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We have performed Dirac-Fock calculations for a variety of muonic atoms. The muon is explicitly included
in the self-consi'stent field theory, and electron exchange is treated exactly. Wave functions and energies are
obtained for a variety of sample systems ranging from light to heavy ions, using finite models of the nucleus.
The problem of angular momentum coupling schemes for muonic atoms is discussed. Results presented
include comparison of Dirac-Pock and Dirac-Slater models, the effect of the inclusion of the Breit operator
and the Lamb shift as perturbations, contributions of electron screening and relaxation to muon transition
energies, and the dependence of screening on muonic angular momentum.

I

I. INTRODUCTION

The study of muonic atoms has become, in the
last decade, an important tool for understanding
the detailed structure of nuclei, the interaction
between the nucleus and the atomic electrons, mag-.
netic properties, and even the possible limitations
on the fundamental theory of quantum electrody-
namics. The advent of high-intensity muon beams
has made possible a wide range of experiments in
atomic, nuclear, and solid-state physics. These
investigations include transition energies between
excited muonic states in atoms, ' the use of the
negative muon as a probe of distribution of nuclear
charge2 and spin, ' and the study of magnetic prop-
erties of solids using such techniques as muon
spin precession. In addition, isotope and isomer
shifts, as well as magnetic hyperfine constants,
have been measured for a large number of muonic
atoms. "6

Until five years ago, available results from
muonic atom experiments were explained on the
basis of two-body (muon and nucleus) "hydrogenic"
models, in which it was assumed that the muon
was so close to the nucleus that the effect of the
atomic electrons could be ignored. ' " These mod-
els-were not entirely satisfactory, even for the
older experiments, and are even less capable of
explaining recent results where electron-muon in-
teractions are pronounced, and where the experi-
mental errors in transition energies are typically
less than 15 eV. For example, the muonic x-ray
transitions between highly excited states (&„)5,
where &„ is tHe muon principal quantum number)

presently being measured by several groups, are
strongly affected by electron densities in the re-
gions in which they occur. Ponomarev" has shown
that transition intensities are dependent on the
atomic charge state, i.e., not only the core but the
valence atomic electrons, and even on the details
of molecular structure in polyatomic systems. As
pointed out by Stroke, " the Bohr-Weisskopf hyper-.
fine anomaly" is not adequately treated by two-
body theory, since the nuclear and muonic charge
distributions may severely modify the electronic
wave functions, which in turn change the hyperfine
structure. Yamazaki and co-workers at Berkeley
have observed muon spin-rotation at the oxygen
site in MnO, and attempted with some success to
explain the resultant hyperfine field on the basis of
simple overlap models with a single covalency
parameter. 4 Hartmann and co-workers" have
measured transitions from muonic P states with
quantum numbers 2& +„&20.

On the theoretical side, considerably less work
has been published. In the work of Fricke and
Desclaux, " the Dirac-Fock (DF) method was used
to study two-muonic atoms; in all the other cal-
culations the Slater free-electron exchange ap-
proximation was employed. Vogel' "has solved
the Dirac equation for the muon in the field of the
nucleus plus a screening field of the electrons.
Both Frjckezs and Vogel 88 al z9 have carried out
fully self-consistent Dirac-Slater calculations in
which electrons and muon are included. The re-
sults between the self-consistent calculations and
the previous ones agree well for low muon quan-
tum number (&„(8). For highly excited muons
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however, the muon-electron. interactions are more
complicated and so cannot be accounted for with a
static screening model; the results are found to
differ by as much as hundreds of eV.

The present experimental accuracy makes it
worthwhile to consider in detail all the approxima-
tions used in the theoretical calculations. This
paper' presents a fully self-consistent DF method
for determining the structure of muonic atoms and
considers the quantum electrodynamic corrections
to the electronic energy both with respect to muon
binding energies, and muon x-ray energies. %e
also compare the case of exact exchange between
electrons (as treated in the DZ scheme} with the
Slater free-electron exchange approximation when
the muon is explicitly included in the self-consis-
tent-field (SCF) procedure.

