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Exchange perturbation theory. II. Eisenschitz-London type~
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An exchange perturbation theory is developed which is identical through first order in the primitive
function 6 with the Eisenschitz-London (EL} theory. It is shown that in higher orders, 6 is difFerent from
the EL primitive function and from the primitive functions of related theories. The function 6 is least
distorted from the zeroth-order function F, a product of functions for the subsystems when the
interactions have been set equal to zero. The potential which distorts. F into 6 is more thoroughly screened
than in any other theory we have examined. We argue that this EL-type theory should be used when the
unscreened interactions are strong.

I. INTRODUCTION

In this paper, we specialize the general equa-
tions of paper I' to the primitive function G which
has the property specified by Eq. (I.3) [we use
(I.3) as shorthand for Eq. (3) of paper I], namely,
that from G one can obtain by symmetry projection
one and only one eigenfunction of H. This is just
the property that the Eisenschitz-London (EL)
EPT' has. This is one reason mhy we refer to the.
perturbation theory developed herein as the EL
LW EPT. A second reason is that the first-order
G is identical to the EL first-order primitive func-
tion.

In I we showed that by defining G to be least dis-
torted from E' in the sense of (I.2) and to have the
property (I.3), a perturbation theory' could be de-
veloped on the basis of the screened potential of
interaction V, —QV, Q with Q defined by (I.5b) or,
equivalently, by (I.5b'). We argued in I that with

Q defined by (I.5b) one had maximum screening
of V, by QV, Q, i.e., that the resultant V, —QV, Q
is the weakest perturbation that, is consistent with
the solution of (I.ll) satisfying (I.3) in the limit of
&= 1. This EL-type primitive function must there-
fore be the ideal function to calculate by perturba-
tion methods, for the weaker the perturbation, the
more likely it should be that the expansion will
converge.

There is, unfortunately, a possible disadvantage
to making the perturbation as weak as possible.
The disadvantage is that the resultant expansion
could be more slomly convergent than one based
on a perturbation in which V, is less effectively
screened. If one cuts off the expansion of G with
the first-order term, it may be that the EL LW
theory mill be less accurate than one based on a
stronger screened interaction potential.

A characteristic of the EL EPT and of those
EPT's which give the same first-order function, ' '
is that they significantly underestimate the inter-

action energy in H,' and H,' at large nuclear sepa-
rations. ' ' A related result is found in calculations
on solvable models. "" These results are con-
sistent with the argument in the preceding para-
graph.

In some discussions of the results of applying
EL-type EPT's to H, ' and H„ it has been said that
they give the mrong asymptotic behavior for both
the primitive function and the energy. ' ' We dis-
agree with this statement for tmo reasons. First-
ly, there is no reason why two different EPT's
should have the same asymptotic behavior in cor-
responding orders. One can be more accurate in
nth order than the other, but as long as both can
be assumed to be convergent, the one that is less
rapidly convergent cannot be called wrong. Second-
ly, the correct asymptotic behavior in first order
is identified as that found using the symmetry-
projected polarization EPT.' ' In I we describe
the well-known inadequacies of this EPT. It is
hardly appropriate to use it as a standard to which
other theories should be compared.

In Sec. II we compare the EL LW equation with
the equations which have served as the starting
points for the development of previous EL-type
EPT's and shorn that they are different. Thus,
the EL LW EPT must be different from those pre-
viously proposed.

In Sec. III we present the perturbation equation,
and. ln Sec. IP the energy expansions. It ls show'n
in Sec. III that in first order the EL LW is identi-
cal to the EL first-order function, but that the
second-order functions must be different.

II. COMPARISON TO OTHER EXCHANGE PERTURBATION

THEORIES

In I we did not show that the general perturbation
equations we derived were different from all that
had previously been proposed. We assumed that
because we had added something new to the devel-

17 18



EXCHANGE PERTURBATION THEORY. II. . .

opment of EPT s, the least distortion requirement,
the LW EPT's mould be different. We now show
that the EL .LW EPT must differ from the other
EL-type theories. '

The primitive function 6 of the EL LW EPT
satisfies Eq (I..16) with Q(X) defined by (I.5b), ex-
plicitly,

IH, + Xe(([1 —M(A) ~G(A)) &G (1) [ e&&(]ggG'(A) = e (A)G (A ) .

x =e(',.+ (1 —e("()Z'. (4)

If the same normalization is adopted for C, then
it follows from (L3) that

G = e(.'(+ (1-et', )C

and from (L2) that C must make e an extremum
as defined by (I.2). In general, substituting E' for
4 in (I.2) does not make e an extremum We con. -
clude that the EL LVf is not identical to the MSMA
primitive function.

