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Classical fluid structure near solid substrates: A comparison of different theories
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Different approximate analytical theories for dealing with nonuniform classical fluids are compared as

approximations to a formally exact theory. The focus is on the situation where the, nonuniformities. are due to
the interaction of the fluid with a model solid substrate. Detailed calculations are Inade using a density-

functional theory previously developed by the authors, and a theory of a type used in . a number of receiit

calculations, in which the perturbation caused by the fiuid is dealt with using the Percus-Yevick (PY)
approximation. Both theories use the PY approximation to treat pair correlations in the fioid. ' The density-

functional theory turns out to be markedly the superior of the two for the case where the substrate'should

produce an unsaturated liquid film near the fluid-substrate interface. The density-functional theory correctly
predicts the presence of such a film, whereas the other theory, essentially because it. .treats the response'to
the substrate perturbatiori linearly, yields no film. Microscopically detailed fiuid-density profiles are- given for

both theories.

I. INTR()DUCTION

In recent years the problem of calculating the
detailed microscopic structure of simple fluids
near model solid substrates has received a con-
siderable amount of attention. , The treatments fall
into the usual classes, those based on approximate
analytical theories' ' and those utilizing computer
simulations. " %e shall focus primarily upon the
analytical work in this paper.

The analytical theories are best viewed in the
context of a formally exact theory for a simple
one-component fluid having equilibrium density
n(r) in the presence of an external perturbing po-
tential V(r). In the exact theory'

n (r) ne ""'-
1

x exp dn 'r'r(r, r', a)[n(r') —n,]) .

Here P = I/kT, n, is the density in the absence of
(or far away from) the perturbation, and c(r, r', n)
i.s the exact direct correlation function for a par-
ticular value of 0, a parameter characterizing
the degree to which the perturbation is turned on.
(n is explicitly defined in Ref. 9.)

The approximate analytical theories fall into two
categories. The first category consists of theories
which utilize at the outset an idea originally due
to Helfand, Frisch, and I ebowitz. ' In this ap-
proach one considers a binary fluid formed from
atoms of types & and B in which the concentration
of one of the components, labeled A, tends toward

zero while the size of the& atoms tends toward infin-
ity. In this limit the outer edge of an & atom be-
comes a planar wall seen by the 8 atoms. The
Ornstein-Zernicke equation for the &B correlation
functions becomes

Iz„s(r —r')

(r —r')+n J n r n„(r —r'")"r„(r"—r'),

(2)
where c,, (z'. ,j =A, B) is a, direct correlation func-
tion, n~ is the average number density of 8 atoms,
and g„=-1+6,, is a pair-correlation function. The
spacially varying density of B atoms near the wall
is just

ne(r) =-n~„e(r) (3)

for an A atom located at r =0. If one takes c» Rs

being given and relates c„~ to k» by some ap-
proximate theory, e.g. , the Percus- Yevick (PY)
theory, (2) becomes a, linear integral equation
easily solved by numerical methods. It is useful
to combine (2), (3), and the PY equation

c~r)(r) =g„z)(r)(I —e' »"')
to obta, in

n, (r) =nose '~~rz")

Equation (5) or its equivalent has been used recent-
ly by a number of authors. Perram and W'hite'

have used it to compute ne(r) for the case where
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the B atoms are hard spheres and the A atom is a
large hard sphere located at r =0; when the A. atom
is sufficiently large its surface, of course, is es-
sentially a planar wall as viewed by the 8 atoms.
Henderson, Abraham, arid Barker2 have performed
the same calculation in the limit that the A-atom
radius tends to infinity, its surface remaining at
z =0. Waisman, Henderson, and Lebowitz have
treated the more general case where the hard-
sphere potential of the A at'om has a Yukawa tail
tacked onto it and the mean spherical approxima-
tion is made in arriving at the solution for ns(r).
Fischer' has begun with (2) and coinpared results
of combining it with the PY and superposition ap-
proximations fear hard-sphere particles against a
hard wall. Very recently Abraham and Singh' have
used the results of Ref. 3, viewed as a corrected
PY theory for hard spheres against a hard wall,
to deal with the effects of a (9-3) interaction be-
tween the hard spheres and the wall; the (9-3)
interaction" is dealt with using the Anderson-
Weeks-Chandler perturbation theory. '

The nature of the approximations inherent in (5)
becomes evident when it is compared with the exact
result (1). In fact, it is easy to see that (5) is ob-
tained from (1) by expanding the exponential in-
volving c and retaining only the term linear in the
density deviations. In this case, c is taken to be
that appropriate to a uniform system having densi-
ty no=n~, and the integral over n gives simply a
factor of unity. This approximation is, of course,
just the PY approximation for the correlations in-
duced by V(r). In what follows we shall therefore
refer to the theories just discussed" as linear PY
(LPY) theories.

