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Relation between the equilibrium and nonequilibrium critical properties of the Dicke model
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The connection between the critical properties of the Dicke model, subject to equilibrium and
nonequilibrium boundary conditions, is explicitly exhibited. The Langevin equations generated by the Dicke
Hamiltonian lead to a single nonlinear order-parameter equation that characterizes the stationary states of
the system. We prove the existence of two essentially identical manifolds of stationary states, one for
equilibrium, the other for nonequilibrium boundary conditions. These manifolds can each be derived from a
potential obtained from the nonlinear order-parameter equations, In the equilibrium case the potential is the
free energy of the system; in the nonequilibrium case it can be identified with the so-called "laser potential. "
The reduced-density operator for the field and atomic subsystems factors into a geometric and a physical
part. The geometric part is determined by the system signal; the physical part, by the system noise. This is
exhibited explicitly with an example taken from the theory of photoelectron counting, The identification of
the stationary-state manifolds for the Dicke model subject to equilibrium and nonequilibrium conditions with
the same geometric (cusp) manifold allows a real analytic continuation of model properties from the
equilibrium configuration to the nonequilibrium dissipative regime. Three types of stability are considered:
static, dynamical, and structural. Structural-stability considerations lead to strong conclusions about the
effects of additional perturbations on the Dicke model.

I. INTRODUCTION

The Dicke-model Hamiltonian' has been studied
extensively subject to both equi1. ibrium and non-
equilibrium boundary conditions.

Under nonequilibrium boundary conditions, this
Hamiltonian provides a reasonable model for the
working of a single-mode laser. ' As the atomic
system is pumped, the population inversion in-
creases. For sufficiently large population inver-
sion, the system may undergo a second-order
phase transition' from a disordered state with a
small number of photons and (a) =0 ((a) is the ex-
pectation value of the electric field lowering opera-
tor) to an ordered sta, te with a large number of
photons, displaying coherence ((a) x 0).

Under equilibrium boundary conditions, this
Hamiltonian provides an exactly soluble model ex-
hibiting a second-order phase transition in the
thermodynamic limit. At a sufficientl. y low tem-
perature, the system may undergo a second-order
phase transition from a disordered state with a
small number of photons and (a) =0 to an ordered
state with a large number of photons displaying
coherence. Conditions for the existence of the
second-order phase transitions under equilibrium
and nonequilibrium boundary conditions are strik-
ingly similar. [See Eq. (9.1).]

Recent interest in the Dicke model has focused
on the effects of external perturbations, such as
the classical resonant electric field responsible

for optical bistabil. ity. Under equilibrium bound-
ary conditions, the second-order phase transition
is unstable. For a fixed nonzero external field,
the second-order transition as a function of de-
creasing temperature disappears. ' In its place,
a first-order phase transition may be observed if
the system is first taken below the critical tem-
perature, and if the field is then made sufficiently
large (see Fig. 2).

Under nonequilibrium boundary conditions, the
second-order phase transition is also unstable.
For fixed nonzero external field, the second-order
phase transition as a function of increasing popula-
tion inversion disappears (see Fig. 3). In its place
a first-order phase transition may be observed
when the system is held below threshold for laser
action and the external field is increased, subject
to appropriate conditions. '

These behavioral similarities are not at all
accidental, but come from underlying geometrical.
similarities. We exhibit this identification below.

In Sec. II, we derive the Langevin equations for
the Dicke model in the mean-field approximation.
The stationary states are determined in Sec. III by
combining the three coupled nonlinear equations
for the operator expectation values (a), (a ), (o )
into a single nonlinear equation for (a). This
equation is essentially a cubic equation under both
equilibrium and nonequilibrium boundary condi-
tions. Therefore, it can be identified with the
canonical form for such equations, the so-called
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"cusp catastrophe" manifold. ' This is done in
Sec. IV; The manifold of stationary states is shown
in Fig. 1. The effects of varying temperature and
external electric fiel. d under equilibrium boundary
conditions are shown in Fig. 2. In Fig. 3, we des-
cribe the effects of varying the population inversion
and the external electric field under nonequilibrium
boundary conditions. A ll the behavior character-
istics described above can be determined at a
glance from these three figures.

In Sec. V, we derive the potential functions
governing the system under each boundary con-
dition. These potentials are obtained by integrat-
ing the equations for the manifold of stationary
states (3.3). Under equilibrium conditions, the
potential is just the free energy, previously known

in the limit of zero injected external field. Under
nonequilibrium conditions, it is just the laser po-
tential. ' This potential is not a free energy,
although it is customary to r efer to it as such.
In Sec. VI, we discuss the main features of optical
bistability i.n the light of our analysis of non-
equilibrium systems. The observed behavior of
the transmitted .light intensity' becomes especially
transparent when interpreted in terms of the
steady-state trajectories displayed in Fig. 3.

In Sec. VII, we compute the system density
operators. Under mean-field assumptions, the
density operator factors into the direct product of
reduced-density operators, one for the field sub-
system, the other for the atomic subsystem. Both
the field and atomic reduced-density operators,
under equilibrium and nonequilibrium boundary
conditions, with both zero and nonzero field, fac-
tor in the sense implied by the following equation:

p = fp(geometry)] ""'""'.

Here, p(geometry) is an operator defined on the
manifold of stationary states, and the number
M(physics) depends upon physical conditions. In

the case of photon-counting experiments, ' for ex-
ample, p(geometry) is determined by the system
signal only, while M(physics) is assigned by the
system noise.

The correspondence between points on the cusp
manifold and the density operators describing the
equilibrium states of the system suggests the pos-
sibility of an "analytic continuation" from equilib-
rium to nonequilibrium configurations. The term
"analytic continuation" is introduced here not in
the usual. sense of complex variables, but rather
in the sense of real differential geometry. This
procedure may provide a powerful tool for the
analysis of nonequil. ibrium properties simply from
a knowledge of the equilibrium behavior.

Three types of stability are discussed in Sec.
VIII: static, dynamic, and structural. . From the

analysis of the latter, we learn that no essentially
new types of steady-state behavior can be expected
in this model by introducing additional perturba-
tions. The only effect induced by these perturba-
tions is a modification of the. steady-state trajec-
tories, such as that shown in Figs. 2 and 3. The
structure of the stationary manifold remains un-
changed under perturbation. .

The physical implications of the Langevin equa-
tions are .explored-in Sec. IX. In the Appendix, we
extend the semiclassical theorem" from general. -
ized coherent. .states to Gibbs states.

