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Stimulated emission and absorption in classical systems

%. J. Cocke
Steward Observatory, - University of Arizon'a, ~ Tucson, Arizona 85721

and Theoretical Division, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544
(Received 18 April 1977; revised manuscript received 8 November 1977)

Electromagnetic radiation from a classical charge distribution interacts with an incident plane wave, and
the interaction terms in the resulting Poynting vector are shown to give a net contribution to the total energy
flux exactly in the forward-scattering direction. A simple relativistically valid expression for the interaction
energy in the case of a single particle is derived, and we show that energy is conserved in Thomson
scattering if radiation-reaction forces are included. A perturbation theory is developed for a particle having
its own given unperturbed motion, and the perturbed interaction energy is shown to be proportional to the
intensity of the incident wave. %'e apply this th'eory to a "free-electron laser" consisting of a relativistic
electron in a linear accelerator, and show that stimulated emission or absorption could both occur. The result
contradicts that obtained using the Einstein-coefficient method.

I, INTRODUCTION

This paper presents a contribution to the theory
of classica1. stimul. ated emission and absorption,
in which a plane electromagnetic wave is scattered
by a relativistic charged particle (or general
charge distribution); The Poynting vector of the
resulting radiation is composed of the-Poyntirig
vector of the incident wave plus the Poynting
vector of the radiation from the charge, plus in-
teraction cross terms. In the far-field approxi-
mation, the interaction terms are shown to give a
contribution to the total energy flux exactly in the
forward-scattering direction "downstream" from
the charge, and a simple relativistically valid ex-
pression fop the interaction energy H' is derived.
This result is quite similar to the "optical theo-
rem" in quantum-mechanical scattering theory.
A satisfying interpretation of H' is given in terms
of an energy-conservation law.

In Sec. III, the concept is applied in a simple
way to Thomson scattering, and it is shown in
this context how the scattered energy is taken from
the wave, the loss showing up in the forward di-
rection from the particle. Radiation reaction
forces must be inclUded here, however. Section
IV develops a perturbation approach in which the
particle is presumed to have a basic unperturbed
motion of its own. The incident wave perturbs
this motion, and the perturbed interaction energy
50', which can be either positive (stimulated
emission) or negative (absorption), is shown to be
proportional to the intensity of the incident wave.
The interpretation is that the particle emits or
absorbs photons of the same wave vector as the
incident wave, at a rate proportional. to the wave
intensity, as is characteristic of a stimulated
process.

It might be possible to use this formalism to

design "free-electron lasers, " and in See. V, we

apply the theory to a particle whose unperturbed
motion is in one dimension, collinear with the
propagation direction of the incident wave. After
taki. ng a phase average, we show that the particl. e
usua,

llew

gaiI|s kineti. c energy, corr esponding to
absorption. However, it loses potential energy,
so 'that stimulated emission might still. be possible.

In.Sec. VI, we apply the theory to a uniform
hnear accelerator, assuming that the particle is
highly relativistic, that its unperturbed direction
of motion is .nearly (but not exactly) coincident
with the wave-propagation direction, and that the
frequency of the wave is not too high. After
averaging over the phase of the wave, we obtain
an expression, for the dimensionless absorption
coefficient ("optical thickness") of the accelerator.
This coefficient can be either positive or negative,
corresponding to absorption or stimulated emis-
sion, but the form of the result is not the same
as one obtained previously by the Einstein-coef-
ficient method, and reasons for this contradiction
are discussed. We suggest that the principle of
detailed balance may not apply in this case.

i

II. INTERACTION ENERGY

Let us consider a charge distribution emitting
classical. electromagnetic radiation. Let 8 be
the distance from'a point near the center of the
distribution (taken to be the origin). Then if R is
large, we write the electric field from the radiat-
ing distribution as E„=a(R, t)/R, where R is the
vector from the origin to the field point. With
n =R/A, the magnetic field is B, = n x E, . If we
consider a single particle, of charge e, then of
course'

a, (R, t) =en x((n- p) x p/[c(l-n p) jj„, ,
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where p(t) is the velocity of the particle in units
of the velocity of light c, and the dot indicates the
time derivate. The subscript ret denotes evalua-
tion at the retarded time f'=f —~R —r(f )~/c, where
r(t) is the position of the particle as a, function of
time.

