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The sine-Gordon chain. II. Nonequilibrium statistical mechanics
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A calculation of the current carried on the sine-Gordon chain in an external field with viscous damping is
formulated in terms of the solution of a Smolouchowski equation. The Smolouchowski equation is solved by
employing its relationshi. p to the BBGKY hierarchy and by using transfer-integral techniques. The method of
solution is not specific to the sine-Gordon chain and can be usefully employed in examining other nonlinear
systems. The solution of the Smolouchowski equation takes the form of a self-consistent equation for the
single-particle distribution function; the solution describes the system for all values of the external field. At
low field, the current is proportional to the field and due to thermally activated phase solitons; at high field,
the current is proportional to the field and the conductivity many orders of magnitude greater than the low-
field conductivity. A region of very nonlinear conduction separates the low-field and high-field regimes. It is
possible to determine the effects of various perturbations on the conductivity of the sine-Gordon chain.

I. INTROBUCTIOA

In a study of the system described by the &f&'

equation, Krumhansl and Sehrieffer found that the
statistical mechanics of the system could be re-
garded as a superposition of the conventional
small-oscillation modes and of modes special to
the Q4 system, solitary waves or sol.iton modes. '
This finding suggested a generalization that has
proved very useful in attempting to understand the
statistical mechanics of nonlinear systems; the
low-temperature statistical mechanics of systems
possessing solitary wave (or soliton) solutions is
well approximated by a superposition of the con-
ventional small-oscillation modes and o( the soli-
ton modes. Much recent work has given ample
evidence of the usefulness of this suggestion in a
variety of applications. '"

Among the most interesting nonlinear systems
that one might examine is the sine-( ordon chain.
The sine-Gordon equation is known to describe
many different kinds of physical systems, and the
mathematical properties of this equation have been
studied extensively. For example the "phase so-
liton, " a possible low-temperature charge-carry-
ing mode of a charge-density wave, is the soliton
of the sine-Gordon equation. The sine-Gordon
soliton has been studied in the presence of impuri-
ties, a sine gradient, an electric field with damp-
ing, ' etc. The equilibrium statistical mechanics
of the sine-Gordon chain has been described by
Gupta and Sutherland' and others. " From these
~tud~es a. s:mple picture of t e low-temperature
statistical mechanics of the sine-Gordon chain,
emerges; the equilibrium properties of the chain
are described by a gas of noninteracting solitons. "
The identification of the sine- Gordon soliton with
a charge-carrying entity in a charge-density wave'

f

suggests that the solitons may be seen directly,
against the background of conventional modes of
motion, in experiments that probe the nonequilib-
rium properties of the system. For example, the
sine-Gordon soliton could be driven by an electric
field and make a contribution to the current. The
response of the sine-Gordon. chain. to small exter-
nal fields provides a direct probe of the existence
of the nonlinear excitations (the entities in the
system that owe their existence to its nonlinearity,
the solitons), whereas the response of the chain
to large external fields can modify the nonlinearity
and provide a complementary probe of the chain's
nonlinear structure. Thus, it is interesting to
consider the response of the sine-Gordon chain
to both weak and strong external fields; i.e., to
examine both the linear and nonlinear response.

The purpose of this paper is to describe the re-
sponse of the sine-Gordon chain to an external
field. We calculate the properties of the chain in
the large-damping limit in which the Fokker-
Planck equation for the distribution function can
be reduced to a Smolouchowski equation. We
solve the Smolouchowski equation for the config-
uration-spa, ce distribution function by exploiting
the relationship of that equation to the BBGKY
hierarchy and employing transfer-integral tech-
niques. ' We are able to describe the nonlinear
evolution of the current in response to an external
field, the effect of impurities on the current, etc.
The organization of this paper is as follows. In
Sec. II we describe a modei for the sine-Gordon
chain, the nature of the basic modes of the chain,
and our qualitative expectation for the response
of the chain to an external field. In Sec. III we set
out the Smolouchowski equation and describe a
general method of solution. We examine three dif-
ferent cases in detail for arbitrary external field
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FIG. 2. Optimum kink.
The kink size arises from
a compromise between the
energy to be on the bar-
rier —E&cose; and the en-
ergy of phase gradient.
The phase of a particle
(angle Rt which a pendulum
lies) ls shown Rs a fllnc-
tion of its position along
the chain. In {R) the size
of the kink E is such that a
small number of particles
Rl"e on the barrMr (have
phase of order vr) at the
expense of phase-gradient
energy. In (b) the phase gra-
dient has been reduced Rt the
expense of putting YP..Rny pal"-
ticles on the barrier. In (c)
the si.ne-Gordon soliton is
shown; d= (E /E )'~~ i.s
taken as a measure of the
size of a kink. The charge
density Rssociated wltll the
phase gradient in a kink is
shown in (d). A kink and
antikink have charge den-
sity of opposite sign.

kink-antikink pair will pass through one another
or annihilate depending on the details of the ener-
gy-transfer process during collision (see Fig. 3).
'The phonon modes and kink modes on the chain
are essentially independent; the phonons suffer
only a phase shift upon passing through a kink. "
In the vicinity of an impurity, a kink distorts in
reaction to the local perturbation presented by the
impurity and then goes on, having suffered only a
phase shift. ' In the presence of a constant weak
external field and damping, the kink is driven by
the field against the viscous force and acquires a
particlelike terminal velocity. The important re-
sult of the many studies of kink dynamics is that
the kinks maintain their integrity as fundamental
modes of the system under a wide variety of cir-
cumstances. %e should expect to see the kinks in
the equilibrium and nonequilibrium statistical
mechanics of the sine-Gordon chain quite possibly
behaving as independent particles on the chain.

The equilibrium statistical mechanics of the
sine-Gordon chain can be done in the canonical
ensemble with

Z(T, C) =-a,rl~(r, c),
where T is the temperature and 4 is the phase
evolution on the chain,

I. gg N—dx =P (8,.„-8,.) =8„—8
8 =.1

The phase 4 is maintained by a torque

that does the job of creating the phase on the
chain and of holding the phase on the chain. '
low temperatures, a phase 4 will go on the chain
locally as &I~/2Tr kinks (this is accomplished by
holding pendulum jI. at phase 0 and twisting pendu-
lum N through &I&/2m complete turns. Due to ther-.
mal motion these kinks collide with the end of the
chain and the torque v n1ust maintain the phase
against the attempt of kinks approaching the end
of tIle chain to change lt. At T =0 K phase ~Ii —27Tn

exists on the chain as an n-kink lattice and is de-
scribed by the n-soliton solution of. the sine-Gor-
don equation. ' As the temperature is raised to
0"K, the kink lattice melts and the kinks move
freely along the chain approximately like a gas of
independent noninteracting par ticles. Raising the
temperature also populates the chain with thermal-
ly excited kinks that are created pairwise. 'The
number of thermally excited kinks on the chain is
proportional to exp(-PE~) from Eq. (6).