Throughout, we use the notations P = I/kT, E and
N for equilibrium and nonequil. ibrium boundary- .

conditions, .and i:and. ii to distinguish the two
cases'. zero external field, nonzero external. field.

II. LANGEVIN EQUATIONS

The Hamiltonian considered in this work is

H =HD+H~ . (2.1)

(2.2)
The rotating-wave approximation has been made,
and-the A ~ A term (A is the field vector potential)
has been temporarily neglected. The Hamiltonian
H3 describes the interaction of each atom and of
the field mode with external heat baths and with
external driving sources (fields and currents).
For the equilibrium and nonequilibrium boundary
conditions described in the work, H~WO. For' laser
operation,

The equations of motion for the operators are
the familiar Heisenberg equations of motion (h =1)

i —= [8, HD ] + [8, Hs J .. d8
(2.3)

The first term on the right-hand side of Eq. (2.3)
can be computed explicitly using Eq. (2.2). The
second term is responsible for two effects. One
is to introduce a stochastic forcing term I"~(t),
with zero expectation value, into each equation of
motion. ' The second effect is to force regression
of fluctuations of operator expectation values back
to time-independent values. For example, if 50
is a fluctuation of (8) from its time-independent
value (8), then interaction with the bath
forces a decay of (8) (t) in the following phenomeno-
logical way:

Here H~ is the single-mode Dicke Hamiltonian in
the long-wavel. ength approximation' including the
interaction energy due to a classical external field,

N

HD = ma~a+ e —0,'.
~-1 2
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(8) = 58e "8'+(8)„.
The action of the bath can be taken into account by
replacing the operato~ equation (2.3) with the
phenomenol. ogical equation for the expectation
values,

i —+yg 8 —0 „= 8, IID + I'g t

In addition, it is customary'~' to assume that
P'~(t)) =0. Here, (8) is to be interpreted as the
time-independent (d/dt- 0) expectation value that,

(8) would have in the limit of very fast relaxation
(I e, y~--).

The expectation values of the operators appear-
ing in the Dicke model (2, 2) then satisfy the phen-
omenological equations of motion

di —+y„v —v =cv —A. * p, +n a,
(2..6)

i —
+y~~ ~ - 0„=-2~ p. + u +v+ 2~* p. + o. v+

i —+y (n —n ) = &uh. g*v —&uA. *gv*.
dt

In what foll. ows we assume A. to be real and (j. to be
real. and positive.

The equations governing the two regimes dis-
cussed in Sec. I are now easily obtained from Eqs.
(2.6).

Equilibrium

di —+y, ((o ) —(o ),)

Under equilibrium boundary conditions, the left-
hand side of each of Eqs. (2.6) is zero. All opera-
tor expectation values assume their thermal. -. equi-
librium values, denoted by the subscript e:

=&u(a )--~-((a+oviV)o ), (2.4)

z —
+y~i (" — ~ e

0 = {g) jL~ +A. v@

0 =~v, —A. (g, + o.)o;,
where

(2.7E)

= —2 ((a +n~v N )o' )+2+—(la+n&i~l )o'),
vÃ

+yn 0 a 0 + e

o =(o')

n =(ata)/K.

(2 6)

After the mean-field approximation, the system
(2.4) reduces, in the notation of (2.5), to the more
tractable system

= cuhv~jj(at o. ) &A. *KÃ—(ao'),
where x, y~, yI~, and y„are the relaxation rates
of the respective dynamical. variables.

Equations (2.4) are intractable. in their present
form. They are simplified by assuming that, for
large number of atoms, each subsystem (atom,
field) behaves in a stochastically uncorrelated way
with respect to the other. This is equivalent to a
mean-field approximation, or to the assumption
that the density operator factors into the form p
=p~ p„, where p~ describes the field subsystem
alone, and p„ the atomic subsystem.

With these assumptions the operator expectation
values in Eq. (2.4) factor. Next, we introduce the
convenient notations

p. =(a)/vK==(a')*/viV,

v =&a ) =&o')*

Nonequal librium

In the case of nonequilibrium boundary condi-
tions, the fast time dependence of (a) and (o' ) is
first removed by means of the substitutions g(t)
=-P(t)e '"', v(t) =v(t)e "', and similarly for
p, „(t),v„(t). The steady-state. nonequilibrium equa-
tions are obtained by setting the time derivatives
of the envelopes P(t), v(t) equal to zero. It is
customary to assume that the expectation values
p„, v „vanish. " Final. ly, dropping the tilde for
notational convenience, the steady-state expecta-
tion values (denoted by a subscript s) are

S Kfl's ~Vs ~

(2.7N)iy~v, = —A. (p., + o.)o, ,

iy~~ (&x, —cr, )= —2X(g, + o.)*v, +2k(p, + o.) v,* .
Equations (2.7N) have been used'" to describe the
steady-state behavior of the single-mode laser

o', = -(e/28)tanh P8,

82 = (
& e)2+y~~g

Here v, is computed in a sen-consistent way from
Eq. (2.2) by taking the trace of the operator o'
multiplied by the equilibrium density operator. "
The coupled nonlinear equations (2.7E) have been

. used to describe the Dicke model in thermodynamic
equilibrium
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(n = 0) and the bistable behavior' observed' in

optical experiments (o. WO).

III. STATIONARY NONLINEAR EQUATIONS
I

It is useful to study Eqs. (2.7E) and (2.7N) by
eliminating v and o and constructing a single non-
lineai equation for the order parameter p, . The
resulting equations are'

e~p, , —(X'e/28)(p, + o.)tanh P8 = 0,

~g tx+ {A. 0'~ —~g)

(3.1E)

In deriving (3.1N) we have used the assumption
that p, and o. are real.

S
CUSP POiNT

FOL'D
. L(NE

V(x; 4, 13') = —,
' x~ ——,

' Ax' —Bx, (4.1)

the set of equil. ':brium points dV/dx =-0 is the two-
d imens iona l. manifold

IV. STATIONA:RY MANIFOLD
I

The nonlinear equations {3.1) are essentially
cubics. Hence they can be studied conveniently in
terms of the geometry of the A., or "cusp catas-
trophe. ""'-" Given the potential

FIG. I. The surface x3 —&x -S= Ois atwo-dimensional
pleated manifold in the three-dimensional space with
coordinates (x; A, S). Outside the cusp-shaped region
in the central plane AE bounded by the fold lines (3)
= 4'~)~„ the surface is single valued; inside, it is triple
valued. W'hen the control-parameter trajectory follows
the continuous dashed path in the g& plane, starting at
s and ending at f, the system-state parameter x under-
goes discontinuous behavior when crossing the second
fold line. This is clear when the trajectory is lifted
from the ggjl plane to the cusp manifold above.

x3-A.'x-E, =0 (4.2)

in the three-dimensiona, l space with coordinates
x,- A, B. (~ee Fig. 1.) Inside the cusp-shaped
region in the ABplane with . .boundary (3A) =(-', B)',
Eq. (4.2) has three Solutions, two correspond-
ing to a local minimum of V', one to a local maxi-
mum. Qn the cusp boundary, the local maximum
coalesces with one of the local minima, Rnd out-
side this region the manifold is single valued.