Let us also suppose that there is an incident
linea, rly polarized electromagnetic wave of fre-
quency ~ and wave vector %. We assume that
the process takes place in a vacuum,

' so that (d

=cA. We write the incident electric field as

E; =eE; cos$ R —&ut —P),

5' ~ n =cE;[(1+cos8)Y~ a —(n &)(k a)]

x cos (kR cos8 —~t —Q)/4',
where we have used the identity A x (B x C)
=(A C)B —(A B)C.

Then defining p. = cos6 and

dg[(1+ p, )e a —(n ~ e)(k a)~]/4n, .

we obtain

(4)

where c is a unit polarization vector. Likewise,
B, =k x E;, where k —= k/k. p is an arbitrary phase
angle.

We now consider the total Poynting vector 5 for
the radiation field:

=cE;8, f [p]cos(kRg —~t —P)dg. (5)

In evaluating Eq. (5) in the far-field limit R- ~,
we may use the integration-by-parts relation

5 =cEx 8/4p

= c(E; + E„)x (B; + B„)/4m

= c(E; x B; + E„xB„+E, x 8„+E„xB;)/4v

=5, +8„+S'.

The first term 5; is simply the Poynting vector of
the incident wave by itself; and the second 5„ is
the Poynting vector of the energy radiated by the
particle (or charge distribution) by itself. We
concentrate our efforts on the last term,

S'—:c(E, x B„+E„xB;)/4m,

where we set g = kR and E(iJ.) = e """~'f[p].
Riemann's lemma states that

and therefore in the far-field limit Eq. (6) be-
comes, to first order in y ',

e'"'P(p, ) dg = (iX) '[P(P)e'"' —P(o.)e'"'J.

(6)

which represents an interaction between the two
radiation fields. In a manner analogous to the
treatment by Sargent et al. ' and by Born and Wolf, '
we integrate it over a sphere of radius 8 centered
on the origin. This gives us a total power output
through the sphere

da =R'

where d o is the differential surface area and dQ
the corresponding solid angle. Of course, unless
there is some correlation between the motion of
the charge distribution and the incident wave, P'
averages to zero. We consider appl. ications where
such correlations exist later in the paper.

It is now shown that, for any a(R, f), a contribu-
tion to I" occurs only in the forward-scattering
direction (n =k), in the limit kR- ~. The follow'ing
proof is a generalization of the treatment by Born
and Wolf, ' who assumed E„cce' and derived a
result very similar to the optical theorem.

Let 6 be the angle between n and k, and P the '

usual azimuthal polar angle. Then it follows from
the above expressions for the radiation fields that

Then we may take the real part of this equation
and set P =+1 and o. = —1 to obtain, for R - ~,

P' =cZ,R[sin(kRg —~t —P)f [p, ] (kR) ']','. (7)

Now, p. =+1 means R =8k and n = k, and therefore
f [+l]=e a(Rk, f); and at p, = —1, n =-k, and hence
f[—1J=O. The integral over g is trivial because of
the degeneracy at 9=0. Fina, lly, we have for the
interaction power in the far-field limit

P' =cE;k ' sin(kR —&ut —P)c a(Rk, f) . (6)

We see that the contribution to I" occurs only in
the forward direction. The reader should compare
this equation with the corresponding one in Born
and Wolf' [their Eq. (109)], where exponential .

notation is used. Unfortunately, it is not advan-
tageous to use exponential notation in the present
wor'k, because of the relativistic nonlinearities
which occur. If we evaluate Eq. (3) in the forward
direction, we note a 90' phase shift (sine vs cosine)
between 5' n 5' k and P' . The difference
arises, of course, because of the integration by
parts.

We can now examine Eq. (5) to show why P'
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f, 2

sin(kR —et —Q )

x e (k x [($ —p) x p]» 'f „, dt, (9)

where» = 1 —k P.
This expression can be simplified by an integra-

tion by parts, ' if the variable of integration is
changed to the retarded time t' via dt ' = dt/».
This involves the usual far-field limit expression
t =t' +R/c —k r/c, which we also substitute into
the argument of the sine function. The relation

k =0 implies e [k x (k x p)]=-e p, and therefore
one can show that

--, (» 'e p) =-—,(» 'e [k x(kx p)Jj

and the integration by parts of Eq. , (9) yields

H' =-eE; k '[sin(% r —~t —Q)e P» '],'
t2

—ecE; (10)
j.