II. THEORETICAL METHOD

one-electron radial functions:

(P, (r)) (
,. r —f g 6)-p)r

2c»- (1/c)[e» —V»(&)])

P» and Q» are the large and small parts of the ra-
dial function, V»(&) includes the Coulomb interac-
tions between the zth electron and the nucleus, and
between the ith electron and the other electrons.
X~, and X@. are the exchange interactions with the
ith electron. ~; is the one-electron energy and &;

is the quantum number

The energy eigenvalue equation for a many-elec-
tron atom is

E if j=E
K=

-(1+1) if j =l+-,' .
(4)

where, in the relativistic case, H, is the usual
approximate Breit-Dirac Hamiltonian:

H, = Q [c( ~ cp» + PE + V„(r,.)]

The radial functions P»(r) and Q»(&) are varied un-
til a self-consistency criterion is met.

If we now add to the &-electron atom a negative
muon in a bound state, we add to the atomic Ham-
iltonian those terms which correspond ta the
muon's kinetic energy and its Coulomb interaction
with the nucleus and the electrons:

The summations run from 1 to &, where & is the
number of electrons. The first summation in the
one-electron Hamiltonian includes kinetic energy,
spin-orbit interaction, and the electron-nucleus
Coulomb interaction. Note that the nuclear poten-
tial V„ is not restricted to that arising from a nu-
clear point-charge distribution, but can account
for the more physical finite-nuclear-charge distri-
bution which removes the singularity on the s arid

Pg, orbitals at & =0. The 1/&, term is the elec-
tron-electron Coulomb repulsion and Hs(i j}is the
Breit operator which takes into account magnetic
interaction and retardation. The Breit interaction
is used only- as a first-order perturbation to par-
tially correct for the relativistic interaction be-
tween the electrons. Also, as a perturbation for
heavy atoms we have considered the Lamb-shift
correction, calculated as the expectation value of
the Uehling" potential for the vacuum polarization
and the hydrogenic results of Mohr, "with a
screening constant determined from the expecta-
tion value of r, for the self-energy. -

Antisymmetrization of the total wave function,
the central-field approximation, and application
of the variational principle theri lead to a series
of coupled integro-differential equations for the

H~ H» yo. ~ cp~+--PZo(i») yV„(rq) yQ
A=g pl

The effect on the resultant DF system of equa-
tions is to include an equation for the muon in the
average field of the nucleus and the electrons, and
to add a muon-electron Coulomb interaction term
to the one-electron equations. Since muon and
electron are distinct par'ticles, there is no muon-
electron exchange interaction. The method of so-
lution of these equations is the same as for ordi-
nary atoms.

As an aid in understanding some of the problems
encountered in the study of muonic atoms, we were
guided by our experience in performing atomic
calculations. %e have recently used both re-
stricted and unrestricted form of theory to cal-
culate isomer shifts and core-polariza, tion hyper-
fine fields, respectively, in heavy (high-S)
atoms. "'4 In Dirac theory, the one-electron or-
bitals are )g coupled; to obtain appropriate LS or
intermediate coupling states for the total atom, it
is necessary to construct a linear combination of
gg wave functions. The various one-electron or-
bitals are restricted in the sense that the radial
parts of orbitals of different magnetic quantum
number m& are the same. As has been shown for
Hartree-Fock theory, "this restriction is appro-
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TABLE I. Electron screening contributions to muonic transition energies [&scFcalcula-
tions].

Muon transition
+Etot (e+~

Ba+'+p Ba+"+p, &E, (e V) &Es~ '

8d3/2 4f5/2
14f5/g 8d5/2

14d5/2-8p3/2
15d 5/ 2 8p g/ 2

415 006
92 642

Br +p

35 723
37 880

415 392
93 769

Br'ss+p

36 355
38 612

386
1127

632
732

400
1243

690

~ Reference 17.

priate for calculations which involve energies and
charge rather than spin densities.

For muonic atoms, the situation is similar. En-
ergies, charge densities, and wave functions were
obtained using the ~&-restricted muonic DF
scheme. As is well-known for ordinary atoms,
total energies of the various states are affected
very little by the ~; restriction on the orbitals.
In particular, the restriction on ~, introduces
much less error than choosing the incorrect cou-
pling scheme (e.g. , the use of a single 22 deter-
minant). We need emphasize that it is possible
for us to calculate muonic x-ray transition ener-
gies and matrix elements for systems exhibiting
gg, ~S, or intermediate coupling, using the multi-
configuration method. Thus we are able, in a
completely ab initio manner, to investigate the
effect of choosing various coupling schemes.

