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Optimization of approximate solutions to the time-dependent Schrodinger equation
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Approximate solutions to the time-dependent Schrodinger' equation can be sought in terms of time-

dependent parameters. In this work, a reasonable definition of the "best" values for these parameters is

given by requiring that the time integral of the deviation of the approximate solution from the exact solution
be minimized. A procedure for specifically evaluat&ng the parameters to optimize the approximate solution is

given in terms of equations analogous to Hamilton's equations of classical mechanics, which produce a
minimum-deviation integral in analogy to Hamilton s principle, A comparison of this technique with previous
approaches is made, both in terms of general principles, and in terms of a simple hypothetical example of a
system subjected to a time-dependent perturbation.

I. INTRODUCTION where

The exact solution P of the time-dependent
Schrodinger equation

. a
Gg (if —i —=0= 0

Bt

also satisfies the equivalent stationary integral
equation'

G dt= 0.

In most applications one seeks gn approxima-
tion to P in terms of a trial solution'P„, which de-
pends on time-dependent parameters 0,'„n„.. . .
'The problem is to select a procedure for evalua-
ting the pai ameters so that P„will approximate
g as closely as possible within the limited sub-
space spanned by tP„

One approach is to assume that the trial function
either satisfies a principle analogous to the exact
equation, or a property satisfied by t;he exact so-
lution. For example, several authors' have as-
sum. ed that by forcing the integral analogous to
Eq. (2) to be stationary,

BD—=0
BA (6)

for every real or complex parameter. This leads'
to the equation

and methods may be sought to minimize J(P„).
is a measure of the degree of adequacy of g„ in
approximating P. The parameters in g„required
for J to be minimized are then properly described
as "optimized" in. this strict mathematical sense.

In previous work, ' several methods were sug-
gested for analytically adjusting parameters in g„
to minimize J. Storm arid Happ4' carried out cal-
culations involving repetitive arbitrary variation
of parameters in Pt, in a charge-exchange prob-
lem to seek a minimum J by trial and error. They
showed that the result of using Eq. (3) does not
lead to a minimum J.

Chang and Rapp' suggested two methods for
seeking a minimum in J. In a simple approximate
method, one q.Iite arbitrarily sets

5I= 5 (g„tGg„)dt = 0, (3)

". optimized" values of the parameters will be ob-
tained. The success of this method critically de-
pends on the extent to which the space spanned by
the trial solution includes the exact solution. In
actual eases, the difficulty is that one never knows
the adequacy of the space spanned by p, „. Equation
(3) does not guarantee the "best" choice of para-
meters in pt, in any consistent eence.

In previous work, ' a deviation integral was de-
fin&d:.

(4)

Re tx G2 Q (8)

Equation (8) gives the exact analytic function n(t)
which minimizes J.

In the present work, there are two main contri-
butions. First is the development of,a new method
based on Hamilton's equations which serves as an

for a real parameter o.', and (&P„/So. ~GP, „)= 0 for
a complex n. Chang and Rapp' also described a
more proper method, in which the Euler-Lagrange
procedure was applied to Z(P„). The result for a
real parameter was
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alternative to Eq. (8) for calculating parameters
to exactly minimize J(g„).

This method (i) conveys new insights into the re-
lation between g and P„, (ii) relates the methods
of Eq. (3) and of minimizing J'(P„), and (iii) leads
to equations which are more easily integrated than
Eq. (8) and its complex counterpart in actual ap-
plications. A second contribution of this paper is
the application of several methods [Eq. (3), Eq.
(7), and the method based on Hamilton's equa-
tions] to a specific simple example, namely, a
hypothetical perturbed hydrogen atom with a nuc-
lear charge that varies with time. A similar prob-
lem was originally treated by Chang. ' The com-
parison of the various methods when applied to
this problem leads to interesting insights into the
useful regions of applicability of the methods.

II. COMMENT ON THE METHOD OF EQ.(3)

In this section we examine the use of Eq. (3) for
real and complex parameters. Consider arbitrary
complex variations which either (a) conserve
normalization (i.e. , N=(g„~ g„), UN=0) or (b)
vanish at the end points in time. I'or such arbi-
trary complex variations, one can imply that for
any allowed variation 5P„, t5(„ is also an allow-
able variation and consequently Eq. (3) can be
written

8$„' . 8 .. 8
Re " H i —--iz —g =0.