where we have removed the primes from the vari-
able of integration, and r(t) and P(t) are the, posi-
tion and velocity of the particle as a function of
the (retarded) time. The boundary terms have
been retained since it may be desirable to con-
sider problems in which the acceleration is dis-

depends only on f [+1], and not on the entire struc-
ture of f[g] over all g. Consider a detector of
fixed soiid angle AQ= (kR) ". In the neighborhood
of 8 = 0, the argument of the cosine in Eq. (5) is
then approximately kR —at ——,'kR8' —Q, and the
detector would see an appreciabl. e ft.ux only for
8 ~ (kR) '', since otherwise the cosine would os-
cillate very rapidly over the detector face, as a
function of 0. This is basically what Sargent et al.'
eonelude in their discussion of a dipole oscillator.
We note that there would be a similar contribution
near 8 = v (backscattering), but f [-1J= 0 identical-
ly, as we have already seen. Of course, this is
only part of the story, since for the detector to
see a net flux, the time average of I" must also
be nonzero. This depends on whether or not the
motion of the particle is correlated with that of
the wave, as occurs in the cases discussed below.

The analysis of Thomson scattering in Sec. III
illustrates most of the points covered in the above
few paragraphs.

For the most part, we discuss applications to a
single particle, with a given by Eq. (1), and to
that end it is convenient to integrate Eq. (8) over
time to obtain a total interaction energy

g2

P' dt

continuous, as in Secs. IV and V.
Equation (10) is quite remarkable in that if we

def ine a "potential energy" V =—eE& s in(k r —ut —Q)
x E ~ Tl/»k, we can write

E; v dt —[V(t, ) —V(t, )J,

where the integral term is the work done on the
particle by the incident wave, and is obviously
the change in the particle's kinetic energy due to
the presence of the wave. Equation (11) is there-
fore an energy-conservation law, wherein the
radiated interaction energy B' is balanced by the
change in the particle's kinetic and potential
energies.

It is interesting that such a law exists, for it is
well known that conserved energies do not, in

general, exist for systems in time-dependent ex-
ternal fields. It does not seem possible to use the
ordinary energy-conservation laws of classical
electrodynamics in the present case because of
the divergences which occur in the neighborhood
of a point charge.

This velocity-dependent "potential-energy" term
is very similar in form to the spectral energy-
distribution function for photons emitted in the
radiative beta process (Ref. 1, p. 526). This
radiation is associated with the sudden appearance
of the electron or positron created by an unstable
nuc l.eus dur ing beta decay, and our potential ener gy
term can be viewed as a stimulated analog to this
radiative beta process. However, w'e shall continue
to refer to it simply as the "potential energy. "

Considerable care should be exercised in inter-
preting this term, and it.might be more appropri-
ate in many eases to delete it and to take the limits
on the kinetic-energy integral to be +~. A similar
question of choice arises in the interpretation of
the usual formula for the "spontaneous" emission
from an accelerated charge, where a similar inte-
gration by parts has been employed (Ref. 1, p. 671).

Note that a system of many particles could be
treated by the method devel. oped here, since the
radiation fields are obviously summable. Equa-
tions (10) and (11) would then consist of sums over
the individual: particles.

The fact that H' is an integral of cross terms of
5 composed of the two radiation fields E; and E„
indicates the following, I et &t =—t, —t, . If (P')
—:lim« „H'/&t is nonzero, then the particle
musg be emitting or absorbing photons of the same
k as that of the incident wave. If it were not, E;
and E„would be uncorrelated, and. (P') would
vanish. If the incident radiation field consists of
an ensemble of randomly phased photons, then (P')
would vanish anyway, unless the motion of the
particle were correlated with the photon phases.
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III. ENERGY CONSERVATION IN THOMSON SCATTERING

It may be useful. at this time to consider an
interesting and simple use of Eq. (10), in which
we show energy conservation in nonrelativistic
Thomson scattering, in the sense that (P')
=(ff5„dc), the latter integral being the usual
Thomson-scattered power, provided that we in-
clude the radiation reaction terin in the equation
of motion. In other words, it wil. l appear that the
Thomson-scattered power has indeed been "stolen"
from the incident wave, the loss showing up in
the forward direction.

The use of the radiation reaction term in a
nonrelativistic situation is not contradictory, and
it can be shown in the limit of small E;, the rela-
tivistic corrections to the motion of the particle
go to zero faster than the reaction term.