The perturbation theory developed by Peierls"
has been shown by Mann" to belong to the gen-
eral class of theories considered by Hirschfelder. '
Mann's Eq. (7) in our notation is

(H, + V, -E)4 = (1 -e"(()(1-8e"„)(g',-E+ e')4,
(6)

where 6 is an arbitrary operator. One can see

This expression may be rewritten with the aid of
(I.25) and (I.29):

(If, +e"„Pg,—"@('(A)]}G(X)= c(A)(1 e-(()G(A) .

()
If the primitive function of any other EL-type
theory satisfies an equation identical with (2), the
EL LW EPT could be identical with it. Whether
or not it is, depends also on what is chosen as
the perturbation.

The primitive function X(X) of the van der Avoird'
and Hirschfelder' EPT's satisfies Hirschfelder's
Eq. (3),' which, in our notation and with the e'
terms moved to the right, is

(II, + s";;[&I',-E(~)]]X(~) = ~'(I —e;",)g(&) (3)

Even if one chooses to define E(A) by (I.25) with
It(&) substituted for G(&), g(X) and G(A) will be
different because the right side of Eq. (2) is not
identical to that of (3). The EL LW EPT does
belong, however, to the general class of theories
recognized by Hirschfelder in his Eq. (2).'

The primitive function X of the Murrell-Shaw'
Musher Amos( (MS-MA) EPT can be seen to be
different. from G(A) by referring to the definition
of X(X) given by Amos" in his Eq. (17). In our
notation the definition is

that if 8 were the null operator, (6) would be iden-
tical to (3), as was remarked by Mann. Mann has
not considered a choice of 8 which would make (6)
identical to (2).

W.e have purposely left for last the comparison
of the EL LW EPT to the original EL theory. '
This is because it is not clear to us mhat equation
the EL primitive function, summed to infinite
order, should satisfy. On the basis of Eisenschitz
and London's Eqs. (47)-(51), we infer that it would
satisfy Eq. (3) and, therefore, that their primitive
function is not identical to ours.

We have compared the EL LW to the primitive
functions of all of the EPT's which give in first
order the EL first-order function which differs
from it only by an orthogonality condition. Since
the primitive functions of these theories satisfy
equations which are not identical to those satisfied
by tQe EL LW, we conclude that the EL LW EPT
cannot be identical to any of these theories.

III. PERTURBATION EQUATIONS FOR 6 and e

The equations for the perturbation determination
of 6 and e. are derived from the equations of I by
introducing explicitly the definition of Q by (I.5b).
The resultant equations are simpler-than the gen-
eral equations and in a form that may be more
easily programmed. Note that in deriving the
perturbation equations, we imposed the intermedi-
ate normalization condition on G, i e , &E.'~G. ("~&

=0 for n~ 1.
From the equations for Q" and e" it will be

apparent that they depend on the symmetry state
p, i and on I"' being either a ground- or excited-
state eigenfunction of H, . Because it is apparent,
we have not added the labels p. , i, etc. , to the
G "~, ~", Q~" and various quantities used iri the
derivation.