Bz B$ "' Bz
(12)

variation. Then a new variation t5(„can be con-
sidered which is generated by imp. Therefore,
for variations in g„produced by variations in a
complex parameter, both 5(,„and t5|t„may be
taken as variations. For variations in P„due to
variations in a real parameter.

f

8$„
Bz

where for an arbitrarily chosen g„, Bg„/Bz is a
specific complex function. Now, however, 6z is an
arbitrary real variation and consequently 5g„is not
a general complex variation. 5P„, in this case,
is a general real multiple of Btfr„/Bz. Therefore,
if the variation 6z produces a variation 5g„, this
does not imply that ibad„ is also a variation. Arbi-
trary complex variations of g„cannot be generated
by variations in a real parameter. 'The use of the
analogue of Eq. (2) for a P„depending on a real
parameter necessitates the imposition of a prop-
erty of the exact solution on the trial solution
(since Gp vanishing implies Re J(6(

~
Gg) dt vani-

shes). Therefore, for a real parameter satisfy-
ing condition (b), Eq. (9) is appropriate whereas
Eqs. (10) and (11) are not. For the case of a real
parameter z, Eq. (9) takes the form

Re (6(,IG(„)dt= 0. (9)
Since z and (Bp„/Bz

~
8$,„/8~) are real, Eq. (12)

becomes

Substituting i8&,„ for the variation in Eq. (9) and
adding and subtracting this from Eq. (9):

Ba " H —i{—(),„0„)= 0. (13)

(5g„iGt/it, ) dt= 0 (10)

(Gg„~5g„)dt = 0.

That Eqs. (10) and (ll) can be derived from Eq.
(9) demonstrates that even though the variations
5(„and 5g,*, are not independent, ' they can be
treated as though they were.

When arguments analogous to those leading to
Eqs. (10) and (11) are used for the exact solution
g and 5g, Eq. (2) can be shown to be equivalent
to Eq. (1).'

For a variation of P„, due to a complex para-
meter n,

B
5p = "5n.

BG

For any arbitrarily chosen tfi„, Bi/i„/Bn is a speci-
fic complex function. However, since 5n is arbi-
trary and complex, 5g„ is an arbitrary complex

This is an algebraic equation for z(t).
A shortcoming of using Eq. (3) for variations due to

areal parameter is that the result Eq. (9) is the ana-
logue of a necessary but not suff icient condition that
(be an exact solution of Eq. (1). It always results in
an algebraic equation rather than a differential
equation, which one might expect from the analogue
of the variational principle which is equivalent
to the Schrodinger partial differential equation.
To approximate a differential equation by an alge-
braic one is a much more serious alteration than
replacing it with a simpler differential equation
(as occurs for complex parameters).

IIr. THE METHOD OF HAMILTON'S EQUATIONS

There are two mathematically equivalent meth-
ods which will make J(g„) stationary with respect
to variations in the parameters. One is the meth-
od in which the E~ '.er-Lagrange equation

(14)
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is applied to independent variations of a, . A prob-
lem with Eq. (14) is the presence of the G' opera-
tor, which leads to a nonlinear a2 term in the dif-ferentiall

equation.
A mathematically equivalent approach is derived

using Hamilton's equations' in which a "momen-
tum" is defined conjugate to each parameter. For
a P„ that depends on N complex parameters n, and
M real parameters X,. one defines

(16)

where

Now suppose an approximate solution is sought
in terms of a trial function that is a truncated ex-
pansion in the PJ:

P =, (complex), j= 1, . . . , N
BD

Bn&.

P~ -=. .(real), i= 1, . . . , M
BD

i
i

and a pseudo-Hamiltonian E,

(15a)

(15b)

&~r= ~i&i+ ~~&2 ~ (19)

(20)

One common method for estimating n, (t) and
o.,(t) is to use truncated forms of Eq. (18):

N N

K= P (hg + aPP ")+Pk,.,P, D. -
1=1

Hamilton's equations' are then

(16b)

(i=1, 2, . . . ,M),P .

Bg BD

ex =II'

(16c)

(16d)

IV. HAMILTON'S EQUATIONS FOR THE EXPANSION
' COEFFICIENTS

Consider a system described by a Hamiltonian
H, with known eigenfunctions P„P„.. . . Let a-
perturbation V(x, t), with the property V-0 as
t-+~, act on the system, where x represents the
positional coordinates.

