.468(0)
0.674(0)
0.432(0)
0.238(0)
0.126{0)
0.660(- 1}
0.347(- 1)

I.

0.287(- 1)
0.184(0)
0.378(0)
0.35 1(0)
0.234(0)
0.114(0)
0.685(- 1)

0.370(0)
0.605(0)
0.533(0)
0.360(0)
0.217(0)
0.122(0}
0.676(- 1)
0.364(- 1)

'Numbers in parentheses indicate powe'rs of 10.

in Tables XI and XII the Q(l, l' =/ —1) and

Q(l, l'=I+I) sequences only, since their con-
tributions to the total cross sections are about
90% and IO%%u&, respectively. For the sequence
l'=l —1, the three sets of partial cross sections
merge to one 'another; for example, within 4%
at the last entry (I =7). Furthermore, this error
will affect only the fraction (I, I' ~ 7} of the total
eros's section so that the net effect on the total
cross section is expected to be much smaller.
As to the the l'=l+ 1 sequence, the convergence
is not as good as the l'=l —1sequenee. However,
the entire Q(l, /'=/+I) sequence occupies only
10% of the total, so that any error there will be
scaled down by a factor of 10. Therefore we esti-
mate that the total error incurred by our proce-
dure does not exceed 5% or so at 100 eV, and is
smaller yet at lower energies of incident electron.
The important plaint to note here is that the dif-
ference between the Born and CC calculations
manifests mainly in the partial cross sections of
small l as shown in Tables XI and XII so that the
partial cross sections of. large l may be computed

by either method without incurring much error.
Therefore we replace Q'cc'(I, /') by Q's""'(I, l')
for (I, I'}&7 as prescribed by Eq. (29) to obtain
the total CC cross sections. The total cross sec-
tions by CCNE are obtained iri a similar manner.

These total cross sections are'shown in Table
XDI and in I ig. 8. Por eomparisan we also cal-
culated the cross sections of this state by using
the Born-Ochkur approximation (BO). As expected
the Born approximation grossly overestimates the
cross sections at: low energy (by 55%%uq at 25 eV),
but at high energy (100 eV) the CC and Born cross
sections are within S%%uo of each other. The poor
performance of CCNE should also have been an-
ticipated, since it makes no allowance for the
electron exchange. Nevertheless, it is somewhat
disappointing to see a substantial difference be-
tween CCNE and CC at energies as high as 50 eV.
The CCNE and Born approximation give essentially
the same cross sections even at 25 eV. It is more
difficult to assess the performance of the Born-
Ochkur approximation. While it tends to reduce the
cross sections below those given by the Born ap-

Q(l, l' —- l — 1) Q(l, l' = l + 1)

CCNECCNE Born CC Born

0.111(-2)
0.113(-2)
0.192{-2)
0.498(-2)
0.75,8(- 2)
0.870(- 2)
0.858(- 2)
0.733{-2)

0.1 27(- 2)
0.987(-4)
0.405(- 3)
0.198(-2)
0.368(-2)
0.488(- 2)
O.S36(-2)
0.532(- 2)

0.948(-3)
0.441(-2)
0.625(-2)
0.574(- 2)
0.576(- 2)
0.118(-1)
0.795(-2)

0
1

2
3
4
5

6
7
8

0.102(- 1)
0.146(- 1)

' 0.349(- 1)
0.616(- 1)
0.863(- 1)
0,911(-1)
0.935(- 1)
0.890(- 1}

0;113(-1)
0.334(- 1)
0.5 83(- 1)
0.791(-1)
0.920(- 1)
0.975(- 1)
0.967{-1)
0.920(- 1)

0.763(-2)
0.197(- 1)
0.223{-1)
0.437(- 1)
0.667(-1)
0.887(- 1)
0.943(- 1)

'Numbers in parentheses indicate powers of 10.

TABLE XII. Partial cross sections' Q(l, l') defined as in Eq. (71) for the B 'Z' state at E = 100 eV in a
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TABLE XIII. Total cross sections of the 8 'Z„' state in units
of 10 '~ crn2 CROSS SECTIONS OF B'Zu

Energy

(eV) CC CCNE Born BO

25
SO

75
100

4.31
4.71
4.09
3.58

6.31
5.41
4.30
3.69

6.66
S.SS
4.55
3.87

5.31
5.14
4.36
3.76

proximation, such a reduction is assured by the
formulation. " Therefore, at this time we can
view the "success" of the Born-Ochkur approxima-
tion only as qualitative and phenomenological.