The Q(A) used in the EL LW EPT is

Q(&) =M(X) e('(~G(~)&&G(~) ~e~«+ I e(', -(7.)
We expand Q(&) in a power series in & as indicated
in Eq. (I.14). We do this by first expanding M(A)
in the form

~(&) =~"'(1+&M'&+ ~'M'~ + ~ ~ ~ ), (8)

where

I' = &E'ie", , i
E'& '

M' = -2M'«&Z'[e(', . ~G('&&

&' =&"-&'(&G" Ie" IG"&

+ 2«&&'le("( IG"&)

The expressions for the Q("~ are given in terms
of the M "~ and operators P("~, defined below.
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E '=e y'~~;-„~F&. ,
The quantity EQ(') will be discussed further in
Sec. IV. It zs stra, ightforward to derive

(If -:. so)G(l) . s&1 (y E)1(1))go (

(16a)

(16b)

bet to shiv that

e'" = -(G" Ie"„(IV', -E"")IJ"'&

r'squires the aid of (16c) and the commutator
eq.~ity

1F. «"(1 [e«Jf.l-
A third expression for 22) can be derived from

& = &G Ill, 4&/&G IG&, (19)

""=&G"Iff -"IG"&. (1Vc)

It is clear from this that e~'~ is real. The first
two expressions for e~'~ ar'e used in the derivation
of

(If folG(» = g(»(] 2~o)s{1)~
E{1(1))G(1)

The expression for 0 derived from (19) is
~($) 2Ite&G(1)

~
ff,. ~'0 )G(2)

&

Use (17d) in (20a) to derive

e2 =2@( M' -2(G ') (eI')(V, -Eg ' ))G ' ) (20b)

&G"' jg" (V -E" ' ) IG~' ) Is real follows from
(9),. (17c) and (20a). If one substitutes (16c) in
(20a), one obtains the alternate'e expression

~'" = -2Re&&'l(~ -E",", )s,"~1G'»& (20c

Note that once G~' has been deterriiined, ~ ' can
be calculated. The highest-order equation we

Q(0) = 1 —e,",. + Po), (12a)

Pfo) +0)S{1
(
Fo&&F0 ~S{1 (12b)

q') = Jtf('I"'+ P" (13a)

O' =M")s,";((Fo&&G(' (+ (G('&p'()s", (, (13b)

q(2) +2)/{0) + +1)J2(1) + p(2) (]4a)
0 &1 (IG(1)&&G(l) I+ I+0&(G 2)

(14b)
I

These expressions are substituted into Kqs. (I.18)-
(I.22).

The specialization of the equations of I to the
EL LW EPT is straightforward through the first
order:

solve in our numerical studies is
&0)G(2)

1

=(." -~)[-,'N», (2)+(I-i(f("+&'&')~"]s1",l&'

~ ~(2) (1 2+0)e(1 )G(l)

(20d)

Use (19) and (20c) to derive

p(4) +(2) [(G(1) )G(1)
&

3+0)&G(1) ~+{1
[

(1))

+(-,'M" '-l)M'+M"]
+ ze +' -3Re&G(' )sI1 (y E{1(1)))G(2&&

(21)

This is the highest-order c" evaluated in our cal-
culations.

It should be noted that Eq. (16c) is the first-order
equation of the EL EPT." Sine& the EL first-
order function is orthogonal to I"' as ss G ', it
must be identical to C ' . If the first-order func-
tion of the Murrell-Shaw Mushe'r-Amos (MSMA)
EPT" is required to be orthogonal to I"', it is
also identical to G('). The first-order function
of the vari der Avoird-Hirschfelder (VAH)" theory
satisfies (16c), but is defined to be orthogonal to
e,",E' rather than I"'. To this extent it differs
from G('). Thus, through first order in the primi-
tive function, the EL L% theory adds to the exist-
ing EPT's only the insight that the primitive func-
tion is least distorted from I' through first order.

The EL L% EPT function differs in second order
from the functions of the previously proposed
theories even if the same normalization is imposed.
In our notation, the second-order MSMA equation,
as described by Amos, "is

(If' Eo) (2) (E(1) IV' )&((1) + E(2)Fo

A major difference between this equation and (17d),
is that e, , appears in (1Vd). Similarly, the VAH
second-order equation' differs from (17d) due to
the term z ' P' which appears in the latter. Thus,
even if one weri to impose the intermediate nor-
malization condition, the one we have adopted, on
the YAH second-order function, it would differ
from G ' . We conclude that only the EL LW func-
tion is least distorted from E' to all orders in
th4 perturbation.