The nonrelativistic radiation reaction force
term~ is 7,,d

= mc7p, where r =2e'/3mc'= 6.26
x 10 "sec, and the complete nonrelativistic
equation of motion of the electron in the incident
wave is

~ ~

mP= eE;e cos(k r —&ut —P)/c+mrP . (12)

Since k e =0, the appropriate solution of Eq.
(12) is, to first order in the small quantity' r~,

p = eE~ t [si n(et + p) + T(d cos((dt + Q)]/mc(u . (13)

Since the phase of the wave is now obviously cor-
related with P, we set (f( =0. Instead of doing our
analysis directly by using Eq. (10), it is instruc-
tive to go to Eq. (4) and evaluate P' directly with-
out making use of the far-field integration by
parts. In the nonrelativistic (dipole) case, ' we

may approximate

a =(e/c)n x (n x [p] ~)

=(e'/mc')E;n x (n x e)(cos &ut' —

Tocsin

ut'),

= 8 E; (m(d) (cos&t —Ta sining' )

~t' —(kR) 'cos(dg'+(kR) 'cos&utsinkR],

which becomes, in the far-field limit R -~,
P' =-e'E';(m(d) '(cos(dt' —r&usin~t')sin(dt'. (14)

Taking a time average of Eq. (14), we see that
only the second term in the parentheses contrib-
utes, so that

2 3(P') = lim P' =-—e E,'/3m2c'. (15)
l

But, it is wel. l known' that the average Thomson-
scattered power is, with vr = 8w(e'/mc')'/3,

FF'=-e' E'( m(d)
'

-t2
[sinu&t(sin(dt+ ndcosat) ]~,

t~
case((H(net+ rweaeel)dt),

Since (P') =lim« „FF'/&t, only the second term
in the integral contributes, and one can easily
show that the result is the same as Eq. (15). Note
that the potential energy term of Eq. (11) averages
to zero, so that only the kinetic-energy term con-
tributes to the scattering in this case.

IV. PERTURBATION THEORY AND STIMULATED EMISSION

(Pr) = v rq E; /8w = -(P') .
Since Pr = ff 5„'dv, we see that our formalism
conserves energy in Thomson scattering, as ad-
vertised.

We now take a quick look at Eq. (10), and we
verify that the same result is obtained. Remember-
ing that the variable of integration in Eq. (10) is
actually the retarded time, we substitute Eq. (13)
with y =0 to get

where g' = t -R/c is the retarded time, and Eq. (4)
becomes

e'E;f [14 = ', (cos &ut' —r(d sin art')
4ppnc

x d(t( [(n e)' - I - n k] .
0

To evaluate the scalar products, define the co-
ordinate system so that e = (0, 1, 0), k = (1, 0, 0),
and n =(cos8, sin8cos(t, sin8sin(t(). Then one can
show that

f [g] = -e'E, (g+ I)'(cos(dt' —r&usin(dt')/4mc'

This expression may'be substituted into Eq. (5)
and the integral over p. may be done exactly. The
reader can easily show that the result is

We now explore the connection of Eq. (10) with
stimulated emission; to do this, we consider the
particle to have a basic unperturbed motion r, (t)
of its own, such as acceleration in a uniform
electric field (Sec. VI), or synchrotron motion.
The action of the incident wave is then considered
to be a perturbation. This is completely analogous
to the. situation in quantum mechanics, where
stimulated atomi, c transition probabilities are com-
puted by perturbing the state of an atom (the
"unperturbed motion") with the wave.

Let the unperturbed force be given as a function
of position and velocity by

'f, (r, P, g) = e[E,(r, t)+P x B,(r, t)],
so that the unperturbed equation of motion is P,
=7,(r„PO, t). The exact question of motion is
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P =f,(r, p, f)+ eE; [e+p x ($ x e)j

x cos(% r —ef —Q), (18).

tc)

5H, = - ecE; e ~ 5P cosP, (t) dt,

t2
5H, = ecE; e P, sing, (t)k 5r dt,

(19a)

(19b)

and if we let 5P = P —P„and 5r == r —r„ the per-'

turbed part of Eq. (16) is, to first order in the
5's and in E;,

0

5P = (5r V„+5P Vq )f o( ro, Po, t)

+ cQ; [e + Po x (jj' x e ) j cos Qo(t), (17

where po(t) =- k ro(t) —&ut —p.
Note that we have omitted any mention of the

radiation reaction force, which was necessary in

the Thomson-scattering calculation in the previous
section. Of course, the reaction force accompany-
ing the unperturbed motion could easily be included
in the unperturbed force f,, There is also a reac-
tion force aldrich accompanies acceleration due to,
the perturbing incident wave. However, we as-
sume that' vw&&1, and therefore this part of the
reaction force is small. compared to eE;, the per-
turbation. This "incident radiation" reaction
force assumes importance in the Thomson scat-
tering case only because of the vanishing of the
main contribution to (P ), which showed promise
of being order e'E'; /mu [see Eq. (14)j.