The exact solution of the equation

The simultaneous solution of the first-order dif-
ferential equations (16) determines the P„ that
makes J(g„) stationary for parameters n,. and X,
that have no variation at the end points.

It turns out that more is achieved than merely
the replacement of a number of second-order
Euler-Lagrange differential equations by twice as
many first-order Hamilton differential equations.
'The momenta conjugate to the parameters can be
interpreted as a measure of how well the subspace
of the trial solution covers the space of the exact
solution.

=Q

This method is based on the concept that as the
space spanned by P„ is increased by including
more of the Q, , the n~ will approach the a&. How-
ever, for any finite truncation, there is no guar-
antee that the o', produced by Eq. (20) are the
"best" functions of time. Some authors' have
made the point that Eq. (20) can be derived from
Eq. (3), and used this to "justify" the use of Eq.
(20). However, Eq. (3) does not produce "best"
parameters unless the space spanned by P„ is
very close to that spanned by P. Therefore, Eq.
(20) may give very poor values of o.&(t) [in the
sense that a&(t) is not close to a&(t)].

The Hamilton's-equations method outlined in Sec.
III of this paper will now be used to obtain opti-
mized o,(t) in the sense that for the choice of Eq.
(19) as g„, Z(P„) is minimized.

I,et the set of expansion coefficients that mini-
mize J(P„)be denoted by o.'&(t). A necessary con-
dition for a minimum J(P„) is .

c
d' ' 'sPd &D BD

, o t.
-2 BD I tf'

+ q, (t)
=1 g ~t ~

where 6o.',- is characterized by the arbitrary func-
tion 7i,.(t) and the parameter e.'

Assuming that P- g, at f = f, , the trial function
becomes exact at this time and one can set rl&(t,.)
= Q for each value of j. At time tz, the values of
a&(t&) are not usually known, and therefore q&(t&)
cannot be set equal to zero. In order to apply the
Euler-Lagrange or Hamilton's-equations methods
to the determination of o.~(t), it is necessary to
force

. B
Gg= H +V —i —g0

can be expanded in terms of the P, as

(17)
(22)

Equation (22) will be satisfied if the momentum
conjugate to a& is made to vanish at t=t&. Bound-
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ary conditions given by Eq. (22) are well known8

in calculus of variations problems with fixed and
free end points.

For the trial function in Eq. . (19) with G defined
in Eq. (17), one finds

2 2

D(t)= g In, l'+ g n+n„v',.
j(f= 1 Ay m=1

between states (1,2) and (3, 4, 5, . . .). This de-
mand for an average contribution from all the
higher states results in our inability to have a
normalized two-state approximation which mini-
mizes J(g„). However it is necessary' that

2 2

+i Q n„*n V» —i Q n„n*V»,
Os m=1 kg m=1

where

v"„„=(y,
I
v"

The momenta conjugate to n„* (k = 1,2) are

BD. ~=a~+i V~,.Q, = P~q *.
BQ~

(23)

(24)

(25)

a«(~ ')-0 A«=" lnil'=I and ln. l'=0. Set-
ting n, = e'» and n, = 0 at t;, one can show from (26)
that at t = /,. it is required that:

Re(P ) = Im(P ) tan8

to ensure

1n»=P g+ —. V» n~ (@=1,2). (26)

The second pair of Hamilton's equations are

BD
P~ = =i(P»V„»+P~V~»)

Baq

+ n(vl. —
I
v-I'-

I
V..I')

The first pair of Hamilton's equations can be
found by inverting Eq. (25) obtaining

at t;.
Now one can choose 8, Im(P, ), Re(P ), and

Im(P„) at t=t, , so that Re(P, ), Im(P, ), Re(P ),
and Im(P ) all vanish at t=tz. Then one can
choose Re(P, ,) at t=t, equal to Im(P„,) tan8. The
arrangement of the P „such that they vanish at t
= t& will not only lead from Eq. (21) to the Euler-
I agrange or Hamilton equations minimizing J(P„)
but also to