The four physical situations described in Sec. I
are studied from a unified viewpoint by identifying
the appropriate forms of Eqs. (3.1) with the cusp
manifold (4.2). For this purpose, we identify the
state parameter x with a linear function of the
order parameter g, =&a)/VA', and the control
parameiexs c4 and B with appropriate combinations
of the physical constants, tern. perature. and field
(o.) for equilibrium boundary conditions, equilib-
rium population inversion (o„) and field (o.) for
nonequilibrium bounda. ry conditions. A variation
of the. physical parameters defines a, trajectory in
control parameter space (AB plane in Ftg. 1);
this is then "lifted" to the cusp manifold to de-
termine the trajectory of the state parameter.

&'qui librium

The equilibrium manii'old (3.1E) looks qualitative-
ly l.ike the cusp manifold of Fig. 1. The identifica-

tion of Eq. (3.1E) with the canonical form (4.2) is
made precise by letting x =- g, + o., expanding the
hyperbolic tangent for small values of x, and
discarding terms of degree higher than third. In
this limiting case, "we find

X =g~+ Q,

~ =- -(I/C)[e&u —x2 tanh(p pe) J, (4.3E)

where

C = 2(Z'/e)'[tanh(-', pe) ——,
' pe sech'(~ pe) J .

The parameter C is positive for T & ~. The phys-
ica, l control parameters, as indicated before, are
the temperature Rnd the external field.

Case i. In the absence of an external field, the
parameter 8 is identically zero. If A.'/ex& 1, A
is negative for all temperatures. It is clear that
the trajectory never reaches the cusp point and
thRt the stationary solution fol p,, xs unique R{nd

equal to zero throughout (disordered state).
If A, '/ee&1, the trajectory passes through the

cusp point at the critical temperature T, defined
by the condition 1 =-(A.'/e~)tanh( —,

'
p, e). A bifurca. -

tion from the disordered state ILI., =-0 to the ordered
state p., 40 occurs at P =P,. The equations for the
stationary values do not determine which of the
two stable sheets in Fig. 1 the solution travels on
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for T &T,.
Case zz. For n&0; the control parameter 8 xs

also positive and the trajectory, for decreasing
temperature and fixed n, passes to the right of the
cusp point. There is no bifurcation, " Rnd the state
parameter x passes continuously onto the upper
sheet. The effects of changing the temperature and
external field on the control parameters A and 8,
and hence the state parameter x, are summarized
in Fig. 2. The disappearance of the second-order
phase transition is' simply a manifestation of the
structuial instability of the zero-field Dicke
model. "or, more generally, a, feature of the
B =-0 cusp catastrophe" under arbitrarily smal. l
symmetry-. breaking perturbations.

Nonequili bI'ium

The nonequilibrium steady-state manifold (3.1N)
can be cast into the canonical form (4.2') for the
cusp eatast~'ophe manifold through the identifica-

FIG. 2. Under equilibrium conditions the manifold
of stationary states (4.3) looks like (is "diffeornorphic
to" (Hef. 3.5) the cusp manifold of Fig. 1. This identifi-
cation is made in Eq. (4.4). The parameter h i.s abvays
positive when (I is positive. In the high teIHperature
limit, we have p —0, x —o., and B/(—A)—n. Trajec-
tories are plotted for various values of e and decreas-
ing temperature. The trajectories terminate'at T = 0
with the maximum value of A, whi. ch is negative (dashed
line) for X~/q«I &1 and positive (bottom edge) for ~2/geo

&1. For X2/&cu & 1 and o. = 9 the trajectory pas. es
through the cusp pooint for g = q~ —A. tanh-p, ~ ——0. I o~

lower temperatures, it passes to the upper or lower
sheet {crosses) in a second-order phase transition. For
a & 0 the trajectory passes to the ri.gbt of. t.he cusp and
moves continuously onto the upper sheet of the cusp

2 2/oo 3/2manifold. For && & ciao-—X/2~ [1-(&&/X ) "] the trajec-
tory enters the cusp region (on the cspper sheetj. For
~ & 0 0, it does not. AVhen the field is reversed and made
sufficiently negative, the system may or may not ex-
perience a first-order phase transition depending on
whether T is below or above the critical temperature.
This phenomenon is represented by the horizontal
arrows to the left and is known as "divergence".

tions

2-X —
)LAN+ 3A,

(4.SN)

o' Yi Y~t& Y~Y~iII=—+ —~~ v, —,+- —;—o. .
2'7 3 4v ' X' 4X

—o„=8Y, «/X'-. (4 4)

A first-order phase transition occurs for

A.2(-o„)(8y «) 1. (4.5)

If the inequality (4.5) is reversed, the system
evolves continuously along R line of equilibrium
states.

Cgse j. In the absence of an'applied external
field, the parameter B 1s identical. ly zero, As ln
the cage of equilibrium boundary conditions, we
distinguish two situations. If A, '/ay~ & 1, A, is nega, —

tive for all values of (-, Rnd the trajectory in con-
trol-parameter space terminates with the maxi-
mum value of.4 (which is negative) as v, ap-
proaches unity. The trajectory never reaches the
cusp point Rnd the only stationary solution for jLt, ,
is unique and equal to zero (disordered state).

If A.'/ay &1, the trajectory passes through the
cusp point at the critical popul. ation inversion 0,
defined by 1 =A.'&x„(y~ z. A bifurcation from the
disordered state p., =-0 to the ordered state g, @0
occurs, at a„=-o,. The equation for the stationary
value does not determine which of the two stable
sheets in Fi'g. 1 the solution travels on for a,„&v, .

Case zz. In the recent experimental work on

optical bistability, ' the atomic system is held
below threshold in the sense that A(n =0) &0.
Typical trajectories in control-parameter space
are shown for increasing value of a Rnd fixed a
in Fig. 3. The system begins, for a = 0, in the
single-sheeted regime and passes continuously
onto the upper sheet as the trajectory passes to
the right of the cusp point. If the trajectory passes
to the left of the cusp, the system state lies on the
lower sheet and remains there until the right-hand
fold line is crossed (delay convention). '" At this
point„ the system passes discontinuously to the
upper sheet. For decreasing n, the system state
remains on the upper sheet as long as possible.
When the left-hand fold line is crossed, the state
parameter jumps "catRstrophically" to the lower
sheet. The system exhibits bistable behavior,
hysteresis, discontinuous jumps, and divergence.