Suppose that we identify a charge density with
the phase gradient" of the sine-Gordon chain

p(x) =0,S8 x)

and put this charge density in a uniform electric
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FIG. 3. Kink collisions. The phase as a function of
position along the chain is shown in (a) for a segment
of chain on which a kink {phase evolution from 0 to 2x)
and antikink phase evolution from 2x to 0) approach one
another, collide, and pass through one another. The
kink and antikink have equal and opposite charge and
are driven toward opposite ends of the chain by the ex-
ternal field. In (b) a segment of chain with two kinks
is shown. Two kinks (or antikinks) collide repulsively
(I;hey try to twist the intermediate pendula in opposite
directions) and come apart carrying their angular mo-
mentum in the opposite direction. Kink collisions are
more complex than these examples in cases where en-
ergy and angular momentum can be converted to other
modes of motion on the chain.

field Fp along the length of the chain

H'= Fpxp x dx.
0.

The total charge in the system is

Q total p(x)dx=q[8(I) 8(0}]=QC, (12)

where 4 is the phase evolution along the chain.
The system is electrically neutral if 4 =0, i.e.,
if the chain is periodic over L,

8(L) =8(0) .

If we integrate Eq. (11) by parts and assume the
chain to be periodic, we have

H' = QE, -8(x) dx . (14}

a'=QF, g t(8,.„—8,.) .

It is this form of II', discretized, that we have
used in Eq. (2),

~I
If'=QF, 8(x) dx = QF, g 8, , -

Jp

where E,=QF, . The discretized form of Eq. (11}
is

What do we expect to happen to the sine-Gordon
chain due to the interaction in Eqs. (11) or (14}'P
From Eqs. (10) and (11) we see that the charge is
identified with phase gradient and that the electric
field will drive the phase gradient. Kinks repre-
sent the best way for the chain to produce sub-
stantial phase change with attendant phase gradi-
ent. The kinks contain positive charge and are
driven by the electric field; they maintain their
integrity in the presence of the electric field and
behave like particles. The charge on a kink is

L
dx —tan-'e" « = gm,~X0

and the kink is driven toward x =L by the field;
the charge on an antikink is -Q» and the antikink
is driven toward x =0 by the field.

For the purpose of developing a physical picture
of the behavior of the sine-Gordon chain, we may
consider it analogous to a washboard" (the periodic
washboard surface in combination with Earth' s
gravitational field represents the -El cosO part of
the potential energy) on which we have placed a
string of beads that are coupled to one another by
weak springs [the springs represent the
a'E, (8,.„—8,.)' part of the potential energyJ. The
effect of the external field is simulated by tipping
the washboard up at an angle. (See Fig. 4.) When
the field is zero the beads lie at a particular aver-
age phase, for example, 2m' as in Fig. 4; kinks
are present on the chain in numbers proportional
to e ~»e. If we fix the ends of the chain (nail down
the end at x =0 and the end at x = L) and tip the
washboard up at an angle, the phase will evolve
so as to reduce the energy of the chain by pushing
positive phase gradient to large x and negative
phase gradient to small x. The phase will evolve
as kinks and the chain configuration shown in Fig.
4 results. As the washboard is tipped to large
angles the barrier height is degraded so that the
barrier- energy-elastic- energy compromise that
gives rise to kinks becomes less and less impor-
tant to phase evolution. In the limit of large ex-,
ternal field, the washboard tipped up on end, the
chain of beads hangs as a catenary and there are
no vestiges of the kinks.

The situation above, chain, washboard, and
fixed end points, is studied in equilibrium statis-
tical mechanics, since, following an initial re-
sponse as the external field is turned on (after the
washboard is tipped) the system resides in equi-
librium; there are no currents or fluxes in the
system. Consider the situation in which the two
ends of the chain are fixed relative to one another
8(L}=8(0) but are otheneise free to move. Then
when the washboard is tipped up on end the chain
of beads slides down it in response to the field.
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This current flows on the chain and (8,.) is the
same for all i by continuity. Thus, in the presence
of an external field and with periodic boundary
conditions the chain is a nonequilibrium system.

To study certain of the nonequilibrium proper-
ties of the sine-Gordon chain we employ the
Smolouchowski equation. This equation has been
derived for the sine-Gordon chain from the Fok-
ker-Planck equation by Trullinger. " The Smolou-
chowski equation follows from (i) taking the equa-
tion of motion of a particular pendulum to be

I('d, = E, sin. 8,-+E,(8,„+8,, —28,)+E,
8(L) = 8(o) -q I(d, +F;(t)., (20)

FIG. 4. The washboard model. A qualitative picture
of the sine-Gordon chain in an external. field is pro-
vided by the model of an elastic chain on a washboard.
When the ends of the chain are pinned and the field is
weak, (a) the phase evolves to take advantage of the
energy lowering in the field. Positive phase gradient
(in the form of kinks) moves towardL and negative
phase gradient (in the form of antikinks) moves to-
ward 0. In low-field phase evolution (and phase grad-
ient) occurs locally as kinks. In high field, the barrier
that leads to kink formation is completely overridden
by the field, phase evolution occurs nonlocally on the
chain; the chain hangs in a catenary. (b) When the ends
of the chain are free to move [e.g. , 0(L)= 0(0)] the chain
is driven down the washboard by the field. The uniform
average motion of the chain is accomplished in low field
by kink pair creation followed by the motion of the + and
—charged parts of the kink pair in opposite directions.
At high field, the chain is driven down the washboard as
a rigid object.

The chain will eventually reach a steady state in
which it advances down the washboard at a con-
stant rate. Phase gradient resides on the chain in
kinks and the chain moves down the washboard by
pushing kinks and antikinks in opposite directions
(see Fig. 4). There is a continual evolution of the
average phase of the chain,

N

O,.g0,

brought about by the continual flow of kinks toward
x =L and antikinks toward x =0. (The periodic
boundary condition means that a kink leaving the
chain at x=L returns at x=0 as a kink. ) If we de-
fine a current appropriate to the charge in Eq.
(10), we have

(18)

or

where r[ is a phenomenological viscosity and F,.(t)
is a thermal noise source with properties

(F;(t)F,.(t)) =2 Iks Tq5, ,5(t), (21)

and (ii) assuming the viscous damping of the mo-
tions of the particles is sufficiently strong that,
on the relevant time scale, the particles are 'in

velocity equilibrium with the Maxwell-Boltzmann
distribution function,

exp(--,'PILAF) .
Under these conditions, the nonequilibrium dis-
tribution function we require is the configuration-
space distribution function o(1 ~ ~ N) which obeys
the Smolouchowski equation

Q —.(r. [-r)U(1 ~ ~ N)]

8x —.(exp' U(l ~ N) ]~Z

x rr(1 ~ ~ 'N)}) (22)

III. SOLUTION TO THE SMOLOUCHOWSKI EQUATION
AND THE CURRENT

The Smolouchowski equation (SE) describes the
motion of the N-particle- configuration distribution
function through configuration space under the con-
dition of heavy damping; it is an equation for the
diffusion of the configuration-space distribution
function through conf iguration spa. ce:

It is this Smolouchowski equation (SE) for the
sine-Gordon chain that we study in this paper.