To solve Eq. (17) and substitute into a per-
turbed form of Eq. (10), it is necessary to have
5P in terms of 5P. This may easily be done by
noting that P =mcyp, where m is the rest mass,
and the Lorentz factor y is (I+P'm 'c ')". Lin-
earizing yields, with P, = P,/lP, l, -

5P = (mcyo) [5P —Pop~(Po 5P)J. (18).

We must now linearize Eq. (10), realizing that
the end-point times t,. may be perturbed also. We
obtain, writing 5H' —= H' —H,' and 5H' = Q'„,5H„,

5i3, with the help of Eq. (18), and then evaluate the
5H„. Since (17) is linear and inhomogeneous, the
appropriate solution is l.inear in E;, so that oH

is proportional to E;, the incident wave intensity.
Therefore, the energy gained or lost by the wave
is proportional to the wave intensity and is exactly
in the forward direction from the particle. The
same remarks would apply to a perturbed version
of Eq. (8) for an arbitrary charge distribution,
with, of course, its appropriate perturbed equa-
tion of motion. If the incident wave field consists
of a statistical ensemble of randomly phased
waves, then Eqs. (19) should be averaged over Q.
Indeed, the concept of "optical thickness" or of a
gain coefficient normally carries with it the as-
sumption of phase independence. Correspondingly,
in the rest of the paper a phase average is always
taken.

It is obvious ly tempting to think of using this
perturbation theory to design classical masers, .
as in Sec. VI, which treats an electron in a linear
accelerator.

V. ONE-DIMENSIONAL FREE-ELECTRON LASER

As a simple example of the perturbation theory
of Sec. IV, we treat the case in which the unper-
turbed motion of the particle is one-dimerissional,
and in which the wave vector k of the incident field
is aligned with this motion. We choose the x axis
to lie in this direction, so that k =-x, and P,(t)
=xP,(t). We also assume that the unperturbed
force f, depends only on x.

Under these conditions, Eq. (17) is

5P = 5xf, '.

, (x).~+ eE;(I —P,)e cosP, . (20)

Note that 5x decouples from the rest of the
problem, and we may set Gx=0=5P„, and 5P
=5Pe. Equation (20) may be integrated exactly,
since 1 —P, = —e"'d&p, /dt, a.nd we find 5P
=- -eE;(u"'d(sing, )/dt, or

5H, =-eE;k '[sing, (t)(Z P,)e, '(k 5P)j,'„,

5H, = —eE;k '[cosg, (t)(Z P,)x, '(% ~ 5r)j,',
5H, = eE;k 'fsin-Q, (t) x, 'e 5PJ,',

2

5H, =-eE;k 'Q(-I)'(sin(b (t)e

(19c)

(19d)

(19e)

M~ = eE; &u '[sing-o(t) —s info(t, )J
= me@~5 p. (21)

f(y) dy/2~

Since 3P and 5r are perpendicular to k and P„
the only 5H„[Eq. (19)J which do not vanish are 5H,
and 5H, . Averaging over P, with

(19f)

5H„ the part arising from the end-'point time
variation, is given by 5H, =- (BH,'/&t, )5t„+(BH,'/
&t,)5t, . It has been simplified by using the rela, -
tion P=% ~ r —~ = -cue, .

The procedure, then, is to solve Eq. (17) for

y(t, t, ) ==
A [x,(t) —x,(t, )J

—(u(t —t, ),
one obtains

2E2 t)
(5H,) = —' y, (t) 'sing(t, 't, )dt

2 apl (d

and

(22)
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(5H,) = c'E,' [1 —cosy(t„ t, )]/[2m~'y, (t, ) ~,(t, )] .

(23)

(5HQ is, in this ease, the negative of the total
work done on the particle by the wave. , since the
unperturbed part of Eq. (10) vanishes when the
average is taken. Note that since P(t, t, ) & 0, (5HQ
is generally negative. Therefore, the particle
usually gains energy from the wave in our ohe-
dimensional ease.