The trajectory (separatrix) which passes through
the cusp point is characterized by the condition
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B

N: V(V. ) =-,' V.-'+ le.' o. + [-,' o.'+(y~~y~/«')]V!

('Ylj o /8&)(P + &)
(5.2)

If the constant term in Eq. (5.1) is chosen equal
to kT—ln2, the minimum value of V(u, ,) is the
free-energy per particle '" in the thermodynamic
limit (Ã-.~). For n =0, the potential V(g, ) [Eq.
(5.2)] has been used to describe the operation of
a single-mode 1aser"'" and the thermodynamics
of a single-mode laser in the presence: of.an in-
jected external field. '

V. POTENTIALS

The surfaces governing stationary states under
equilibrium (3.1E) and nonequilibrium (3.1N)
boundary conditions are particular cases of the
canonical cusp manifold (4.2). This is the mani-
fold of "ritical points of the potential (4.1).
Therefore, with an appropriate choice of the con-
trol. parameters, we can associate a potential
function to the Dicke model under both equilibrium
and nonequilibrium conditions. Specifica, l. ly, these
potentials are the integrals of Eqs. (3.1E) and
(3.1N),

E: V(g, ) = ~Iu,' —P 'ln cosh Po+ const,
t

0' = (—,
' e)'+ A.'(p, + o.)', (5 1)

FIG. 3. For e= 0 the coordinates of the point P are
&=.0~ & = ( Yl~/4~)(0, —p&&/~ ). As 0, is increased
from -1 to +1, corresponding to increased pumping of
the atomic subsystems, the trajectory of the point P
passes through the cusp point A = I 0.,—(y ~ v/X2) j = 0.
For higher population inversion it passes to the. upper
or lower sheet (crosses) in a second-order phase
transition. The tangent to the trajectory at += 0 (point
I ) rotates in the countercloclovise direction as 0,
approaches 0-, from below, and points into the lower
right quadrant at 0, =0, For cv &0, the system state
passes automatically onto the upper sheet as 0, is in-
creased above threshold. No phase transition occurs,
The two curved trajectories shown in the figure are for
fixed 0 below threshold, with n increasing from 0. The
qualitative behavior of the system depends on the ratio
Q=8y~v/A, (—0~). The trajectory for Q =1 (not shown)
passes through the cusp and acts as a separatrix. For
g &1 the trajectory passes to the right of the cusp, and
no phase transition occurs. For Q & 1, the trajectory
curves to the left of the cusp, passes continuously onto
the lower sheet and reInains there as a. is increased
until point u is reached. The system state then jumps
discontinuously onto the upper sheet. For 0. decreasing,
the state parameter g remains tied to the upper sheet
until the other. fold is crossed at g. In this way bistabil-
ity gnd hysteresis occur, and divergence (g &1, g ) I)
is exhibited. First-order phase transitions occur at the
fold curves assuming the delay convention. The lines
of first-order phase transitions terminate as @=1, cv

= ( 0 g ) ( 7 II /4f(:) (p) ~

1+—+—
27 3 2K. 2c 2K 2c

(5 2)

where we have set 0„=--1. All the trajectories in
control-parameter space (see Fig. 3) for a fixed
value of c and @increasing from zero start with
B = 0 and negative A. . Some trajectories move to
the right of the origin, while others move to the
left. In the first case, the stationary values of
z move continuously onto the upper sheet and no
phas e trans ition occurs. If a trajectory cur ves
to the left of the origin the stationary points move

V'I; 'OPTICAL 8ISTABILITY .

A special case of the nonequilibrium behavior
discussed in See. IV has been investigated recently
under the name of optical bistability. "'

When a coherent external fieLd propagates
through a cavity containing a co11ection of resonant
two-level systems, the transmitted intensity, '

under appropriate. conditions, can exhibit a dis-
continuous dependence on the incident intensity.
Bonifacio and Lugiato"' have shown that the steady-
state behavior of the transmitted-field amplitude
z(=g, + o. =x+ —,', o.) can be described by the cubic
equation

y =2cz/(I+a')+z,

where y is proportional. to the incident amplitude.
The parameter c (which is proportiona. l to the
number of atoms in the resonant cavity) is the
ratio of the superfluorescent atomic decay rate
ys to the transverse relaxation rate y~ (more pre-
cisely, c =y„/2y~). For c&4, the transmitted
field amplitude varies monotonical. ly with y. For
c&4, instead, the system exhibits bistable be-
havior, hysteresis, discontinuous jumps, and
divergence.

We specialize the remarks of Sec. IV to dis-
cuss optical bistabil. ity in terms of the manifold of
stationary states (4.2) and the control parameters
(4.3N). I,et ys =A. '. /z and c =-ys/2y~. The control
parameters in Eq. (4.3N) take the form
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continuously down to the l.ower sheet and remain
there until the right fold line is reached. At this
point, the system jumps suddenly onto the upper
sheet. Clearly, the necessary condition for a.

phase t'ransition and- bistable. behavior is B&.0
when A:= B.. From Eq. (6.2), we 'find that this is
satisfied if c.&4, in agreement vnth' the result of .'

Bonifaci'o Rnd 'Lugiato.
If at this. point -a decreases, z reverses its

motion on the. :upper sheet, remains' there until
it crosses the left fold line, and then jumps to the
lower sheet discontinuously. The trajectory of
stationary points which passes through A =8 = 0 as
u increases corresponds to the condition c =4.
This trajectory separates two physically distinct,
regimes: for c '& 4, uncorrelated atomic motion
prevails, while, for c &4, the atomic system ex-
hibits correl:ation and cooperativity even in the
steady state, provided the input field is maintained
below the'tlireshold value for a discontinuous trans-
ition from the lower to the upper sheet.

VII. DENSITY OPERATORS

The physical state of a system is completely
characterized by the density oper'ator p. Under
the mean-field assumptions leading from Eq. (2.4)
to Eq. (2.6), the density operator factors into the
direct product of two reduced-density operators
(p =pzsp„), pz describing the field subsystem
alone and pz the atomic subsystem. This factor-
ization assumption is a good approximatic~ xcept
in the neighborhood of the critical point itself.