In this section we have described a system of
torsion-coupled pendula in an external field. This
system is described by the sine-Gordon equation;
it is a mechanical analog for models of a variety
of physical systems that are of considerable in-
terest, e.g. , dislocations, epitaxial crystal growth,
proximity-coupled Josephson junctions, the
Josephson transmission line, charge-density
waves, etc.
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ar E ar

V(1 ~ ~ N) = E, —cos8;+—2 g (8„,—8;)',
sl

(24)

and the external potential energy that drives the
system away from equilibrium, Eq, (2),

V,(1 ' ~ N) = Q V,(i) = —Q EO8, . (25)

Equation (23) may be viewed in the form of a con-
tinuity equation

{28)

where o(1 ~ ~ N) is the probability density and

X(l ~ N) is the corresponding probability current
(here V~ is the N-particle gradient). Integration
of Eq. (26) over dn+1 ~ ~ ~ dN yields a sequence of
conservation laws for the probability densities
o(1 ~ ~ ~ n),

so(1 n)
( )eg n

The single-particle probability density obeys

(27)

1'(1) = 0l (28)

where

so{1~ ~ Ã)J(l) =-
~ d2 ~ dN +o'(1 ~ ~ N)

T J . 9$

8PU(1 ~ ~ N)
X (29)

and r —= ksT/(lq). In steady state so(1)/St=0 and
the current Z(l), the probability current for parti-
cle 1 (see Fig. 5), is a constant Z(1) =%'. Thus we
take the average rate of motion of 8, to be given
by

(8,) =2~%', (3o)

where 27' is the phase evolution and the hteady-
state current $V is a measure of the rate of this
phase evolution. The quantity (8,) is related to j,
the current carried by the system (see Sec. II).
4e have

t

j = Q(8,) =2}}'QW'. (31)

so(I ~ ~ ~N) k&T 8

et Iq ei exp[-PU(l" N)]

8x —.(exp[PU(1 ~ N)]
82

x v{}...x}}I. }2}}
The potential energy U(1 ~ ~ N) in Eq. (23) is the
sum of the internal potential energy that deter-
mines the equi. librium behavior of the system,
Eq (1),

J (I)
I
I

I r }

2m 8, 2 7r
I

I

I
I

(a) (b)

FIG. 5. Calculation of the current. The steady-state
solution to the Smolouchowski equation with a nonzero ex-
ternal field involves the determination of the steady
probability currents in configuration space, e.g. , J(1),
J(1n). The steady current J(1) is a measure of the rate
of evolution of pendulum 1 from ~& to the left of the
partition to && to the right of the partition. This prob-
ability current is related to (0&) -and the current. An

analogous discussion may be given by the joint prob-
ability currents J(1n), J(inn), . . .

The relatively simple form of Eq. (31), relating
j to the steady-probability current F in configura-
tion space, results from the relationship of the
current to the average rate of phase evolution and,
in turn, from the relationship of the average rate
of phase evolution to the probability current in
configuration space [j~ 8 ~J(l)]. No equivalently
simple results are available for the energy cur-
rent or other defined fluxes.

It is possible to define a variety of joint-proba-
bility densities and joint currents, e.g. , o'(ln)
and Y(ln), and to discuss the current across a
partition in configuration space like that show'n in
Fig. 5. In general, we seem to find that the be-
havior of the joint currents are plausibly related
to the behavior of the joint-probability densities.
For example, when I and n are close to one an-
other (close as measured by the probability that
a kink lies between 1 and n) their phase evolution
is coordinated and when 1 and n are far apart
their phases evolve independently. '

From Eq. (31) we see that the current is given
by 8", the steady-probability current. It is the
current we are interested in calculating. Thus,
in dealing with the SE we focus our attention re-
latively narrowly on the determination of F. As
a first step in the solution to the SE we employ the
relationship between the equations of motion for
the n-particle nonequilibrium distribution func-
tions and the equations of motion for the n-particle
equilibrium distribution functions. The latter
equations are the well-known BBGKY equations.

A. The BBGKY hierarchy

For a system of N particles in equilibrium with
a system of "internal" forces we have the N-
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particle density given by

p(1 ~ ~ N) =g 0()'
)Iaaf(j)',

(32)

8.(1)... BPV(1), " „,BW(Ij)
J e2

where (t)(i)' = e ~v&", V(i) is the single-particle
potential for particle i, and f(ij)' =e j'"&"), V(ij)
is the pair potential between particles i and j.
The n-particle densities are defined by

(1)BPV,(1)
91

', ","",(12)","'.(»)—'PV(12)

(36)

p(1 ~ ~ n) = d(n+ 1) ~ ~ dN p(1 ~ ~ N) . (33) + P t djo'(12j) +o(12)
. BPV 1j BPV, 1

jr3
The BBGKY equations follow from taking &, on the
left and right of Eq. (33). The result is

'(j', p(1 ~ ~ .n) = p(1 ~ ~ n)0, [lng(l)'j+ p(1 ~ ~ n)

a

x0, g lnf(1j)2

N

+ P dj p(1 ~ ~ n+1)

8
+—(same for 1 and 2 interchanged) =0

~2

(37)

In writing Eq. (36) we have used the first integral
of Eq. (29) in terms of the steady probability cur-
rent W. The single-particle potential V,(i) in Eqs.
(36) and (37) is that of the external field that
drives the system away from equilibrium. If we
put V, (i) =0 Eqs. (36), (37), . . . are solved by

x 0, ln f(lj)' .

The first few BBGKY equations are

a—p(1)+ p(1) 81PV(1)
9

(34) o(1) = p(1),

o'(12) = p(12),

o(123) = p(123),
~ ~ ~

(36a)

(36b)

(38c)

N

+ P dj p(1j)—PV(1j) =0, This suggests that we seek the solution to Eqs. (36),
(37), . . . in the form

8—p(12) + p(12)—PV(1) + p(12)—1 PV(12)
8 8

N

+ g dj p(»i)» PV(1j) =0
jm3

o(1) = p(l)e(l),
o(12) = p(12)e(12),

o(1 ~ ~ .N) = p(l ~ ~ N)e(1 ~ ~ N) .

(39a)

(39b)

(39')

~ ~ ~ (36)

The SE for the n-particle distribution functions
o(1 ~ ~ n) can be written in a form similar to the
corresponding BBGKY equations. If we integrate
Eq. (23) over 2 ~ ~ N, 3 ~ ~ N, etc. , we obtain

In proceeding this way we assume we know or can
learn p(1), p(12), . . . , by solution of the equilib-
rium problem and that e(1), e(12), . . . , are to be
found. " Equations (36), (37), . . . , become a sys-
tem of coupled equations for e(1), e(12), . . .
These are

(1) e(1) 1
(1)

e(1)
( )

)BV.(2) ~ "„P(1j)(
( ) )I l)V(lj)}

Bi r 81 81 81 ~ „p(1) 81

Be(12) 1 2 Be(12) BPV,(1) ~ ' . P(12j) .
)
B()V(1j)}

+(1 and 2 interchanged),

(40a)

(40b)

Be(1" N) 1 " 8 8 e(1 ~ ~ N) BPV.()p(1 ~ ~ N) =—& —.p(1 ~ ~ N) + e(l ~ ~ n)et 7W eg,
,

~Z ~Z
i+1

(40')
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in the steady state Eq. (40a) reduces to

(40a')

with zo(0+211m) =zo(0). We have

Bzo(0) $Pz

B0 ' p(8)e(0)
' (45)