IV. ENERGY EXPANSIONS

Vfe derive the coefficients of ~" in the yower-
series expansions of the energy expressions de-
fined in I, Sec. IV. The expansions are given only
through third order and primarily to show that
three of the E"(){)'s are inequivalent. For the rea-
sons given in Sec. IV of I, we doubt that these ex-
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pansions are otherwise useful, but we have tested
them in our calculations.

A. .Expansion of E"(X)

From the definition (I.28) and from (15) we find

'Ep()() = e'+ ~P'IIVie() IG() )&F'le(p(IG() )& '. (22)

Expansion of this equation in powers of & gives

~p —[&y'olep (y Epb )IG())

+ &G(&) jep (y Ep(l) ) IFO&]M(G)

"Ep(» —g(» „[&Folep (g Ep(~)) IG(2)&

+ &G(2) IeP (g EP(&)) IFO)

+ «" le,";(V', -E""')IG"&]M"

„M() DP()

(34b)

(35)
Igu(0)

'E""= &F'II,ep. IF'&M ',
'E""'= &E'I(V, —'E"')e", IG '}M"
IEP(» P'Ol(fr IEP(1))eP IG(2)&M(0)

IEp (2) &Fo
I e p IG(x) &M(0)

(23)

(24)

(25)

(26)

It is possible to relate these expressions to some
of the quantities defined in Sec. III and in I.

It was shown by Hirschfelder' that

&F'I~ e&( IF'& = &F'Ie((~, IF'& . (2V)

Thus, from (24) and (I.26c) we get
/

rgu(I) gu(I. )
HL

This is one of the constraints normally imposed
in deriving an EPT.

If one compares (25) to (1Va)-(17c), and recalls
(28), one concludes that

IEP(2) &(2)M(0) (29)
1

Furthermore, c(2) is real by (17c) and M' by (9),
so th3t gu( ) must also be zlleal

Compa. re (26) to (20c) and use (10) to see that

Re (IEp (3) ) .— (e(» e(2) M(1) )M(0) (30)

If the functions C(" are real, then 'Eu".is fully
determined by (30). Note that Re('E" ' ) may be
calculated even if only I"' and G ' are known since
these functi(ins determine e' by (20b).

The second-order energy 'Eu ') is identical to
the EL second-order energy.

I

II@ u(p) 0
)

&&gu(1) gu(j. )
HL

l1@u(q} (2) HDu-(2)

(»)
(33)

B. Expansion of E"() )

The definition of »Ep()() by Eq. (I.29) combined
with (1) gives

"E"()() = e(X) + )(&G (A) Iep((p, IG ()()&

x &G()(.) lep„ IG()()& '. (»)
The expansion of »Zp()() in powers of )( is straight-
forward. We find

Not;e that the zeroth- and first-order energies
satisfy the conditions customarily imposed on Ep()()
in EPT, i.e., Eqs. (I.26a) and (I.26c). It is pos-
sible to simplify the expressions for "Eu ' and

Eu ' and show that they are really quite different
from 'Eu ' and 'Eu(', respectively.

Compare Eq. (34b) to (17a) and (17b) and recall
that 6' ') is real to see that »Dp(' = -2e(')M ' . It
then follows from (34a) that

EP( ) &( ) (I 2M(o))

One has only to compare this with (29) to see that
in general "E"' 'E" '

In order to simplify "Eu '), we must first relate
&F'lep,.y, ld'& and &G" lep;v, lF'& From the com-
mutation of H, + V, and e,-, we find with the aid of
(1V a)- (17d)

&F'I[I'. e;";]IG"&=&F'le,";(4-~')IG"&
&(2) (M(0) -x

Substitution of the complex conjugate of this in
(35) gives

"E""'= 0'+ [2 Re&+'l(V, —E"„'„')eP,. Id')
+ d'(1 —M ' ')

+ (G(l)l ep (fr Ep(I)) IG(l))]M(0)

+ M(1)»DP(2)

The final expression is obtained by substituting
Eqs. . (10), (20b), (20c), and the simplified form
of Du(».