To the field subsystem, the atomic subsystem
looks like a classical driving source (current).
A classical current maps field coherent states
into coherent states under a unitary transformation
U(e), i.e. , ~coh)- ~coh)' =U(e)~coh)." In particular,
it maps density operators into density operators ac-
cording to the transformation p„-p~ = U{e)p„U'(e).
If the field system is originally in the ground
state or in some pure state, or, more general. ly,
if' it is described by a density operator which is
the exponential of a Hermitian l.inear superposition
of the creation, annihil. ation, and photon-number
operators, then it will evolve into a state des-
cribed by a density operator with the same gen-
eral structure. This extension of the semiclassi-
cal theorem from generalized coherent states" to
density operators is easily proven by group-theo-
retical methods. This is done in Appendix A.

Entirely analogous considerations hold for the
reduced-atomic-density operator p„, In its most
general form under the mean-field approximation,
p~ is the exponential of a Hermitian linear super-
position of the atomic operators 0,'. , o',

In the fol. lowing two subsections we construct

p~ =exp(Ma a+Ra +I.a ). . (7.2)

Here, and below we work with un-normal. ized den-
Sity operators. A very useful generating function
for. momerits of field operators is the expectation
value of the operator 8=exp(qa a+ pa +ha), where

q, p, and X are arbitrary parameters. This can
be calculated from simple 3 && 3 matrix multipli-
cation and a few deep theorems from the theory of
Lie groups

(Il) = T,p
Trpb&

—~,„exp ——+

x
(e" —I)(e" —I)

&if+ q (7.3)

From Eq. (7.3) one easily determines

(a) = -R(N, (at) = —L, /A'

N

(a a) = ~-+(a")(a) =01+8.
(7 4)

Thus, we can write the reduced-density operator
py as

r = [pz(cusp)J",

p,, (cusp) =exp(ata —(a ) a —(a)at),

where
t

N

~I = (a ") (a )(a) .
1 —e

(7.5)

The operator pz(cusp) is completely determined
by a point x on the cusp manifold through the
correspondence

JLl, = X —g CM,

where K =1 under equilibrium boundary conditions,
and K =- -',—under nonequilibrium conditions. The
real number M characterizes the noise level. .

the reduced-density operators p~, p~. These oper-
ators "factor" into a "geometric" part and a
"physical" part:

pz„„=Ipse „„(geometric)J".
The operators p~ „„(geometric) exist in a one-
to-one correspondence w'ith points on the cusp
manifold. The real number M is completely de-
termined by the system noise (fluctuations). In

Sec. VIID, we consider an application.

A. Reduced-field-density operator
I

From the preceding discussion it follows that,
under the stated conditions, the most general form
of the reduced-f ie ld-density operator is
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B. Reduced-atomic-density operator Aonequili bri um. Cases i and ii

p.; =-exp(-, IVI 0'; +H 0';+ L v; ).
(7.6)

In the following development, we drop the sub-
script i when convenient. If we proceed as in the
field case, we find

I

p = [p(cusp) j",

Under the long-wavelength approximation, each
atom sees the same driving field. Under the
mean-field approximation, each atom is equivalent
to all. the others. Thus the N-atom density opera-
tor factors into the product of N identical. single-
atom density operators

Under nonequilibrium conditions, we. have

p~(cusp) =exp[ata —(x ——', n)MN(at+a) j),
-M=in(1+X '),

I

p„;(cusp) =-exp o', —,
' v'+- —, (x-'-,"n)(V" -"'v ),

A.

v, =v- —4( /xii)( +-."o')( —-' ), ,

with M' determined froxn Eq. (7.7),

B. An application

In photon-counting experiments, the pr':.obability
that A photons are absorbed when the system is in
an initial state Ii) is'o

(V.ll)

p(cusp) =exp((o') —,
' o'+(v')v +(o' )v'),

lvl' —.(-,' &v'))'+&v'&&v &,

(7.V)

C. Boundary conditions

Equilibrium. Cases i and ii

Under equilibrium conditions we have g
=(e' —1) '=(e'" —1) ' and -M=(u/kT. Then we
can write

The expectation values (v"), (o") are related to
the coordinate x on the cusp manifold through
Eq. (2.6) together with the appropriate boundary
conditions. The real number M' gives a measure
of the atomic noise. The parameter Iol ranges
from zero for completely disordered systems to
—,
' for systems in a pure atomic coherent state. "

r

When the sum of final. states is carried out, 'Eq.
(7.11) becomes

P(&) =-&~l(a ) a If&. (7.12)

P(k) = Tr(pz(at)" a')/Trp~ =&(a")'a") .

Observe that

(at)'a'=ata(a a-1) . . (a a- 0+1).

(7.13)

The generating function &exp@a a) is easily de-
termined from Eq. .(7.3):

i

1 —e" LR (e" —1)(e" —1)
&exp/a a) = ~~ q exp

(7.14)

In a real. istic experimental situation, . the initial
state of the field is not reproducible with cer'-
tainty. If a sum is now carried out in Eq. (7.12)
over all possible initia, l states, each el.ement of
the sum being weighted according to its relative
probability, the measurable probability of absorb-
ing k photons is given by

p~ = exp[-(3H, (t )J,
p~, ; =-exII[- PH, (p)], . (7.8)

This is a convenient generating function both for
moments and for factorial moments of the number
operator, since

H, (v) =- Tr(p„H~)/Trp„,

H, (p. ) =-Tr(ppHD)Trp~.
(7 9)

IR

&expqa a&l„,=((a a)'")
Bg

(exptla a)l, ,c
. 8

~e'

(7.15a)

The .Hamiltonian H, (v) is obtained from HD by re-
placing the atomic operators 0', 0' by their mean-
field expectation va, lues. The Hamiltonian H, (p. )
is obtained by replacing the field operators by
their mean-field values (a) = pe%."'4"

=&ata(ata —1) (ata —&+1)&

((at)k ak& (7 16b)

In particular, the first moment is given by Eq.
(6.4). The generating function (V. 14) can be ex-
pressed explicitly in terms of the signal 6 =LB/M'
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and the noise parameters K = e"/(1 —e ) as follows:

(exp@+' 'a): --" [1 —Z(e":-' .I'[]-'-'exp" '

(7.16)

Equation (7.16) can be recognized as the generating
function for Qaguerre polynomials"'

t

(1+z) 'exp — =- Q L„(y)z", Izi & 1 (7.17)1-z
with z =&(e"—1), -y =Q/5I

The moments ((a a)") can be computed from Eq.
(7, 16) with result

both equilibrium and nonequil. ibrium boundary con-
dltlons.