The zero-coupling limit is referred to as the
Ambegaokar-Halperin (AH) limit; the basic equa-
tions were solved by AH. in their study of thermal
noise in a Josephson junction. " In this limit all
particles behave independently and the n-particle
distribution function is the product of n equivalent
single- particle di.stribution functions. Equations
(40) reduce to

Wz Be(1)-+ X,e(l) . (41)

This equation is to be solved for e(1) subject to
the constraints

where F(l) is an effective single-particle field.
Each of these equations, whether time dependent
or not, couples the various nonequilibrium factors
e(l), e(12), . . . , to one another; with the ex-
ception of Eq. (40 ) for 8(l Ã). By virtue of
being unreduced, the N-particle distribution func-
tion couples only to itself. We are able to solve
Eqs. (40) in several cases. The special cases
are delineated by values of the basic parameters
that characterize the systein. These are: X, =PE„
the. ratio of the barrier height to the temperature;
X, =PE„ the ratio of the torsion coupling to the
temperature; X, =PE„, the ratio of the external
field (applied torque) to the temperature; d
=(X /X. )'1' =(E /E )'1', &i =measure of the length
of a, kink (soliton); PE~=8(X,X,)'~', the ratio of the
energy tp create a. kink (soliton) to the tempera-
ture; @=4',X„ the parameter of the Mathieu-
equation approximation to the transfer integral,
TI, problem. '

B. Case I

Thus,

d0
p(0)e(0) '

so that putting 0 equal to 2z yields

2vXO

J,'"d0/o(0) '

If we return Eq. (4'l) to Eq. (46) we have an im-
plicit equation for zo(0),

-0+211j, d0/a'(0)

d8/o'(0)
(48)

since o(0) = p(0) e &o' and p(0) is known. In Eq.
(48) we have put zo(0) =0 since e "' is a constant
that can be absorbed in the normalization of o(0),
Eq. (42). The set of equations that constitutes a
solution to Eq. (41) subject to the constraints of
Eqs. (42) and (43) is Eqs. (47) and (48).

(a) Equation (48) is an implicit equation for zo(0)
[o(0) = p(0)e~&e&j. In the AH limit an explicit but
cumbersome equation can be derived for zo(0)."
The implicit torm in Eq. (48) is quite simple and
has much greater usefulness.

(b) Equation (41) gives the current in terms of
an integral over the inverse of o'(8). Two impor-
tant points emerge: (1) the current is related to
an average property of the nonequilibrium distri-
bution function of a single particle, and (ii) the
current is sensitive to the nonequilibrium distri-
bution function where it is small, i.e., in that re-
gion of configuration space where o(0) is most dif-
ficult to lea, rn. Below, we will discuss the solu-
tion of Eq. (23) for the current in several approxi-
mations that are fancier than this one. Nonethe-
less, the essential features of the solution, as
embodied in Eqs. (47) and (48) and remarked on
here, remain.

V(0 + 2711zz) = (T(0) .

Equation (42) follows from our choice of normal-
ization of the single-particle distribution function.
The periodicity in o(0) [we 'also have o(0, +2zzzzz, 0,
+211m, . . . , 0„+211m) =-o(l ~ ~ zz) I follows from the
observation that in steady state one cannot make
an observation thai will determine the absolute
phase on the chain. The periodicity of o(0) irn-
plies periodicity for e(0, )e(0,0,), . . . , since
p(0, ), p(0, 0,), . . . , are periodic. We solve Eq.
(41) by writing

e(0) = e"&",

C. Case 2

The weak-coupling limit corresponds to the case
in which the size of akink is of the order of only afew
units, i.e. , d=(E, /E, )'~""~1. The idea of this limit
is that the coupling is present so that we must go
beyond the AH solution but at the same time it is
sufficiently weak that correlations of only a few
units need be considered. To solve Eqs. (40) we
make the ansatz

c(0) = p(0)e(0),

cr(0,.0,.) = p(0,0,)e(0,)e(0,).. . . .
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Then Eq. (40a. ') closes without recourse to the
higher-order equations and a Hartree-like self-
consistent equation for e(1) emerges. The de-
tailed set of equations, employed in carrying
through the consequences of the ansatz in Eq.
(49), is described in Appendix A. We employ the
numerical implementation of these equations to
test reduction to the AH limit and the weak coupling
limit of the more general solution described below
as case 3.

D. Case 3

In the strong-coupling limit we make no restric-
tion on the strength of the unit-unit coupling or on
the strength of the external field. The system of
equations that gives o(l), o(12), . . . is coupled and
could be solved at low order by some decoupling
scheme, e.g. , as case 2 above (however, low-
order decoupling only works for d(1). We go di-
rectly to the N-particle equation, Eq. (40'). We
make the ansatz

d1(t, (1)e 'v"'e""'exp[-,'x, (0, 0,)']1

2 Tth, o

J,"d0/cr(0)
(57)

=e" y„(0,) . (56b)

We remark below on, the reduction of these equa-
tions to a Schrodinger equation and on a number of
practical details associated with the solution to
Eqs (5.6).' The important point that emerges here
is that the ansatz of Eqs. (50) recluces the calcula-
tion of the N-particle nonequilibrium distribution
function to the solution of. a pseudoequilibrium
problem, with a single-particle potential V(1)
—W(l) [m(1}=-PW(l)], on which transfer-integral
techniques can be employed. The complication in
this apparently simple result is that so(0) is not
known but must be obtained self-consistentlyfrom
Eqs. (48) and (56). With o'(0) in hand, we proceed
as in case 1 above and find

e(I. ~ ~ ~ N) = e(1)e(Z) ~ e(N)

and we write

Equation (40'), the equation for the N-particle
nonequilibrium distribution function, becomes

(5o)

(51)

with

-0+27r fo d8/o(0)
ur(0) = lc,

J,"d0/o (0)

0 0 d0=1.
a

v' p(l ~ ~ cV) e(1 ~ ~ N—)Bt

(r(1) = d2" dN p(1" N)e(1) ~ ~ e(N) (54)

This equation is the same is Eq. (45) above ex-
cept that (r(0) on the left-hand side of Eq. (31) is
found by a more complicated prescription. To be
able to use Eq. (53) and its consequences we must
be able to learn cr(0). But from Eqs. (54) and (51)
it is straightforward to find o(0) using transfer-
integral techniques. '" We have

~(0) = 4.(0)0.(0), (55)

where (t, and P, a,re the left- and right-hand
ground-state solutions of the transfer-integral
equations

d2 e gv&x)e"") exp[-~X, (0 —0 )z]()) (0

=e ~'vy (0,), (56a)

We integrate this equation on 2, 3, . . . , N to obtain

rv~ i e—+ X e(l),r(1) 91 0

where

dp

e(1 ~ ~ N) =f(12)f(23) f(N —liV),

or the ansatz

(60)

e(1 ~ ~ N) = e(1) ~ ~ ~ e(N)f(12) ~ ~ f(N 1N) . (61)—
We have looked at the consequence of these ap-
proximations and we find no essential features
different from those which emerge from Eq. (60).
We support this finding with the observation that
the current is related to an average property of
the single-particle distribution function and that
quantity is as well approximated by the ansatz of
Eq. (50) as it is by the ansatz of Eq. (60) or the
ansatz of Eq. (61). The ansatz of Eq (50) reta. in.s
the equilibrium correlations between particles
and changes the effective single-particle potential

This is the same set of equations as case 1 except
that now o(0) is learned self-consistently from
Eqs. (48) and. (56). The calculations of the current
and other properties of the driven sine-Gordon
chain are based on this discussion and the equa-
tions displayed here [Eqs. (56)-(59)].