+ n„*(V' —V„»V»» —V V „) (27)

in which m=2 if k='1, and m=1 if k= 2. By in-
serting the operator 2„,In x n

I
in the V' terms

in Eq. (27), one finds

P. =i(P,V„„+P V „)+n,*+V,„V„„
fl» 3

+&* V „V„~,

where again m=2 if k=1 and m= 1 if k=2.
This equation shows that in some way the values

of P, and P partly compensate for the effect of
the missing, states Q„Q„.. . , which were not in-
cluded in g„. Comparing Eqs. (26) and (18) for
n~ and a~, respectively, one can make the identi-
fication of n~ as the best approximation to a~ in the
sense of minimizing J(g„), and in the same sense
identify the P with the best single-term approxi-
mation to (1/i) Z&, (k

I
V

I
j)a&. Further support

for this interpretation is found from using Eq. (26)
to obtain

—
( I n,

I
'+

I
n,

I

') = n,P + n,*P,*+n, P,+ n,*P,*,
(29)

which shows that probability. is not conserved in
this model due to the implicit flow of probability

at t=t&.
Contrary to what has been claimed in the litera-

ture, ' not only will Eqs. (20) not minimize D(t),
but in addition they will not minimize J-„Ddt
= J(g„). The usual coupled equations (20) can
be derived from Eq. (26) if the P, are made to
vanish identically. This would imply from Eq.
(15a) that D does not depend on the n, If P, van. -
ishes identically it implies that P, and BD/sn
vanish. Therefore, the usual coupled equations
could only minimize J(g„,) if D did not depend on
either n~ or n„. Since any meaningful a must de-
pend on either the n„and/or the n» the usual
coupled equations can never minimize j(g„).
Since D is always greater than or equal to zero,
the fact that Eqs. (20) cannot minimize J(P„) im-
plies that Eqs. (20) cannot minimize D(t). The
trouble with all the reported proofs' which claim
to show that D(t) is minimized by Eqs. (20) is
their attributing to every time t a property 5g„
=0, which is only justified for the initial time.

While the Euler-Lagrange equation for the n~
would certainly be mathematically equivalent to
(26) and (27), the relationship between (20) and
these second-order differential equations would
not be nearly as apparent as between. (20) and the
combined Hamilton's equations (26) and (27).

In summary, Eqs. (26) and (27) constitute a set
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of four coupled linear differential equations,
which when solved subject to the aforementioned
boundary conditions yield a set of parameters
a,(t), a,(t), P„(t), and P,(t), which minimize
J(P„). These equations (or their generalization
for more than two states) would be particularly
well suited for problems in which either (a) a
limited set P„ tt „.. . , P are known„whereas the
higher states are important but not well known, or
(b) the important states P» are known, but are of
such great number or complexity that to avoid an
impractical c/alculational problem a truncated
wave function is chosen as iil„. In this second
case, only some of the important wave functions

Q» are treated explicitly and an average effect of
the other states is treated through the conjugate
momenta. This technique necessitates the inclu-
sion in i'„of all the states whose n»(t} are to be
optimized.

V. APPLICATION OF HAMILTON'S EQUATIONS TO

INTERNAL PARAMETERS OF THE EXPANSION FUNCTIONS

In some applications the formoftheapproximate
solution is conveniently chosen as

4t, = gott(~)Xy(&, f,zj„zt, ~ )

in which the z, ,z, , . . . are parameters internal~ » ~

to the expansion functions, and for which y, - P;
as t- t,. or t&. The Hamilton's-equations technique
to minimize J(P„) can be used to optimize the
parameters z&, , z&, , . . . as well as the o,(t). Such
internal parameters are very important in the
theoretical treatment of charge exchange, ' and

it is desired to demonstrate the relative effect-
iveness of different choices of procedures for
"optimizing" them.

The method will be illustrated in terms of a
simple example, consisting of a hypothetical per-
turbed hydrogen atom with a time-dependent nu-
clear charge P(t) that varies with time, with the
end points satisfying P(+~) = 1. The Hamiltonian
for this problem is

H= -V —2P(t)/x, (30)

where P(t) can be selected arbitrarily, provided
it goes to 1 as t-a ~. A trial function was select-
ed in the form of a hydrogenlike function

I

[z~(f)/&]&I 2e»(t)r&+iz2&t ) t (31)

where z(t) is a parameter representing a scale
factor which is to be optimized in the sense that
J(P„) is minimized for any P(t). Since P(t)-1 for
large positive and negative times, it follows that
z(t) must also go to unity and that P„=P at such
times. Since we are dealing with a problem of

This is evaluated and integrated over time to ob-
tain J(g„) for each method.