III. RESULTS AND DISCUSSION

Table I shows electron screening effects for two
sample systems: muonic Ba and Br. Screening
is calculated by first performing separate (DF)
calculations on the neutral and bare muonic atom,
columns 2 and 3, respectively, for each of the
muon states in column 1. The transition energies
in columns 2 and 3 are differences of total ener-
gies of the various muonic excited states; the
screening in column 4 is the difference in transi-
tion energies between bare and neutral atom.

For the bare muonic-atom calculations, we have
solved the one-muon Dirac equation in the field of
a finite nucleus. For the neutral atoms, we have
approximated the actual intermediate coupling
state by a mixed-configuration state. '6 In all of
our calculations, we assume a spherical nuclear-
charge distribution of radius R=1.2 A. ' ' F,
except for nuclei for which Fermi-distribution
data are available'; in these latter cases, we de-
scribe the nucleus by a Fermi charge distribution
using the tabulated parameters. Qur results for
total energies are converged to better than 15 eV

TABLE II. Electron screening dependence on angular
momentum state, for a muon in the electron &-shell re-
gion.

State
~u (eV)

Ba +p Ba +p E„, (eV)

88)/p
8pg/
8d g/2

8f7/2

-123 573
-129314
-129345
—129089

-132478
-138266
-138309
-138071

8905
8952
8964
8982

in all cases, and to better than 5 eV in most. Since
the expectation value of the muon's orbital radius
is scaled down from the electron Bohr radius by
n'„/m„where &„ is the muon principal quantum
number and ~„ is the reduced muon mass
=200m, , the muon orbit coincides with the elec-
tron K shell for &&=14. Conservatively then, one
should expect to see inner, as well as outer,
screening of the muon by electrons for +& ~ 8„0ur
results for Ba in Table I illustrate these screening
effects rather vividly. For the transition 84,(,-
4f, y2, our exact screening results (column 4) agree
to within 14 eV with the outer-screening calcula-
tions. " For the transition 14f,y, -8d, g„however,
the 14fsg, screening is certainly not merely outer
screening, and our results are 116 eV lower than
the results of the outer screening calculation in
column 5.

Results for a lighter ion, Br, also show the im-
portance of calculating muon and electron orbitals
self-consistently, especially for transition states
in the &-shell region. For the 14d,(,-8P,(, transi-
tion, the exact screening calculation is 58 eV
lower than the outer-screening approximation.
Al.so shown are our results for the 15d,(,-8P3(
transition, some 100 eV above the 14d,(,-8p3/2
transition.

We have also investigated screening effects for
different muon angular momentum states of the
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TABLE III. Relaxation effects in muonic &~cp calculations. && is the one-muon energy in an
SCF calculation; E is the total energy from the same calculation; &&& is the difference in one-
muon energies obtained from separate SCF calculations for two states; &E is the total energy
difference between these two states; 4&&—&E gives an estimate of the relaxation of orbitals
in transitions between two states.

Muon
orbital

1s)/2
4&3/2

9sg/2

20p3/

One-muon
ener. gy && (eV3)

1.7717 x 105
1.0671 xlp
1.7371 x10'
5.2846 x 10
1.6503 x 10

Case 1: 0+'+p
Total

energy E

1,7929 x105
1.2651 x104
3.7284 x 10
2.5319x10'
2.1738 x103

166 500-
8 934
1209

363

166 632
8 928
1 197

358

-1312
+6

+12
+5

8p, /
15d )/2
15&3/2

4.9387 x 1&4

1.1530 x 104

1.1517x 10

Case 2: Br+~+p,

1.2019 x10'
8.2310 x104
8.2325 xlp

Case 3: Ba +p

37 857
13

37 878
-15

-21
+28

4f /2
8d 3/2
14f5/2

5.4452 x10'
1.2983 x 10'
3.7247 x 104

7.6605 x10
3.5104 x 105
2.5840 x105

414 692
92 582

415 006
92 642

TABLE IV. Charge densities and energies of ls elec
trons in excite/ muonic atoms. $&, (0)is the value of the
1s orbital at r = 0, 4wI p'„(0)I t is the probability density o&

the 1s electron at the nucleus (r=0), and &» is the ls
electron energy.