It is clear from the development above that a
number of other approximations to (r(1 ~ ~ N) can
be made and carried through to an essentially
complete solution for cr(0), 8'r, etc. ; for exam-
ple, the ansatz
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that each particie. sees. This appears to be ade-
quate for discussing the current. If one were con-
cerned about the pair correlation function, e.g. ,
p'(12) or ~(12)/[a(1)o(2)] quite possibly ansatz (60)
or ansatz (61) would be more suitable. Finally,
we remark that the ansatz of Eq. (50) permits all
particles to respond to the external fieM. If a
kink is d'» I unit's long, all of the particles parti-
cipating in the kink motion and carrying charge
are able to respond to the field. This is unlike
case 2 which amounted to

o.(I2 -"X)= e(1)e(2)p(1' X)

amd permitted only local response to the field and
faiIed in numerical studies at d&1."

(
1 cf , —X, cos8 „8 = q„„82y~d8~ i v v u (63)

Then o'(8}-p(8), the equilibrium distribution func-
tion, and

2 n'X
lim F7 =

0 J d8/p(8)
(64)

Thus the low-field current depends upon the be-
havior of p(8) where it is small; i.e. , in the bar-
rier midway between 2))m and 2v(m+1). To learn
about p(8), really Q(8) and $(8), midway between
0 and 2n, we note that Eq. (63) is the Mathieu
equation'so that we may take over many of the
analytic results available from the study of that
equation. To convert Eq. (62) to the Mathieu
equation we use q =4&,X, to achieve"

, ——cos „8 =2P&„X, „8 (65)

This is the Schrodinger equation for a particle in

IV. THE CURRENT

Ia thi;s section, we describe a number of further
details associated with calculating the current
from the above prescription. We also display a
number of analytic limits and tests in preparation
for examining the numerical implementation of
Eqs. (57)-(59).

To find the current from Eqs. (57)-(59) we need
to find (1),(8) and P,(8) from Eqs. (56) with ur(8) of
Eqs. (M} and (58) self-consistently determined.
In solving Eqs. (56) and (58) self-consistently, we

have used the differential form of Eq. (56). This is

, —), cose+u(g)j (t(t()=()e (.(0). (6„2)(
1 d

2

In paper I we have discussed the limits for which
the TI problem can.be reduced to a Schrodinger
equation. From Eq. (56) we see thatw(8) (x: X, so that
as X, -O so does M(8) and Eq. (62) reduces to

In the limit q» 1 we expect the particle to rarely
be in the barrier between 2wm and 2(m+1). We
have

1/p(w) =1/y, (w)y, (~)

and
"2' d8 ].

p(8) p(~)

Thus in Eq. (64) we find the current proportional
to p(7))

Pr =2mp(a)X, ~ e 'e~ (66)

i.e., the current proportional to the number of
thermally activated solit;ons in the system. (See
I and Appendix B.) This result is a consequence
of the structure of Eq (57). .It is in agreement
with our remarks in Sec. II and with the expecta-
tion announced by Rice et al.~

In Appendix 8 we have tabulated a variety of
ana. lytic results on o'(8), 'etc. , that are useful for
examining the solution to Eq. (56), for trouble-
shooting the numerical work, etc.

Equation (66) for the current in low field can be
achieved by any of a variety of treatments of Eq.
(57). The principle point of thi. s work is to exam-
ine a formulation which can be carried to high
field, i.e. , X, -+~, ~U(8)WO. In high fields we ex-
pect o(8) to go to a constant; in the presence of a
field that can drive them arbitrarily hard there is
no reason for a particle to recognize the barrier.
We have e(8) = const and from the norm Eq. (59),

o(8) =1/2v .

Thus, from Eq. (57} we have

5'r =),/2v .

(67)

(68)

In this limit (f), and (, must approach a constant,

(f), = $,=1/42@. '

This is accomplished in the solution of Eq. (62) by
the single-particle potential w(8) approaching
-~, + X, cos8, i.e., exactly canceling the single-par-
ticle field given by Eq. (1). As the field is turned from

a sinusoidal potential of strength q and its quali-
tative properties are governed by the parameter
q. For q-0 the particle is almost a plane wave;
for q» 1 the particle is highly localized near
2m~&. The parameter -q is a special combination
of the particle's mass

a'/m - I/X, ,

and the barrier height that characterizes the sin-
gle-particle potential
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— = (2n)'p(v), (69)w(~„-+ )
i.e., the ratio of the low-field to high-field con-
ductivitles is proportional to p(m), p(v)«1. A
conductivity change of many orders of magnitude
occurs between' low and high fields. This nonlinear
evolution of the conductivity should occur when E,
has eroded enough of the barrier, Ej cos~ so as
to strikingly reduce the energy required to pro-
duce a kink and to permit easy flow of the parti-
cles." Thds, it is useful to scale the self-con-
sistent field by ~, and to view the potential energy
in Eq. (62) as

X,[-cos9+u(6) j,
where u(g) = X, 'u&(8).

(70)

V. NUMERICAL RESULTS

%e have solved the system of self-consistent
equations developed in Sec. HI to determine the
nonequilibrium distribution function, the current,
etc. , for a variety of values of the basic parame-
ters that characterize the sine-Gordon chain. De-
tails of the results of these calculations are de-
scribed in this seCtion.

The numerical solution to Eels. (57)-(59) has
been carried out for the values of these parame-
ters noted in Table I. This choice of values of the
parameters permits us to examine the behavior of
the system as the temperature evolves from low
temperature (PE»1, hsT«energy to create a

TABLE I. Basic parameters for numerical work.
The values of the basic parameters that describe the
systein are listed for the five studies described in the
text. The energy scale has been set by the choice 7'
=1'K fol' case 1.

Case

1
2
3
4
5

(c)
X2

I

10 0.25 10
10 1.0 2.5
10 2.5 1.0
7.5 —', v 3 5v 3
5.0 —,'W2 5&/2

g0
2.5
0.40

40
40

(e)
E@/k~

12.7 K
12.7 K
12.7 K
12.7 K
12.7 K

1.00 K
1.00 K
1.00 K
1.15 K
1.41 K

&p ~~ 1 to &(I ~& 1, the distr ibution function e volve s from
one which describes localization near 2nm to one
which is uniform. This evolutiori is accompanied
by an evolution of the self-consistent field w(0)
from zero to a field that cancels the internal field
—X~ cosO.

The current is linear in ~o for low field and for
high field. The ratio of the low-field current to
the high-field current is

kink) to high temperature (PE «1) and to watch
the evolution of kink conductivity at fixed temper-
ature as the width of the soliton (d'=E, /E, ) is
varied .In studying Eqs. (57)-(59), we typically
fix q =4k, ~,, and vary ~i and A, A study at fixed q
for various products ~,~, =-,'cp is a study of the be-
havior of.