First consider the method used by cheshire'
and others as given in Eq. (3). A simple calcula-
tion shows that this method yields the result

for all time. The deviation D based on this meth-
od is then

D,(f) =j'(4f'P'+ 3/4P') . (33)

The integral over time of D,(t) is referred to as
J,.

The approach to minimization of J by means of
Hamilton's equations is described next. Hamil-
ton's equations are

z =(St' ' z3+/2z') '[P, —Sz'(z —P)t], ( i4)

P,= =16z [(z —P—}'+(z —P)zt]+ Sz'[2(z —P)+zt]

+z»(St'z —3/2P) . (35)

The simultaneous solutiOn of Eqs. (34) and (35)
with P, and P, set equal to zero is z, (t), the solu-
tion derived from Eq. (3). When Eqs. (34) and

(35) are simultaneously integrated, and the result-
ing z, (t) is used to calculate the deviation,
it is designated by D,(t), and the time integral is
J,. The initial value of z is unity, but the initial
value of P, is unknown. The actual numerical in-
tegration is carried out from a large negative
time as a starting point, and the initial value of
I',, is adjusted until the resulting integration pro-
duces a z(t) at large positive time that approaches
unity.

In the method suggested by Rapp and Chang, ' as
given in Eq. (6), the basis is that BD/Bz is set
equal to zero at all time, and one obtains the dif-
ferential equation

~ -4z '(z —P)t
4t' +3z/4z ' (36)

two fixed end points, the calculus, of variations
problem is straightforward, Although simple,
this example has certain important characteris-
tics found in the standard O'-H charge-exchange
model. One could imagine the perturbed
nuclear charge P(t) being caused by the passing
proton, and the form of the trial function is the
archetype of that used in O'-H charge exchange.

It is desired to utilize each of the previously
described methods of evaluating z(f) and Z(t/r„)
to compare the adequacy of various approaches.
For any arbitrary function z(t), the deviation is
determined from Eqs. (30) and (31) as

D(t) = Sz'[(z —P)'+ (z —P}zt]+z'(4t'z'+ 3/4z') . (32)
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TABLE I. Comparison of the deviation for various techniques in Sec. V. D&, D&, D3, and

D4 are the D(t) corresponding to solutions found from Eq. (3), Hamilton's equations, Eq. (36},
and &(t) =1, respectively. (A=0.04, 8=0.1, wide potential).

Time D4

-15.0
-12.0
-9.0
-6.0
-3.0
-1.0

0.0
1.0
3.0
6.0
9.0

12.0
15.0

0.790(-6}
- 0.211{-3}
0.104(-1)
0.784(-1)
0.469(-1)
0.128(-2)
0.0
0.128(-2)
0.469(-1)
0.V84(-1)
0.104(-1)
0.211(-3)
o.v9o(-6)

0.848(-3)
0.160{-2)
O.316(-2)
O.439(-2}
o.43o(-2)
O. 253(-2)
0.336(-3I
O.236(-2)
0.391(-2)
O.413(-2)
0.306{-2)
0.152(-2)
0.757(-3)

0.0
0.421(-6)
o.v86(-4}
0.363(-2)
o.59o{-1)
0.411
0.728
0.411
0.590(-1)
0.363(-2)
0.786(-3)
O.421(-6}
0.101(-13)

0.0
0.733{-6)
O.122(-3}
0.449(-2)
O.389(-1)
o.v38(-1)
0.780(-1)
o.v38(-1)
O.389(-1)
0.44 /(-2)
0.122(-3)
0.733(-6)
0.0

Time
integral (J} 0.814 0.957(-1) 0.205(1) 0.501

' These J values were calculated with t;=-30.0 and t~=30.0 as in Fig. 1.

This was numerically integrated and the result-
ing z,(t) used to obtain D,(t) and its time in-
tegral, J,.

A very simple approximation-was triecf in which
z(t) was set equal to unity for all time. The re-
sulting values of the deviation are denoted D,(t),
and the time integral is J4. Thus four differ'ent
calculations of D(t) and J(P„)were performed and

compared
The function selected for P(t) was

P(t) = 1+Be "".
Values of B equal to O, j. and 0.2 were found to

be sufficient to -test the principles involved. 'Three
values of A were chosen to represent slow, mod-
erate, and fast variations of B with time (A
=0.04, 1.0, and 100.0). For these values of A and

B, calculations of D(t) and Z(g„) were made for
each of the four z(t) functions described above.
Differential equations were integrated on a digital
computer using a predictor-corrector method.