The second category of theory, known as density-
functional theory, has recently been most fully
developed by Ebner, Saa,m, and Stroud' and Saam
and Ebner. ' For brevity we refer to this theory
as ESS theory. Earlier references may be found
in Ref. 6. In essence ESS minimize a free energy,
a procedure in principle equivalent'. to solving (1),
using the approximation that

do."c(r, r', o". ) =c(r —r', n), (6)
0 0

where c(r —r';n) is the direct correlation function
foi a uniform fluid (theB fluid of the LPY theory)
at density n with r7 given by the physically reason-
able nonlocal form

n=2n r +n r'

Ebner, Saam, and. Stroud do not make a linear ap-
proximation for the correlations induced by V(r).
Further, c is not simply replaced by that appro-
priate to the unperturbed system. The approxima-
tion stated in (6) and (7) accounts in an approxi-

II. CALCULATIONS AND COMPARISONS

We begin with the linearized theory represented
by (2)-(5). For computational purposes we have
replaced (2) by the equivalent form

h„~(r —r') =c„~(r—r')

+ns d'r" c»(r —r")hss(r" —r') .

(6)
Use of (2), (3), and the definition

y(r) g (~r)es'v»(P)

leads to

(9)

y(r) =I+nos d'r'y(r')(e ~r»" ' —1)hss(r'-r) .
(1O)

In the case where the & particle becomes very
large, its surface remaining at z =0 to produce a
potential

a&0
V(s) =

4m co~n tvv~ —————,z 0,

mate, .but reasonable, way for the exact effects of
the coupling constant integrations over &. Since
ESS actually calculate the right-hand side of (6)
using the PY approximation for a system at densi-
ty v, their final result is best viewed in the light
of the much more precise theory described in
Ref. 9, where the fluid is dealt with using the PY
approximation for a nonuniform system following
which the effects of the perturbation are dealt with
exactly. The ESS theory thus includes in a non-
trivial fashion both the PY for a nonuniform system
and the nonlinear response of the system to the
density deviations induced by turning on V(r).
Neither of these effects is included in the LPY
theory. Consequently, I PY theory is expected to
be significantly inferior to the ESS theory when
V(r) represents a massive perturbation on the
fluid system in question. In Sec. II we present the
results of both theories for the case where V(r)
is that due to a smoothed planar wall composed of
atoms which interact with the fluid atoms via a
Lennard-Jones (6-12) potential. We shall see that
such a wall can in fact represent a massive per-
turbation on the system. In the case where an un-
satux'ated film should form on the wall, the EBS
theory is correct in that it predicts the existence
and growth of such a film, whereas (4) fails miser-
ably in that it predicts no film whatsoever. Section
III is devoted to a summary and further discussion
of our results.
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tions for a lower density fluid near. the walls than
does the ESS theory.

1.0— III. DISCUSSION

n(z)

. 0.5—

FIG. 4. Argon density profiles for the LPY theory
(s'olid line) and ESS theory {dashed line) at T =1.4 and

n&0 = 0.3; Reduc'ed, units, explained in the text, are used.

ical point for argon (in the PY approximation).
The. linear theory uses correlation functions for

. the. asymptotic density, whereas the ESS theory,
by virtue. of (6) and (7), uses correlation functions
which sample a range of densities, some near the
critica1. density and some farther away, the net
effect being a relative shortening of the long-range
correlations induced by the wall. This shortening
is expected ori obvious physical grounds. As seen
in Fig. 5, the effect becomes small f n~ farther
from the. critical point. " Secondly, the oscilla-
tions in n(g) beyond the peak nearest the wall are
different. for. the two theories in terms of relative
phase. The dephasing effect occurs for the most
part just beyond the first peak, where n(z) for the
ESS theory falls to its first minimum and rises to
its second maximum more rapidly than that for
the linear theory. Again, . this can be viewed as a
consequence of the use of correlation functions
corresponding to different densities in the two the-
ories. The linear theory uses correlation func-

The essential point made in this paper is that
LPY theories for classical fluids are incapable of
handling large perturbations such as those leading
to the formation and growth of unsaturated films
on solid substrates; there are important nonlinear
effects whi;ch must be dealt with and which, indeed,
can be dealt with within the framework of the more
sophisticated ESS theory. The real problem with
the LPY theories in such a, situation is that they
treat correlations in the fluid using correlation
functions appropriate to the vapor phase far from
the substrate, whereas the construction of the un-
saturated film requires a theory which uses cor-
relation functions containing information about
local densities, as does ESS theory.