'
the chain at fixed temperature and fixed

kink energy as the composition of the size of the
kink changes. See rows 1, 2, and 3 of Table I. A
study at various q for fixed X, /X, corresponds to
fixed kink size and energy and varying tempera-
tures. See rows 1, 4, and 5 of Table I.

The length scale for the size of a kink is dimen-
sionless, d = (X, /k, )'~' and is approximately the
number of pendula or units over which a kink oc-
curs (Fig. 2). The energy scale is not set be-
cause the basic parameters are dimensionless-
all energies are set relative to k~T. To give the
discussion here a definiteness that will help to
intake it more useful, we arbitrarily choose an
energy scale and make the discussion in terms of
it. See columns (e) and (f) of Table I.

A. Behavior of the chain as a function of kink size

The energy required to create a kink is achieved
as a result of a compromise between the energy
required t;o have the pendula on the barrier and the
elastic energy (i.e., the gradient energy). Studies
1, 2, and 3 of Table I describe chains with kinks
of the same energy (it is 12.7 K in our units) but
of three different lengths 440, v'2. 5, and j'0.40,
respectively. In case 1„ the kink is long because
the elastic energy is large compared to the bar-
rier energy E., =10 K, E, =0.25 K. In case 3, the
barrier energy is larger, than the elastic energy
E, =1.0 K, E, =2.5 K. In this case the kink is less
than one unit long and a soliton picture of the kink
is approaching the limit of its validity. " Certainly
if phase 2~ can be. evolved between neighboring
units for less energy than it costs to build a soli-
ton, i.e. , if

E( 2)'-v&E, ,

the system will make kinks in this local fashion
and solitons (as entities in which the phase evolves
smoothly) will not exist. This criterion reduces
to d&4/v'=0. 4. Case 3 approaches this limit.

In Figs. 6-8 we show the results obtained from
the solution of Eqs. (57)-(59) for the current. In
Fig. 6, we show the evolution of the current as a
function of field in the form Wr vs X,/&, =E,/E, .

(i) At low field E,«E„ the current is propor-
tional to E, and is due to thermally activated kinks
(see the discussion in Sec. IV). On Fig. 6, we
show a dashed line representing the analytic as-
ymptote for the current. The agreement of the
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Eo/E
. l.O

FIG. 6. Current as a function of kink size. The cur-
rent [in the form W~, Eq. (57)f is plotted as a function
of the dirnensionless field X 0/X &

——Eo/E, . These results
are from studies 1, 2, and 3 of Table I in which the en-
ergy 8(E&E2) is kept fixed at 12.7 K, the ambient
temperature was '1 'K, and the kink size is varied from
d = 0.40 to d = 40. At low field, the current is pro-
portional to Ep and due to thermally activated kinks.
The nature of these kinks is different according to how
the basic energy (E&E&) ~ is shared by E'& and E2
separately. As E&—0 while E,E2 is constant, the kink
energy goes asymptotically to the energy of a con-
tinuum kink 8(E&E2) = E+. Away from this asymptote
the kink energy is different from E& due to the discrete
nature of the chain.

the current that is observed in Fig. 6 at fixed q
and X, as we change X, /X, is due to the discrete-
ness of the chain. As X, -0 so that d» 1 the dis-
crete character of the chain is lost and all kinks
regardless of their size carry the same current.
Universal behavior always obtains in the coritinuum
limit (see I).

The current, as a function of field, changes as
the single-particle distribution function changes,
Eq. (57). Change in the single-particle distribu-
tion function is brought about as it responds to the
self-consistent field u(8). In Fig. 7, we show the
evolution of X,[- cos8+u(8)] as A,, evolves from
well below the critical field X,/X, = 1 to above the
critical field. As with the current itself, the be-
havior of u(8) at X,/a, «1 and Xo/X, =1 is in rea-
sonable agreement with analytic asymptotes.

In Fig. 8, we show the evolution of the single-
particle distribution function o(8) as X, evolves.
At X,/X, «1 the distribution function is pushed
mildly away from its equilibrium form as the ex-
ternal field begins to push the pendula up against
the barrier. As the external field is increased,
the barrier is lowered and o(8) evolves towards
its high-field form, v(8) =const. At high field, the
pendula will be found with equal probability at all
angles as the field removes all subtlety from the
phase- evolution process.

0 P0 X) = 0. 176

numerical results with the analytic asymptote con-
firms our picture of the low-field conductivity.
We discuss some quantitative aspects of this re-
sult later.

(ii) At high field E,» E„ the current is again
proportional to E, and is due to the field driving
the chain uniformly against the viscous force.
Note again that the numerical solution evolves to
the analytic asymptote shown by a dashed line.

(iii) Striking nonlinear evolution of the current
occurs at E,=E, as the field smooths out the bar-
rier.

As ~y approache s z ero at fixed q, that is as we
consider a sequence of chains in which the kink
energy is constant but is dominated more and
more by the elastic energy, the kink becomes
longer and longer, X, -O, and the asymmetry of
the completeness relation that is employed in
treating the transfer integral disappears. " In
this limit the transfer integral, current, etc. , are
characterized by q alone. Thus the evolution of

0. 10

0.0

-0. 10

—o.20

FIG. 7. The effective field. The nonequilibrium sin-
gle-particle distribution function is determined by the
single-particle field X

&
[-cos8+u (8)], Eq. (70). The

sing1e-particle field is shown as the external field varies
from Xp=0.001 to 0.176 (the ratio Ep/E& evolves from
0.00568 to 1.00). As X p varies from 0 to+~ the single-
particle field evolves from —A,

&
cosg to —X &.
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= O. I76

Xp = 7.07I

0.50

lo-4

lO

lO-'
lo lO-' lO-'

Eo/El

FIG. 8. Single-particle density. The single-particle
density given by the self-consistent solution to Eqs.
(57)-(59) is shown as a function of angle for five values
of theexternalfield, Ap =. 0.001, 0.050, 0.100, 0.120, and
0.176. As Xp evolves from 0.001 to 0.176 Ep/E~ evolves
from 0.00568 to 1.00. Compare these results with Fig.
7 which shows the effective single-particle field that
generated these densities.

FIG. 9. Current as a function of temperature. The
current fin the form 8'7, Eq. (57)] is plotteg. as a func-
tion of the dimensionless field X p/X ~

= Ep/Eg for several
values of the temperature. These results are from
studies 1, 4, and 5 from Table I; the kink size is fixed
at g = 40.0 and the ambient temperature is 1.00, 1.150,
and 1.41'K. The low-field current is due to thermally
activated kinks. From a plot of gy vs 7' at fixed Ep
«E& we find that the low-field current is carried by
kinks with activation energy 10.8'K. This "empirical"
kink energy is close to the analytic asymptote 12.7'K .

corresponding to the continuum limit g +~.