It was found that there was no substantial qualit;a-
tive difference between the results for I3=0.1 and
8=0.2. To save space, only the results for 8
=, 0.1 are presented here.

The resulting values of D(t) at selected values
of f (atomic units) are given in Table 1' for A = 0.04
and B =0.1. The variations of D, (t), D2(t), Z, (t),
and Z, (t) forA=1.0 an. d A. = 100.0 are shown in Figs. 1

and2. The J values for the three A values and B
=0.1 are given in Table II. In each case,
as expected, the lowest value of J(g„) results
from the use of Hamilton's equations to determine
z(t) (method 2). z,(t) is always wider in time, but
not as high as z, (t). lt appears that as the width
of P(t) becomes large, z,(f) will approach P(t),
whereas when P(t) becomes exceedingly narrow
z, (t) will approach unity for all t. Thus, when the
perturbation varies rapidly, the wave function
does not have time to readjust to the perturbation,
and when the perturbation varies slowly, the wave
function can adjust almost adiabatically. Since

TABLE II. Comparison of the measure of the integrated error J for the intermediate- and
narrow-potentialcases in Sec. V. J&, J2, J3, and ~4 correspond to the J values found with
Eq. (3). Hamilton's equations, Eq. (36), and s&mply setting &(t)=1, respectively.

A= 0.04, B= 0.04
(narrow width)

A=1.0, 8=0.1
(intermediate width)

A = 100.0, B= 0.1
(narrow width)

0.814

0.195

0.355

0.957(-1)

0.228{-1)

O.V96(-2)

o.2o5(1)

0.243

o.1o4(-1)

0.501

0.100.

o.1oo(-1}
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FIG. 1. Comparison of the deviat'o g) (t) di ns, g( ) an g)2(t),
and the effective nuclear charges (t) d, z& an z2(t) (A
=1.0, B=O.l, intermediate width).

2.5

2.0-

I.5-
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I
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FIG. 2. Commparison of the deviations, D&(t) and D (t),
and the effective nuclear eharg

00.0, g= O.l, narrow potential).

p(t)- 0 as t- 0, D,(t) vanishes and a, (t) must be
exact as t=0. Nevertheless, J.,(p„) exceeds
J,(g„) even though D,(t)(D,(t) for some periods
of time. On a relative basis, the method of
Hamilton's equations is the greatest improvement
over the method of Eq. (3) when the perturbation
varies most rapidly. Method, 3, utilizing Eq. (36),
gives a time-varying z(t) that decreases below

xs appearsunity instead of rising above one. Th'
to be a fundamental imperfection in this method,
although it leads to better results than method i
when the perturbation vaiies rapidly, Method 3
has the virtue that it leads to z(t)-1 for all t'as
the perturbation varies very rapidly, whereas
method 1 is qualitatively incorrect in this region.
Gn the other hand, method 3 is qualitatively in-
correct for slowly varying P(t), while method 1 is
a better approximation.

The a(t) and D(t) produced by methods 1, 3, and
4 are symmetric about t= 0. However z and D
are not symrrietric about t = 0, and thus P, can be
interpreted as the factor responsible for the time
delay or adjustment time necessary to minimize
J(P„).

To further demonstrate that J,(P„) is a relative
minimum, a, calculation was performed in which
the arbitrary term 0.002e " was added to or sub-
tracted fromm, (t) for all t, andD(t) calculated in
each case. The results are given in Table III.
When small positive, or negative changes are mage

about a,(t), J(g„) increases.
It may be concluded that: (i) The method of

Hamilton's equations produces a minimum integra-
ted deviation. (ii) The method of Eq. (3) best a-
proximates the Hamilton's-equations method for
slowly varying perturbations, where it eventuall
goes to the adiabatic limit at very slow rates of
change. (iii) The method of Eq. (6) best approxi-

o or rapidlymates the Hamilton's-equations method for r
varying perturbations, where it eventuall 1 d

rayi ra es ofo constant parameters for very 'd t
change. (iv) IIsing z(t) = 1 for rapid'ly changing
perturbations is much better th thr an e use of Eq.