Atom . Muon orbital 4~I/&, (0) ~t (a.u. ) e &, (ev)

4&3/2
9s)/2

14pg/2
20p3/2

1309
1534
17.85
1891

427

409
5,'38

Br+1+~— 8p, /,
15d )/2

2.343 x105
2.448 x 105

12 824
13 139

4f 5/2
8d )/2

14f5/2

1.631 x 106

1.678 x 106

1.725 x 106

36 173
36 336
36 813

same principal quantum number. Typical results
are shown in 'Fable II. We have subtracted one-
muon energies for bare and neutral Ba to obtain
the screening, which, not surprisingly, increases
monotonically with ~. It is clear from the table
that in order to obtain the correct screening cor-
rections for muonic transition energies to within .

present experimental errors, one must correctly
identify the angular momentum states involved in
the transition. Transition moments, even more
than energies, are extremely sensitive to the de-
tails of the state wave function; and are the sub-

ject of investigations to be reported on later.
In Table III, we display the results of our in-

vestigation of the validity of Koopmans' theorem
for muonic transitions. For our results i.n Table
I, we took total energy differences; in Table II,
we considered one-muon energies. Table III ex-
hibits explicitly the effect of relaxation on tra'nsi-
tion energies for muonic oxygen, bromine, and
barium. It is clear from column 6 that relaxation
effects vary both in magnitude and sign. In par-
ticular, for transitions involving low-lying states
with large absolute energies, relaxation effects
are correspondingly large. Thus, &scF calcula-
tions of muonic transition energies are essential.

Energies and charge densities in the nuclear re-
gion for ls electrons in several muonic atoms with
the muon: in a variety of excited states are pre-.
sented in Table IV. One may think of'these quan™
tities as a measure of the screening of the is
electrons by the muon. Not surprisingly, the state
of higher muon quantum number screens the nu-
cleus less efficiently, and thus yieMs higher
charge densities of the is electrons at the nucleus,
as well as greater (more negative} one-electron
energies. Of course, the actual values of I+,(0) I

and e',, depend on the precise overlaps of muonic
and electronic orbitals.

The percentage difference in 1s screening be-
tween different muonic states decreases rapidly
with increasing Z. For muonic oxygen I Q;, (0) j

a

and e',, increase by 16% and 10%, respectively,
as && goes from 9 to 14. Similar changes in +&
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Dirac Slater Dirac Fock

p+ f

~" V(9s)

O+'+ p(14P,g q)

Eg~(»)
Eg (14pgy 2)

1997.6

3708.5

2510.9

1710.9

513.3

2021.2

3728.7

2532.3

1707.5

510.1

TABLE V. Total energies, and muon binding energies
(Eg&} in muonic oxygen. All values are obtained in eV.
Energies are obtained in the Dirac states (p ex-1./3

change) and Dirac-Fock (exact exchange) schemes.

Ib"
Pb+ ~+@ (Vs)

Pb i +~ (12s)

Eg ~ (Vs)

E&„(12s)

Dii ac-Slater

568 833

910 667

679 825

341 834

ll0 992

Dirac- Fock
a b

569 131 568 066

910 969 909 950

680 122 679-090

341 838 341 884

110991 ill 024

Unperturbed Dirac- Fock.
b Breit operator and Lamb shift included.

TABLES VI. Total energies and muon binding energies
(in eV) for lead.

for muonic bromine produce changes in charge
density and energy of 4% and 2%, respectively;
for barium, the changes are 3% a.nd 1%, respec-
tively. The more tightly bound muons in the
heavier atoms are correspondingly closer to the
nucleus; thus, their screening of the 1s electrons
is proportionally less sensitive to the actual muon
state.

Finally, we present in Tables V and VI a com-
parison between the Dirac-Slater and DF calcu-
lations. This permits us to judge the importance
of treating the exchange terms exactly in the SCF
calculations. As can be seen, although the total
energies are rather different, the muon bi~ding
energy is practically unchanged in the two calcula-
tions. Note that the binding energy of the muon is
calculated as the difference between- total energies
and not taken as the one-particle eigenvalue (Koop-
mans' theorem). Comparing, in Table VI, the two
sets of DF results, (a).unperturbed and (b) in-

eluding the Breit operator and Lamb-shift correc-
tion, it can be seen that these higher-order rela-
tivistic corrections are by no means negligible
compared to present experimental accuracy. It
must be noted that in these cases the muon is
either well inside the electron & shell (&„=7) or
almost in the same space region (n„=12), and con-
sequently the muon screens the nuclear charge for
the &-shell electrons compared to what they ex-
perience in the' absence of the muon. As the
higher-order relativistic corrections have a Z
dependence, the change in the screening substan-
tially modifies the value of the correction.