B. Behavior of the chain as a function of temperature

In studies 1, 4, and 5 of Table I we have looked
at the evolution of the current as a function of field
for fixed kink energy and size as the temperature

. evolves. We show the current @s a function of the
field for three temperatures in Fig. 9. The qual-
itative features of the behavior of the current
noted above are also seen in Fig. 9. At the lowest
fields, the current is carried by thermally acti-
vated kinks. We show this in Fig. 10. We have ex-
tracted a thermal activation energy by analyzing
S'7 vs T ' for several values of the field. In Fig.
10(b) we show the activation energy, the slope of
W7 vs T ', as a function of EgE, . On this curve we
also show the field dependence of the effective barrier
given by the following arguments. The energy to
create a kink is 8(E, E,)' '. The field tends to de-
grade the barrier -Ey cos8 that contributes to the
kink energy. At field Eo 0 0, we might take the
barrier energy to be

Eog (—E, cos8 —EO8) —( E, cos8 —E-O8)

(71)
see Fig. 10(b). Then the energy to create a soli-
ton is

E,(E,/E, ) =E,t (E,/E, ) . (72)

On Fig. 10(a) we' have plotted E~(E,/E, ) from Eq.
(72) with E~ chosen to give the result observed in
Fig. 9 as E,/E, -0. We note that E~(Eo/E, ), given
by Eq. (72), does a reasonable job of describing
the essential features of what we observe in the
numerical results. But, certainly, there. are clear
systematic departures from Eq. (72), e.g. , the en-
ergy to create a kink is insensitive to the field in
first order as Eo/E, -0, unlike Eq. (72).

One of the most striking features of Eq. (57) for
the current is the dependence of the current on
o'(8) where it is small. Certainly this is correct
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b (Eo/E~)

FIG. 10. Barrier height
vs external field. The
barrier height is plotted as
a function of the dimen-
sionless field for d2=40 as
open circles. The barrier
height is found fram an g'y
vs T ~ analysis of the num-
erical results shown in Fig.
9. Also shown is a contin-
uous curve given by the
simple argument in the
text, Eq. (42).

0.50
'

EP/E1
1.0

at X, -O and at low temperature. As evidence of
the general validity of this assertion we show in
Fig. 11 a plot of o(8),„vs 5'v/X, . From Fig. 11
we see that Fv~cr(8), „behaves qualitatively as

10-'

q
2

10.0 ~

X~

10

10

cr (e)min

10-'
10 IO

I

0 2

W7 /Xp

FIG. 11. 0{0)min vs ~T. Prom Eq. (57) the current is
approximately proportional to the smallest value of 0 (p ).
%e show 0 (8)~&„, the minimum value of 0 (0) as a func-
tion of W y for the three studies 1, 4, and 5 at d = 40 and
T=1.00, 1.150, and 1.41 K, respectively. The results
shown here tend to verify the qualitative and quantitative
nature of the deductions made from the examination of
Eq. (57).

expected, and that the curve has a universal
character that suggests that o'(8),„ is a good in-
dicator of the current.

A basic feature of the behavior of the current
on the sine-Gordon chain is that there are two
characteristic energies: (a) the energy required
to create the thermal equilibrium kinks that are
seen in the temperature dependence of the low-
field conductivity, and (b) the energy required to
degrade the barrier and to permit uniform phase
evolution. These energies are E~ agd E„re-
spectively. %e have E~ = BEE, » E, .- This inequal-
ity is an essential feature of the kink or soliton
picture of local phase evolution.

Certain qualitative features of the dc conductivity
measurements of Cohen et al."on tetrathiafulva-
lene-tetracyanoquinodimethane (TTF-TCNQ) at
low temperatures are similar to those observed
in Figs. 6 and 9. It has been speculated that this
conductivity is due to phase solitons, the solitons
of the sine-Gordon chain. ' An essential feature
of the data of Cohen et al. is that the energy that
characterizes thermal excitation at low tempera-
tures is the same as the energy required to de-
grade the barrier. See Fig. 2 of Cohen et al.
This empirical fact would seem to be compelling
evidence against identification of the conductivity
process as a phase-soliton process. Compare
our remarks here with the analysis of Wonneber-
ger and Gleisberg. "
VI. THE CURRENT IN THE PRESENCE OF PERTURBATIONS

In this section, we briefly discuss the effect
that various. perturbations on the sine-Gordon
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chain have on the current. Central to this dis-
cussion are two results from above. (i) In the
steady state the current is the same for all pen-
dula, (8,.)=const for all i, so that if the current
is zero for one pendulum it is zero for all pendula.
Equivalently, if the current is nonzero for one
pendulum it is nonzero ior all pendula. (ii) The
current, given by Eq. (57), is zero if ()'(8) has a
zero for 0 & 8 & 2m. If we limit our discussion of
the eff'ects of perturbations to the low-field case
we may replace o(8) in Eq. (57) by p(8) (see Sec.
IV). Thus the current will vanish if the equilib-
rium density p(8) vanishes in the interval 0, 2)).

We consider three perturbations to the chain:
(a) A Pinning site This. perturbation is a con-

straint on the location of a pendulum

6(8,. —4) (73)

that breaks the translational invariance of the
chain. There is no current flow in this case.

(b) A set of disPlacement springs. Along a sec
tion of the chain the torsion springs attempt to
establish a relative phase between the pendula.
This perturbation corresponds to .

H' = g 2E,(8(„—8() . (74)

-Ei cosO - . (75)

(c) A random dish ibution of impu2ities. At ran-
dom along the chain there are impurity pendula,
pendula with the wrong mass, for which the single
particle potential is

Z~= „8 „0+b e "t ~,

where g„ is an eigenstate of ((, Eq. (62). At low
temperatures, a tight-binding representation of
g„(8) leads to (t)=27(P+n, InI «)()"

(8) I q„(8+b)) = e'"'n

where

Q= d8 0 8XO 8+a (79)

If the displacement b is small, P =0 and the parti-
tion function, average displacement of the chain,
ete. , are unchanged. If P&0 the aveiage displace-
ment evolves as shown in Fig. 12, and the chain builds
in relative displacement 2~P between n and n+, 1.
In every other regard the chain is unchanged. In
particular, the single-particle density is un-
changed by the displacement. Thus, the current
carried by the chain is unchanged by the presence
of the displacement sp2ing. The residual displace-
ment z makes no appearance in any of the results.
The one-dimensional thermal fluctuations simply
wash out any small displacement effects —the
chain will accommodate quantized displacements
27rP with no other changes. These results- also
obtain for a finite segment of chain with displace-
ment springs (see Fig. 12).

Calculations of the effect of random impurities
proceed. as illustrated above. For a single im-
purity at pendulum m+1, the kernel in all aver-
ages is changed from M(mm+1), to

Since we wish to deal only with the low-field
limit, then, from the argument above, we must
simply assess the effect of the perturbations on
the equilibrium single-particle distribution func-
tion. The equilibrium distribution function is cal-
culated using well-known tr'ansfer-integral tech-

. niques. "'" As an example, we consider the ef-
fect of a perturbation on an otherwise perfect
chain of M+1 pendula. To illustrate what is in-
volved we calculated the potential-energy part of
the partition function, for which we have

M(m I + 1) = —X, cos8„+-,' X2 (8 ., —8„)' .