Note that our "best" solution is "best" in a
time-averaged sense and that at any particular
ime the other techniques can Lead to solutions

having a lower D t . None of these techni. ques pro-
vide a minimum of D(t) at every instant of time.
In fact no, no purely time-dependent parameter could
ever lead to D(t) being miniinized t

' imize a every instant
e posi ionale parameter is a function of the 't

coor inates and t, then this goal might be tt

of H'-H char e
rom this, one might infer for the ble pro em
c arge exchange that as the velocit of th

incident rproton increases, the method of Eq. (3)
yo e

will lead to rop gress~vely less accurate results.
Since thee Hamilton s-equations method is al

s accurate, and in particular when the o-
tential is rapidly varying is far superior to the
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TABLE III. Dependence of the deviation on small variations (+0.002 e ~~2) about the function
&2(t) found from Hamilton's equations. D2 and D& are the D(t) corresponding to &2 and &2,
respectively. (A=100.0, B= 0.1)

Time D2 D+
2

-0.300
-0.200-
-0.100
-0.050
-0.025

0.000
0.025
0.050
0.100
0.200
0.300

0.467(-2)
0.500(-2)
0.718(-2)
0.327(-1)
0.500(-1)
0.570(-1)
0.481(-1)
0.294(-1)
0.322 (-2)
0.210(-. 2)
0.128(-2)

0.467(-2)
0.519(-2)
0.849(-2)
0.323(-1)
0.483(-1)
0.545(-1)
0.459(-1}
0.282(-1)
0.368(-2)
0.218(-2)
0.128(-2)

0.467(-2)
0.539(-2)
0.101(-1)
0.324(-1)
0.467(-1)
0.521(-1)
0.439(-1)
0.274(-1)
0.446(-2)-
0.228(-2)
0.128(-2)

Time
integral (J) 0.800 19(-2) 0.796 36(-2) 0.800 30(-2)

' These J values were calculated with t;=-0.3 and t~=0.95.

technique of Eq. (3), it is natural for application
to this problem in the region of high velocities.
'This work is in progress.

VI. GENERALIZATION AND CONCLUDING COMMENTS

Consider a trial solution p„depending on any

complex parameter n:

(37)

= 11 i — P = H i-— —-in
et BQ

One then finds from (37) and (38)

p g=j — Q

For an arbitrary complex parameter n, Eq. (10)
implies that P +=0.

In deriving Eq. (3) [and Eq. (10)], it-is assumed
that g-g„ is small. A coinparison of Eqs. (10)
and (39) shows that in order to minimize J(P„) it
is necessary to have a single adjustable addition to
Eq. (10), P *, which will just compensate for the
error in assuming tjI-P„ is small. In this sense
P + incorporates the part of Hilbert space in

tP„e ens carysto ha-ve P„minimize Z(P„). The
time dependence of the adjustment P g, is given
by the second Hamilton equation P + = BD/Bn*.
Unlike the earlier calculations, no assumption was
made concerning the trial function's dependence
on +. For a general real parameter a similar

(40)

and the Euler-Lagrange equation becomes a first-
order differential equation for p, , the derivative of
the intermediate variable to be solved simultan-
eously with Eq. (40). However, the particular
separation'of the Euler-Lagrange differential
equation i.nto two Hamilton's equations introduces
a mediating parameter (the conjugate momentum)
which carries its own special message.

argument shows that the identical vanishing of jts
conjugate momentum leads to the result of Eq. (3).

Concerning the applicability of the above to prob-
'lems, the following points should be emphasized:

(i) The arrangement of the P to satisfy the
appropriate boundary conditions at t& could be
worthwhile in problems where many states play
an important role. -If the states are either too
riumerous or not known precisely, the calculation
of the P.~'s in a truncated wave function could be
useful and guarantee an optimized average inclu-
sion of all the excluded states.

(ii) For an internal real parameter satisfying
58(t=+~)=0, the calculation of 8(t) is simple and
only involves arranging the P~(t, ) so that 8 has the
appropriate asymptotic form as t-t&.

The method presented in this paper, originally
thought of as a purely mathematical device equiva-
lent to the Euler-Lagrange equations, turns out
to have a special significance of its own, hidden
in the original form. 'There are more ways than
one to separate the second-order Euler-Lagrange
differential equation into two first-order differ-
e'ntial equations. For example, for a parameter
P, one could substitute

p=p, ,
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