B. Dynamical stability

The dynamical. -stability properties of the time-,
dependent set of equations (2.6) are determined by
l.inearizinp these equations about the statiohary
values 2nd investigating the nature of the roots of
the resulting eigenvalue equations. We illustrate
the procedure in the case in which the decay rate
of the field variable p, is the largest of all the
decay rates in Eqs. (2.6). In this case, the field
variable can be eliminated adiabatically leading to
the coupled linear equations

((a a)").,= Q. I,(-8!X)X'. d, (e" —1)'
~ „

0[ Tj
(7.18)

The 1'actoriai moments ((a')'a') can also be ob-
tained from the generating function (7.16) upon
expanding the latter in power of e". This is done

by writing. . .

d 2A,
i —+y 6o= . (v 6v" +v*6v)

dt sv

+2(V,.+ [x) f(A. 6v)* —A. 5v],

8 (e" —1) g e"/(1+ JI)
1,-Z(e".-. 1) . [.+sr, l-[R/(1+2)]e') '

(7.19)
1

The result of,the simple calculation is

where 5v = p - v„5v =- a - 0,.
The unstable equilibrium points on the middle

sheet are saddle nodes. The equilibria on the lower
sheet are stable nodes. The equilibria on the upper
sheet are stable foci far from the left-hand fold
line. However, as the equilibrium point on the
upper sheet approaches the fold line, mode soften-
ing occur's, and the stable focus becomes a stable
node. Critical slowing down then occurs as the
equilibrium point moves yet closer to the fold line.

(7.20) C. Structural stability

It is worth emphasizing the signal. 8 determines the
point x on the cusp manifold through the relation
b =(x-Kn)'N (V=the number of atoms). The ex-
pression (a a) —(at) (a) determines the noise.

VIII. STABILITY

We discuss three types of stability. In Secs.
VIIIA and VIIIB, we assume p, =(a)/u. V to be
real. The reason for this assumption and the
conditions under which it is valid are considered
in Sec. VIII C.

A. Static stability

Al. l points on the stationary manifold in the
single-valued region outside the cusp-shaped
region in Figs. 1, 2, and 3 represent stable physi-
cal systems. When the control parameters take
values inside this region, points on the upper and
lower sheets represent stable or metastable sys-
tems; points on the middle sheet represent un-
stable stationary states. 'These remarks hold for

We first investigate the consequences of relaxing
the assumption that (a)/v'A is real Under . t.hese
conditions, the potentials (5.1) and (5.2) governing
the system depend on the two real variables
Beg, Imp. Therefore, the static stability proper-
ties of the system are governed by the signs of
the eigenvalues of the matrix of mixed second
partial derivatives' of the potential with respect to
the real and imaginary parts of g.

The inertia of this matrix is (+, +) in the single-
sheeted region outside the cusp-shaped domain of
the control plane, For n =0 both potentials are
U(l) invariant, or cylindrically symmetric. This
is a reflection of the gauge invariance of the Dieke
Hamiltonian with n =0." " Above threshold, the
potential has the shape of a sombrero. " For fj. =0,
the inertia is (+, 0) on the upper and lower sheets,
with

~ p. ~
0 0, and (-, -) on the central sheet, with

p, =0. Gn the upper sheet, for B& 0, and on the
lower sheet, for B&0, the inertia, is (-, -)."
These considerations are valid under both boundary
conditions.

For p. real, the inaccessible region of the cusp
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manifold is only the central sheet. For A& 0, the
potential. V(x;A, B), with x real, looks like a
cross-section of the sombrero through its axis of
symmetry. Changing n from positive to negative
tips the potential. from one side to the other. As
n is made smaller, the stable state becomes
metastabl. e and fina11.y unstable when the barri. er
between it and the stable state vanishes.

For 0, complex, the potential surface looks like
the whole sombrero. Changing z from positive
to negative tips the sombrero from one side to
the other. As u passes through zero, the values
of the potential on the rim are equal. Changing n
slightly causes the system state to "roll around
the rim" to the new minimum. The potentia, l has
no metastpble states. It is for this reason that

' the middle sheet, with the left side of the upper
sheet (2 & 0, B& 0), and the right side of the lower
sheet (A&0, B& 0) are inaccessible when (a)/WiV
is complex.

Lack of metastable states for JLI. complex forbids
the occurrence of first-order transitions. Since
they do occur, ' a physical mechanism must be
present to break the gauge invariance when a = 0.
It is known' "that the presence of either the
counter-rotatirig terms a~a', , a v,. or theA A
term K(at- a)' breaks the gauge invariance and
produces a "rigid" Hamiltonian. '

We estimate the importance of the nonresonant
counter-rotating terms relative to the resonant
interaction terms to be given approximately by
~[i+fr(e —w)]/(1+iv(@+ cd)J~, where e is the atom-
ic-level spacing and T the Wigner-Weisskopf decay
time. In the optical regime, and for resonant in-
teraction, the nonresonant terms are unimportant.
Thus, it is reasonable to conclude that the A 'A
is responsible for breaking the gauge invariance.
The inct.usion of this term in the mathematical.
analysis of Secs. II and III does not cause any
major modifications in the absence of counter-
rotating terms, except that (a)/ZiV is no longer
complex but real.

With this justification for the assumption that
(a) is real when n is rea. l, we turn to a discussion
of the structural stability of the equations describ-
ing the stationary states of the Hamiltonian (2.1).
The stationary manifolds (4.3E) and (4.3N) both
have the form (4.2). In the equilibrium case, A
and O are invertible functions of the physical con-
trol parameters P and n. In the'nonequilibrium
case, they are invertible functions of the physical .

controls o„and a. Since (4.1) is a universal
unfolding"" "of x', the potentials (4.3E) and
(4.3N) are both structurally stable. The dynamical
system (2.6) is, therefore, also structurally
stable.

For n =0, the Eqs. (4.3E) and (4.3N) and the

dynamical system (2.6) are not structurally stable.
This implies that qualitatively new effects can be
expected under. sma1. 1 perturbations, ' such' as
applied external. fields. Since these equations are
structurally stable with the parameter a 4 0, no

qualitatively new steady-state behavior will be ob-
served when further perturbations (clas'sical cur-
rents, magnetic fields, etc. ) are introduced. 2'

Additional types of dissipative structure's can be
found at very -high pumping levels if o~der param-

I

eters for time-periodic and/or space-periodic be-
havior are introduI:ed in Eqs. (2.6)."