Using Eqs. (20) and (21) from I we obtain

2wP

(60)

g d] ...d(M+ I)ev (12)ea (23). . .e&(nn+1). . .
V

es(M M+1)6(8 8 ) (76)

where (((12) =X, cos8, + —2'X2(82 —8,)', i(nn+1)
= X, cos8„+X2(8„„—8„—b)', and t) =E,/E2. The 6
function in Eq. (76) enforces the periodicity that
we require for a simple neutral conducting chain.
We note that 7 is the same as ~ except that the
spring attempts to create displacement b. Carry-
ing through the standard steps for the TI integra-
tion of Eq. (76) we find

2' P

L-x

FIG. 12. Equilibrium chain configuration. The equili-
brium configuration for a chain with a displacement
spring at x is shown. The chain accommodates the dis-
placement spring with minimum phase gradient. Ther-
mal fluctuations in the form of kinks, etc. , occur about
the average equilibrium configuration. In a weak ex-
ternal field the chain, in the average configuration shown
here, is driven down the washboard.
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P,'y„(0„„)q,(0„.,)F„,e "8'~ exp[ (n-—m)P(e„—e„)]
& 0n+). ) = —~-"

Q F e-Mae~
(81)

y' =- d0(f) (0)e~ '" )),(0)=6 „1',

with

d0~)0 0 e &"'X 0

(82)

(83)

carrying charge proportional to their phase gradi-
ent. The conduction properties of the sine-Gordon
chain do not seem to correspond to those observed
by Cohen et al. for TTF-TCNQ.

We expect the SE treatment of the conduction by
the solitons to be valid provided that the external
field does not put too much energy into the solitons
between collisions, i.e. , for

and 4X ~j ~1 The simple form of the matrix
element;in Eq. (82) is a. consequence of the peri-
odicity of the perturbation; it is the game as the
periodicity of P(0) and $(0). From Eqs. (81) and

(82) we have

i.e., p(0„„) is unchanged by the presence of. the
impurity. Thus the impurity —quite independent of
X,—does not effect the current.

In writing Eq. (82) we have taken the ground-
state-ground-state matrix element of Ii(0). If we
consider matrix elements to the excited states,
we can show that there are corrections to p(0„„)
due to the impurity at m+ I if (n —rn) ~ d. That is,
the impurity exerts an influence proportional to
I" that decays with distance as exp(- ~n —I ~/d).
Our conclusion above for a single impurity re-
mains valid until the impurity concentration be-
comes greater than about d '.

Eo~iv « ~g T (84)

On the left-hand side we have a product of the
factors E,~, =rate at which the field puts energy
into one pendulum, 7' =-the time between collisions,
and d =number of pendula in a soliton. Equation
(84) is a statement of the requirement that the en-
ergy into the soliton between collisions be small
compared to k~T. A criterion similar to this has
been derived by Trullinger from comparison of
the results of Fogel et al.' and of Trullinger et al.'
The validity criterion in Eq. (81) must be comple-

VII. CONCLUSION

We have calculated the current carried by the
sine-Gordon chain in an external field which cou-
ples to the phase gradient. 'The calculation of the
current is formulated in terms of. the Smolouchow-
ski equation for the configuration-space distribu-
tion function —thus, we deal with the chain in the
limit of heavy damping. By exploiting the relation-
ship of the Smolouchowski equation to the BHGKY
equations and using transfer-integral techniques
we are able to find a solution to the SE suitable
for calculating the current, Eqs. (57)-(59). Our
method of solution for the SE is not specific to the
sine-Gordon chain and should prove useful in ex-
amining this equation for a variety of nonlinear
systems. We find that the conductivity of the chain
i.s linear in the field at low field and at high field,
and that these two regimes are separated by a
region of highly nonlinear conduction. The region
of highly nonlinear conduction occurs when the
external field becomes comparable to the single-
particle potential of the sine-Gordon chain. The
low-field conduction process is due to solitons

FIG. 13. Validity criterion for the Smolouchowski
equation. The solution of the Smoloucbowski equation is
valid under a variety of circumstances. There are two
essential criteria (a) that the frequencies of interest be
low compared to the characteristic time y (this criteria
is present even in zero external field), and (b) that the
field be such that it doesn't overheat the kinks or the
particles, Eqs. (81) and (82).
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mented by validity criteria for high field, etc.
The SE will satisfactorily describe the motion of
a single pendulum (e.g. , when X, -O) for +,7: « l.
It will satisfactorily describe the motion of the
collective modes of the chain for (&u', + e', )'/~r «1.
Finally, at high fields, in place of Eq. (81), we
have

Eoco+7 &&k&T, (85)
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APPENDIX A: WEAK-COUPLING LIMIT

The self-consistent equation for e(8) for case 2,
the weak-coupling case, is solved by defining an
effective field

where I(d2~= k~T. The SE is valid in the regime
shown in Fig. 13.

We have briefly examined the effect of various
kinds of perturbations on the current carried by
the sine-Gordon chain and a very simple criterion
for nonconduction results, Eq. (57). Because of the
large one-dimensional fluctuations we expect the
chain to wash out the effects of most perturbations.

where r(1) = p{1)exp J,
' h(1)di and

1
exp j "h(l)dl —1

& 2I'' . 25'

+ x(1)d1 . '

. (A4)
~0 ', l.

Equations (Al), (A3), and (A4) are a self-consis-":
tent set of equations for e(l) and Wr 'We have

'

employed them td calculate the current wheri X

For the parameters X, =2.5, X, =1.0 (study'
3 of Table I), we found excellent agreement for, ',

,

Wv vs X, between the result obtained using these
equations [Eqs. (A1)-(A4)] and the result de-
scribed in the text using Eqs. . (57)-(59).

APPENDIX 8: ANALYTIC ASYMPTOTES' '

The transfer-integral problem is solved in a .

differential equation approximation as described':"
in I. In low field, the differential equation reduces
to the Mathieu equation for which numerous an-'

lytic results are available. These analytic 'results
permit us to show S'v'~e "~& in low field and pro-
vide a number of tests for the numerical work.
We display a number of the more useful analytic
results here. In low field,

q„(8) = ce,[-,'(w+ 8); q],

e.(8) =e ' '-'C.(8),
h(8, ) = X, —2X,

,
d8, (8, —8,)-p(8, 8.)

x [e(8,) —1],
so that Eq. (40a') becomes

(A1)

p(8) = 4.(8)tI/. (8),
8 0. $ (8) —[(~q y )//2p]1/&ex&. /~e-v'ae /4 (B1)

p(8) = [(v q —X, )/27/]'/' exp[-(Wq —X,)]-,'8', (B2)

f7' = p(1) — + e(1)h(1))
'Be(1)

(A2)

Then, employing an integration procedure like
that of Ambegaokar and Halperin, we find

1
e(1) = II'v exp, h(1)di

&Q
— exp g'h 1 dl —1

["dl &-" dl
J, r{1),, r(1)

(A3)

8- 7/; P, (8)= ce,(0; q) cosh'(8 —7/), (B3)
z/a

p(9) = 8 (
' exP[2x, —2' ——,'z, (H —w)']

x cosh'Wq(8 —7/) .

It is p(8) given by Eq. (B4) that is used to produce
the analytic asymptotes, shown by dashed lines in
Fig. 6, against which the numerical work was
checked. It is also Eq. (B4) in the limit X, -O,

q that gives p(7/) o= e Bs&, i.e., conductivity
due to the continuum soliton.
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