On the other hand, much better agreement be-
tween the Born arid CC at high energy is en-
couraging; even at 75 eV the discrepancy is a
mere 10%. With this quantitative assessment,
the Born approximation now can be utilized to
provide cross sections at still higher incident-
electron energies.

VI. CONCLUSION

While the basic formalism governing the colli-
sion process is identical in electron-atom and
electron-molecule cases, the theoretical advance-
ment of molecular collision lags far behind that of
the atomic process. There is no denying that this
vast gap between the two is directly attributable to
the computational difficulties associated with
molecules. In this paper we succeeded in devising
a computational procedure capable. of haridling the
singlet-singlet and singlet-triplet excitations to
the same level of refinement as in the corre-
sponding electron-atom collision theory.

With an application to H, molecule, we demon-
strated the importance of treating electron ex-
change properly, by which certain characteristics
of each molercular state involved may be brought
out. In contrast, only a qualitative feature can
be expected from the short-cut methods hitherto
applied to electron-molecule collisions such as
the Born-type approximation.

Because of the scarcity of excitation measure-
ments for the low excited states of H„we were
not able to make a close comparison with experi-
ment. However, with this beginning, extension to
homonuclear diatomics of the second row is within
our reach where greater abundance of experimental
data are available. Finally, in understanding colli-
sion processes, we believe theory can offer more
to electron-molecule processes than atomic cases

E

O

M
Z0
LU
V)
CA
V)
C)
K
O

C C (with exchange)

—--- CCNE (without exchange)

BORN

BORN - OCAKUR

as the experimental analyses are more complicated
and difficult with the former.
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APPENDIX

Throughout this paper we treated the electronic
states of a molecule without regard to the vibra-
tional substates associated with each electronic
state. It was suggested thart cross sections be-
tween a pair of electronic-vibrational states may
be approximated by means of the Franck-Condon
(FC) principle. We now make a brief remark on
the effect of the FC apprdoximation on the cross
sections. If we had decided not to rely on the FC
approximation, the expressionr for the potentials
would have been altered; for example, Eq. (35)
would have been replaced by

I I I

25 5O 75 I OO

INCIDENT ELECTRON ENERGY (eV)

FIG. 8. Excitation cros8 sections of the B ~Z~+ state
calculated by means of (i) the close coupling ~&th ex-
change (solid line); (ii) the close coupling zoithout
exchange (uniform dashed line); (iii) the Born approxima-
tion (1ong-short dashed line); (iv) the Born-Ochkur
approximation (long-short-short dashed lirie) .



APPLICATION OF THE CLO$E-COUPLING METHOD TO. . . 1891

where X„„is the vibrational wave function, and
allowance is made for the orbitals to vary with the
internuclear separation R. When using the FC
approximation, we look for a favorable condition
that P(r, R) does not vary much with R. This
depends on the characteristic of each electronic
state so that we have practically no control over
it. Secondly, we look for vibrational overlap
(X„„,y„„)which is significant only near the
vicinity of Ro, the equilibrium separation of the
ground state. This is generally satisfactory if
the excitation is from the v =0 level. (usual experi-
mental situation), which, in turn, may compen-
sate for the variation of P(r, R) as well. Another

point, which is unrelated to the above, comes
from the somewhat arbitrary choice of the
threshold (vertical excitation) energy. However,
this objectionable point can easily be removed,

once the vibrational states of interest are speci-
fied.
Regardless of the theoretical formalism adopted

in a calculation, we must keep in mind the limita-
tions cited above. In the close-coupling method
with the FC approximation, however, we further
assume tacitly that the scattering amplitude is
proportional to the potentials. It is expected that
such a linear relation holds unless the coupling
potentials are too strong. We have verified this
by performing test calculations, in which poten-
tials are arbitrarily scaled by 0.1, 0.5, and 2.0.
The resulting cross sections are within 5% of those
expected if the linearity held strictly. Therefore
the validity of the FC approximation will remain
about the same when used with CC, as with the
Born- type calculations.
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