»Ep(2) &(2) (1 2 M(0) )

+ f~' (M' -M' M' —1) . (37)

It is clear from this equation and (30) that "E"'
~'Zu(' . Note that one needs only I"' and C ') to
evaluate "E"'-

C. Expansion of ~~~E" (X)

From the definition of »'EP(A) in (I.30) we see
with the aid of (1) that

'»Ep()() = &(x)+ )I&G(z) Iy, e(p, IG(x)&.
x &G() ) lep,. IG() )&-'. (38)

We see from (31) that »)EP()(.) is the complex con-
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jugate of "E"(X). However, it follows from (1) and
the commutation of H, + V, with e"„. that nE"(&) is
always real, so that mE"(A) = "E"(A).

D. Expansion of E"(X)

Although in the limit &=1, E"(A,) is identical to
E"(X), for X less than 1 Lt 18 a Quite different func-

tion. It is the one energy expansion that we con-
sider in which the zeroth energy is not ~' and the
first-order energy is not E„"~ .

It follows from the definition of E"(A) in (I.31),
Eg. (1), and the commutation of H, + V, with e",, that

(39)

~&p(.&,(..i
(4o)

and obtain from the power-series expansion of
(39) with the aid of various relationships we have
already derived,

~E"(~)= ~(~)+[&G(~) l(1 e—,",)v, e~&, lG. (~)&

+ X&G(A) l e&&,.V,e~&,. lG(A)&]

x&G(A,) le, ,, lG(g) '.
Note that the first matrix element involving g', is
not multiplied by ~ and that therefore it can con-
tribute to E"~'. We set

IYDP(0) EP(j.) P'0 leg V eP lP'0&+o)

~D~"' = E~"+ ~D""(~"'—1) —2~"'&" —2 «&E' lel;(Vi -E"")el~IG"'&+"

lvDp(2) IYDp(0) (Q2) Ql)2) + IYDp(1)pg(1) + e(2) [+0)(1+ +1)) I ] ay(3)+0)

+{2He&+'l e"„V e"„lG"'& —(G" le" (V -E"")e~;
I
G"

&
—»e&F'le";;(V, -E"")e"

l
G"&j&"

(41)

(42)

(43)

(44)

~D"~'~ =M '~$ E&' le", , V(1 - e",,) lG ")+ (G "le,",.V (1 - e",, ) lF'& + (G ' le". V (1 - e",, ) lG
'

& + &C
' '

le,",V, (I - e,";)lG
'

&

+&G"'le" V &t' lG")+ 2Re&E'le" V e". lG "&j+M' 'D"'"+ (M" M'") ' D""
—2M" D~'" Re(&Z'l e~ lG"')+(G" le".

l
G'"&)

Note that since 6' =0, ' E& ' = gj& ' Thus, we
have ~E" ' & c' and ' E" ' + E"„„', i.e., conditions
(L26a) and (I.26c) are not satisfied.

We do not believe that the expansion of 'vE"(&)
should be more rapidly convergent than the two
that we first derived. It is, however, one of the
many different energy expressions that one can
write down. It is no less valid than the first two.
The three different sits of energy expansion coef-
ficients E" " that we have derived, merely show
that no special significance should be attached to
these coefficients.

The formula for E"" depends explicitly on Q ",
and that for ~E"~', on G ' . It appears to be
characteristic of the ~E"(X) expansion, that the
nth-order energy depends on the nth-order function.

We conclude that three of the four energy expres-
sions considered in Sec. IV of I are not identical
functions of ~. The three merely intersect when

V. DISCUSSION

There are three insights provided by the EPT
we have outlined in this paper: (a) The primitive

function G is least distorted from E'. (b) The
screened potential which distorts P' into G is the
weakest potential consistent with (a) and the con-
straint (I.3), namely, e", ,G=4"„,&4"„,. lG&; (c) From
(b), we infer that this EPT is best suited for use
in problems in which the unscreened interaction
is strong.

The advantage we see of the EL LW EPT over
the original Eisenschitz-London theory and theo-
ries giving the same first-order primitive func-
tion, ' ' is that the EL LW EPT offers the insights
listed above. Fortunately, this advantage is won
without the EL LW- perturbation equations be-
coming much more complicated than those of
the other EL-type EPT's. In ease of use, we
find no significant difference between the theories.
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