IX. SUMMARY AND CONCLUSIONS
'

The Langevin equations were derived for the
interacting system consisting of a single fie1d mode
and K identical two-level. atoms (Dicke. model) in-
cluding the effects of an external field and heat
baths. Under the mean-field approximation, the
density operator factors into the product of re-
duced density operators. The Langevin equations
reduce to a system of coupled nonlinear equations
for the operator expectation values (a), (o ), (o'),
(ata) .

The stationary states for this system of coup1.ed
nonlinear equations were determined under both
equilibrium and nonequilibrium boundary condi-
tions. This was done by transforming the system
of equations to a single nonlinear equation for the
operator expectation value (a). Under both types
of boundary conditions, the resulting equation was
found to be essentially a cubic. As a result, the
manifo1d of stationary states was immediately
identified with the "cusp catastrophe. "

In the absence of external fields (n =0), the
system undergoes a Ginzburg-Landau-type second-
order phase transition as a function of increasing
control parameters P(E) or o„(fV) provide'd

E: X'/(Res')(Re~') & 1,
N: A.'/(Im~')(Imcu') & 1,

where

C' = 6+2'~ q

Q)' =- +S K.

The Ginzburg-Landau phase transition (bifurca-
tion) is structurally unstable against sma. ll per-
turbations. Under both equiI. ibrium and nonequilib-
rium boundary conditions, for fixed z&0, the
system state passes continuously onto the upper
sheet in Fig. l, and no phase transition occurs.
Under equilibrium conditions, if the temperature
is held below a critical value and the fie1d a is
varied from a positive to a sufficiently negative
value, a first-order phase transition occurs (Fig.
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2). Under nonequilibrium conditions, if the.popu-
lation inversion is held belo threshold and the
field is, made sufficiently strong, a first-order
phase transition can occur if X'(-o'„)/8y~a & 1. In
both cases, hysteresis, discontinuity, and diver-
gence occur.

Potentials governing the system under both

equilibrium and; nonequil. ibri.um, conditions were
easily obtained by integrating the. Eqs. (3.1) for
the stationary manifold. In the equilibrium case,
the potential (5.1) is just the free energy. In the
nonequilibrium case the potential (for .a =0) is just
the "laser free energy. "

The connection between the results of. our dis-
cussion for the nonequilibrium case and the con-
ditions for the occurrence of optical bistability
have beeri mg, de expl. icit.

The reduced density operators were computed in
the mean-field approximation. In all cases (E or
N; pz or p„; o. =0 or o. W 0) the reduced operators
"factor"'according to p =- [p(geometry)]"'""'""".
The operator p(geometry) depends only on the
particular point x in the cusp manifold which rep-
resents the system state. The real number
M(physics) depends only on the physics of the
system. The Glauber photocount-probabil. ity dis-
tribution function was derived, and it was deter-
mined that the system signal fixes p(geometry),
while the system noise fixes M(physics).

The identification of points on the cusp manifold
with density operators p~ p~ for systems subject
to both equilibrium and nonequil. ibrium boundary
conditions a,llows the possibility of an "analytic
continuation" from one set of boundary conditions
to the other. The analytic continuation is not in
the usual. complex variable sense, despite the sug-
gestion of Eq. (9.1). It is, rather, in the sense of
real, differential geometry. The cusp manifold
(4.2) is analytic; it is only its projection down to
the control plane which is not. ' The identification
of density operators with the cusp, and of the
stationa, ry manifolds (4.3E) and (4.3N) with the
cusp, allows a comparison of photocount experi-
ments performed under the two different types of
boundary conditions.

The static stability of the stationary manifolds
(3.1), the dynamic stability of the Langevin equa-
tions (2.6) and the structural stability of the Ham-
iltonian (2.2) were discussed. Without the exter-
nal. field al. l three systems are structurally un-
stable. However, only one additiona. l (nondegen-
erate) dimension is required to produce structur-
ally stab}.e stationary systems by Thorn's theorem. '
The important result follows that no new quasi-
stationary effects remain to be discovered by con-
sidering additional perturbations of (2,2). The
only effect any additional perturbations may have

Boundary
conditions

E: equilibrium

N: nonequi lib r ium

NO

Ref. (4) (8)

(2) ( t)

(9.2)

ACKNOWLEDGMENTS

One of us (L.M.N. ) thanks Prof. R. Bonifacio and
Prof. L. A. Lugiato (Milan) for making their resuits
(Ref. 7) available prior to publication. The other
thanks Prof. Harry Thomas (Basei) for useful dis-
cussions on the relation between photocount ex-
periments carried out under both equilibrium and

I

nonequilibrium conditions. He also thanks Dr. T.
Poston (Geneva) for very enlightening discussions
on the subject of "elementary catastrophe theory. "
This research was supported in part by the Office
of Naval. Research under Contract No. N0014-76-
C-1082.

is to enrich the spectrum of possible trajectories
in the space of control parameters (A, B). Those
trajectories which cross the bifurcation set (fold
lines) produce first-order phase transitions.

The physical implications of Eq. (3.1) were
discussed in Sec. VIII. In the Appendix, we have
extended the semiclassical theorem from- general-
ized coherent states to Gibbs states.

Successful though the Dicke model' has been, it
represents, in some sense, . a history of missed
opportunities. When the Langevin equations were
first derived, ' it was assumed that the equilibrium
expectation values (a)„(o' ), were zero which is
indeed true for nonequilibrium boundary conditions.
Had. t:his assumption been relaxed, and nonzero
stationary solutions sought, the equilibrium phase
transition' would have been discovered much
earlier. If Thorn's theorem' and the mathematical
theory of unfolding" had been available, it would
have been realized that the second-order phase
transition under both equilibrium and nonequilib-
rium boundary conditions forces a pleat into the
manifold of stationary states (Fig. 1). This pleat
guarantees the presence of first-ordep transitions
provided only that appropriate trajectories in
control-para, meter space are fol. lowed. In addition,
since the universal unfolding of the Ginzburg-Lan-
dau potential requires only one additional param-
eter [8 in Eq. (4.1)], the complete structurally
stable behavior of the Dicke Hamiltonian'would
have been studied by introducing onl. y one type of
external perturbation. As it was, each type of
behavior was analyzed separately and independent-
ly according to

External field
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)
i@(h) (A2)

These states exist in one-one correspondence
with points in the space QjH, . Their properties
have been studied extensively. ""'""

For a singl. e electromagnetic field mode, t"

=H(4), V is the Fock space, and a pos.'.ible ex-
tremal state is ~ext) =- ~0), the state with no pho-
tons. -'' For two-level atoms, G =SU(2), V' car-
ries a 2j+ 1-di*mensional irreducible representa-
tion of SU(2), possible extremal states are

~ j; ext)
=

~ j,j) or jj; -j), and H, =-U(l)."
For the semiclassical theorem to follow, we

assume a, physical system to be governed by the
Ha, m iltonian

We extend the semiclassical theorem from co-
herent states to Gibbs states. Although the semi-
classical theorem for genera. lized coherent sta, tes
has been proven already, "the proof is not easily
accessible; so we prove this theorem first.