ACKNOWLEDGMENT

Two of us (J. V. M. and A. J. F.) would like to
thank the National Science Foundation for financial
support.

~D. McLoughlin, S. Raboy, and E. Deci, Phys. Rev.
Lett. 35, 983 (1975), and references therein.

G. S. Rinker, Jr., Phys. Rev. D 7, 2629 (1973);
J. Friar and J. Negele, Nucl. Phys. A 212; 93
(1973).

3C. S. Wu, J. Phys. Soc. Jpn. Suppl. 34, 47 (1973).
4S. Nagamiya, K. Nagamine, O. Hashimoto, and

T. Yamazaki, Phys. Bev. Lett. ;35, 308 (1975).
~R. Engfer, H. Scheumly, J. L. Vuilleumier, H. R.

Walter, and A. Zehnder, Helv. Phys. Acta. 47, 483
(1974).

6H. Backe and E. Kankeleit, in Mo'ssbauer Isomer.
Shifts, edited by G. Shenoy and F. Wagner (North-
Holland, Amsterdam, 1978).

~H. H. Stroke, R. J. Blin-Stoyle, and V. Jaccarino, Phys.
Rev. 123, 1326 (1961).

8M. LeBellac, Nucl. Phys. 40, 645 (1963).
~C. S. Wu and L. Wilets, Annu. Rev. Nucl. Sci. 19, 527

(1969).
H. J. Leisi, W. Day, P. Ebersold, R. Engfer,

F. Schneck, and H. K. Walter, J. phys. Soc. Jpn.
Suppl. 34, 355 (1973).' L. I. Ponomarev, Annu. Rev. Nucl. Sci. 23, 395 (1973}.
H. H. Stroke, J. phys. Soc. Jpn. Suppl. 34, . 543 (1973).

'3A. Bohr and V. F. Weisskopf, phys. Rev. 77, 94
(1950).

' F. J. Hartmann, T. von Zgidy, R. Bergmann, M. Kle-
ber, H. J. Pfeiffer, K. Springer, and H. Daniel, Phys.
Rev. Lett. 37, 331 (1976).

~5B. Fricke and J. p. Desclaux, Phys. Lett. B 51, 317
(1974).

ep. Vogel, phys. Rev. A 7, 63 (1973).
"p. Vogel, At. Data Nucl. Data Tables 14, 599 (1974).
~8B. Fricke, Nuovo Cimento Lett. 2, 859 (1969); and

Habilitationsschrift, Darmstadt, 1973.
'~p. Vogel, A. Zehnder, A;"L. Carter', M. S. Dixit, E. p.

Hincks, D. Kessler, J. S. Wadden, C. K. Hargrove,
R. J. McKee, H. Mess, and H. L. Anderson, Phys. Rev.
A 15, 76 (1977).

OJ. P. Desclaux, A. J. Freeman, and J. V. Mallow,



BIRAC-FOCK METHOD FO8, MUOAIC ATOMS: TRANSITION. . .

Bull. Am. Phys. Soc. 21, 382 (1975); 22, 63 (1977).
2~K. A. Uehling, phys. Bev. 48, 55 (1935).

P. II. Mohr, Phys. Bev. Lett. 34, 1050 (1975); Ann.
Phys. 88, 52 (1974).

~3A. J. Freeman, J. V. Mallow, and J. P. Desclaux,
Phys. Bev. B ~13 1884 (1976).

~4J. P. Desclaux, J.V. Mallow and A. J. Freeman,

J. Magn. and Magn. Mater. 5, 265 (1977).
2~4.. J. Freeman and H. E. Watson, in HyPerfine Inter-

+&tions, edited by A. J. Freeman, and B. B. Frankel,
(Academic, New York, 1967), pp. 53—94.
J. P. Desclaux, C. M. Moser, and C. . Verhaegen,
J. Phys. 8 4, 296 (1971).