It would be of considerable interest to test the
density profiles predicted by ESS theory for the
unsaturated film situation by comparing them with
appropriate Monte Carlo simulations. To our
knowledge such simulations have yet to be carried
out.

An interesting problem, presently under study,
is the behavior of the unsaturated films for very
low asymptotic vapor densities. Figure 2 suggests
that as n~ is further lowered all filmlike structure
will disappear, leaving only a single peak near the
substrate. Within the ESS theory this peak can be
thought of as a liquid monolayer. Clearly, this
monolayer must vanish as n~-0. The question
arises as to whether or not it vanishes continuously or
whether there is discontinuous behavior as might
be expected for a "two-dimensional" liquid-vapor
transition within the monolayer. Preliminary
studies indicate that the latter situation can, in-
deed, obtain. " A thorough study of this effect will
form the subject of a future publication.
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FIG. 5. Argon density profiles for the Lpp theory
(solid line) and ESS theory {dashed line) at T= j..4 and
n~=0. 5. Reduced units, explained in the text, are used.

APPENDIX A

Equation (12) is a linear integral equation in one
dimension. Before solving it, one needs the kernel
h»(e' -z); this was obtained from the PY equation
for a uniform Lennard-Jones (6-12) fluid following
the procedure described in Ref. 6. Two methods
of solution of (12) were employed. The first was
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to convert the integral equation into a set of linear
inhomogeneous algebraic equations by doing the
integration using the extended Simpson's rule for
-9o'-z - 9o. For ~z

~

&9o', y(z) was assigned its
limiting values which are

trial function is chosen for n(z) and the free-ener-
gy functional is then minimized with respect to
variation of the parameters. The trial function
used to produce the results at T =1.1, shown in
Fig. 2, is

lim y(c)=i (i+@ dz'h', (c')) (A1)

and

(A2)

APPENDIX 8

The numerical procedure used to find the density
profile from the ESS theory is the same as that
described in Ref. 7. Basically, a parametrized

limy(z) =1.
The space of ~z

~

&9o was divided into 300 interva»
of 0.060, resulting in 301 simultaneous equations
which were then solved using Gauss-Jordan elim-
ination.

The second method of solution was by iteration. A
guess for y(z), y, (z), was first inserted into the
right-hand side of (12), producing a y, (z). Either
this function or some linear combination of y, and

y, was reentered on the right-hand side and the
procedure repeated until convergence was obtained.
A variety of grid sizes ranging down to 0.025' was
employed; also, the limits on the range of z for
which y(z) was found in this way, as opposed to
using the limiting values (A1) and (A2), were taken
as large as ~z

~

=12o'.
Comparison of the results obtained by both meth-

ods and with different grid spacings shows that the
error in the n(z) reported here is always less than
0.001 and generally less than 0.0001; the error is
greatest around the first peak and the following
minimum in n(z) at the higher densities nz.

where the variational parameters are o. , P, y, 5, e,
and the five 0,.'s. This function pan oscillate by
virtue of the power series; it varies as e
for small z; and, for relatively thick films, P
+n~ is the density of the film, & is its approximate
thickness, and 1/y is the width of the transition
region between the film and the vapor.

At T.=1.4, which is above the gas-liquid critical
temperature, there is no formation of a filmlike
structure having a density significantly larger than
nz. Consequently the term in (B1) which is pro-
portional to P is superfluous in that keeping it does
not lead to improved minima of the free-energy
functional Q[n]. We have therefore used the trial
function

to arrive at the results reported here. Qther trial
functions were investigated, hut (B2) was judged
superior on the basis of minima obtained. Also in
all cases, a variety of different starting configura-
tions were employed in order to be sure that the
final density profiles are in fact cox'rect. In par-
ticular, we tried initial configurations close to
those predicted by the LPY theory; they proved
to give significantly higher free energies, accord-
ing to the ESS theory, than those for which Q[n]
is actually minimized.
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