There are four required structures for the con-
struction of geIlel"Rllzed coheI'ent states. (R) A
real" Lie group G with real Lie algebra g spanned
by basis vectors (operators) X„,X2, . . . , X„. (b) An

invariant space V which carri. es a unitary irre-
ducible representation I" of G. (c) An extremal
vector ~h. ; ext) in V'. Such vectors may be found in
two distinct but equivalent ways: ~A. ; ext) is an
extremal state if (1) it is a.nnihilated by a solvable
subalgebra of the compt. ex extension" of g of
maximal dimensions or (2) it is a nondegenerate
eigenstate of minimal eigenvalue of some operator
lll g. ((1) A IIIRXIIIIR1 subgl" ollp Hh of G with. 't.le
property that it leaves ~A. ; ext) fixed up to a phase
factor

&~A. ; ext) = ~X; ext)e' ', fI (-'= H, . .

For an arbitrary group element g.=-Q, there is
the unique decomposition g =-ch with A= JI, and the
group operation c contained in the space of coset
representatives, c G/Hh. Ge—nera. lized coherent
states ~A. ; c) are defined by

@~A.; ext) =c(h~h. ; ext)) =c~A.; ext)e' '"'

E(x;) =lime h'/Tr(e h") . (A7)

The Gibbs state for any other coherent state is

Here 7 is tlute usual. Dyson time-ordering operator.
The operator U(t, f,) is actually a product of in-finities

imal unitary trans for mations, each having
the form exp[(-i/h)H(t')Af]. Each of these is a
group element in Q; the product of all these is
also a group element in G. Therefore, U(t, t,) in

(A4) i!. R time-dependent group element and

U(t):—:(()c(f)—a{i ) .
In (A5) we have suppressed the initial time and
exploited the closet decomposition. "

Semiclas. ,ical thiorern for coherent states. A

system initial. ly in a coherent state, or„ in par-
ticula, r, in the gxound state, evolves into a co- .

herent state (up to a phase factor) under a, Hamil-
tonian of the form (A3).

Proof. Assume that the system is initially in a
coherent state ~+; co). Then the time evolution is
given by (A5) Rnd

g(i) ~7', c„)=-,;(f)c,(~; ext)

=- c'(t)k'(t)JA. ; ext)

(AB)

Thi.s completes the proof.
The semiclassical. theorem may be paraphrased,

less precisely, in the form of a selection rule:
once a coherent state, always a coherent state.

We turn now to Gibbs states. For systems in
thermodynamic equilibrium, these are essentially
densIty opeIRtols'of 'tl'le foI'III exp( —pH). Howevel',
since we are also dealing with nonequilibrium
boundary conditions, we must extend the definition
of Gibbs states in order to include this situation
as well. Since the Hamiltonian (A3) is a linear
combination of the generators X„of the Lie group
G, we define a Gibbs stats E(X) = exp(QOJXh) to be
the exponential of a linear superposition of opera-
tors X~. In short, a Gibbs state is an element in
the complex extension G' of the Lie group Q.

Gibbs states a,re more versatile than coherent
states. The Gibbs state for the extremal state of
(A3) is

i——H(t ')dk' (A4)

where h~ may be time-dependent functions, the
sum is Hermitian, the X„span g, and. II acts in
U . A convenient extremal stat;e in V is the non-
degenerate ground state of IV. The time evolution
of the system under (A3) is given by the unitary
trans for mation

[A. ; c) (A, ; c (
= c [A.; ext) (A. ; ext( c '

= lim c[e h "/Tr(e h")]c '

== iim [e ""' '/Tr(e h")].

The denominator in (AB) is unchanged under c
because the trace is invariant under similarity
transformations. The result (AB) can be simplified
further by introdiIcing the regular or adjoint rep-
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[x;,x&] =x I"",(x&),

gx,g '=~a I'ag(g).

(A10a)

(A10b)

Equations (A10a) and (A10b) are the differential
and integral forms of the same group-theoretical
relation. Equation (A8) can now be simplified
using (A.10b) with (A3): cHC . . =X~ I ~)(c)h~.

Semiclassical theorem for Gibbs states. A sys-.
tem initially in a Gibbs state evolves into a Gibbs
state under a Hamiltonian of the form (A3) (once
a Gibbp state, always a Gibbs state).

Sine+the proof is trivial, [g(t)E(x;)g' '(f)
=-O', Q.E.D. ], we prove a more general version
of &e theorem:

Iff(X;}is an analytic function of the operators
X„.. . , X„, then it evolves in the time under (A3)
into a function of the same form with covariantly
transformed argument.

The simple proof follows:

resentation. ." The adjoint representation of X,'& g
is the. (nxn) matr(x I"g,(X;) =c;&, where [X„X&]
=c&&X~. The adjoint matrix representation of t"
is the expo@.ential. of the adjoin't representation of
the aigebra:

X.""')exp(a;X;)]= exp[i" "(u;X,}J . (A9)

The properties of the adjoint representation of the
algebra Rod of the group are

g(f}f(X )g '(t) =f(g(t)X~ '(t))

=-f[x„.r,",(„(f)) J . (A11)

Q.E.D.
For a Gibbs state, take f(X;)=exp(Q n;X;). The

above proof assumes that if the initial state is,
for exam'pie, an exponential of a quadratic form
f(X; ) = exp(u, &X~X, ) then it wiil retain that form
for all time: f(X;) -, exp(o.„(t)X&X,.).

We illustrate the usefulness of this theorem by
computing the density operator representing the
field mode in a statistical superposition of signal
and noise. " The computation is carried out in two
steps.

(a) The vacuum is raised from T =-0 to a finite
temperature

p... =lo&(01- p(T)=(1 —e "")e """'. (A12)

(b) The thermal state is radiated by a classical
current which drives the field through a unitary
transformation U(a. ) = exp(oa —o. *a)

p(T) =p(r, ~) =U(~)[(I —e-'"")e '"""
] U( ~)

=(1 —e '"'")exp[-PIia(a —o.) (a —n)J. (A13)

In deriving (A13) we have exploited the regular
representation of H(4): U(o. )a "U(-o.) =at —@*I
In computing p(T, u), the order of steps (a) and (b)
may be reversed.
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