However, (5H,), the potential. -energy term, is
never negative, and therefore there is always
some energy gained back by the radiation field.
It may be that overall conservation of energy is
maintop'ined by work done injecting and removing
the pa,'rticle at the boundaries. Presumably, this
is where the energy for the photons emitted in
the ordinary radiative beta process comes from.

VI, RELATIVISTIC LINEAR ACCELERATOR

We now apply the perturbation theory developed
in See. IV to an electron in a linear accelerator.
We assume that the electron is everywhere ex-
tremely relativistic (y» 1) and that the accelera-
tion direction, taken to be along the x axis, is
nearly coincident with k, so that the change of
wave phase experienced by the electron is smal. l

~Ap, (t) ~&& 1. This problem has been treated by
Cocke' by the Einstein-coefficient method, ' and
it is interesting that the perturbation method gives
a very different result.

In this calculation, we completely negl. eet the
effects of radiation reaction, since this force is
very small for one-dimensional motion. In fact,
for a uniform electric field E, it can be shown
that iadiation reaction changes the electron veloc-
ity by AP= -2v, /3ay'„where r, = e'/mc'= 2.82
x 10 " cm and a —= mc'/eE ais a leng.th charac-
teristic of the accelerator, and is the distance
over which the electron changes its energy by
mc'. For any l.aboratory or cosmic accelerator'
surely xo/a & 10 ", and since here we assume
yo&& 1, we can certainly neglect the effect of in-
cluding b.r3 in computing Po, Q„or zo in Eqs. (19).

The basic dynamics of the l.inear accelerator
are well known, and it is necessary only to estab-
lish some notation. As in Hef. 6, we let/ =— ct/a,
and 2=—ae/c, where a is defined above. w is the
frequency measured in units of the electron-ac. —

celeration time scale. To allow for deceleration
as well as acceleration, we note that a can be
either positive or negative. The electron's un-
perturbed position is 'given by x,(t) =a(g'+1)'',
and its velocity is P, =g(f'+1)"''. The Lorentz
factor is then y, =x,/a = (f'+ 1)", which means
that we are interested in t such that ~g~&&1. We

5P„= eE;e„(mcy', ) '
(cosset&+q sing) dt',

5J3, = eE;(mcy, )
' (lt, —~& 's, )(eosp+q sing)dt

1

and a similar expression for 5P, .
The evaluation of the 5II„ is tedious, but straight-

forward, particularly if the average over qb is
taken before the integrals are done. First the
reader should verify the relations e,h, + e~h, = 8'

A

x(-,' —cos'o, ) —= 8'G(a), e,s, +e~,=-l, and 1-k P,
= —,

' (8'+y, '). Let us define y,. = y, (t, ), l = in(y, /y, ),
E = (1+8'y', ) ', and C, =: 8'E,'a'/2mc' Then in. the
limit of small q, small 8, and l.arge y, , the dom-
inant terms are

«H, ) = —C.(G(~) 8'[r. —r, (1+()J

+ —,
'

[y, '(l —1) +y, ']j,
(5H,) = —C, eos'o. 8'y', E'

x((2r. '+ 8') [r, (r. ' —8')(r, —y, ) —l

+ ~ 8'(r,'- r', )]
+ (r. ' —8')(1-r, /r, )- —.

' (r. ' -y, ') —8't]

can allow for deceleration if we always let f=y,
be positive and t, & t„but for deceleration t, & 0.
We see that. the electron velocity is always posi-
tive, but for deceleration, the motion is along the
negative x axis and toward the origin.

Since the unperturbed field is constant, Eq. (17)
becomes

4

5P = eE, [e+Tl, x (k x e)] cos(% ~ r, —~t —Q), (24)

and we let k. r, =Ax, cos8, where ~8~ && 1, and x,
=a/(l+ —,'P '). The boundary conditions are defined

by supposing that the acceleration region is of
fixed l.ength I., and that 5P(t, ) =5r(t, ) =5t, =0. Then
it follows that 5t, =-5x(t, )/v, (t, )=-5x(t, )/c.

We have q = k r, —&et= —,
' &g(f '-8'), and we "

wish q to be small, which is assured if f&&1,
~8~ &&1, and a is moderate. The triple vector
product in Eq. (24) is approximately P„x (k x e)
= (1 ——,'g ')s, wheri. s = xx ($ xe), x being the
unit vector iri the x direction.

We now define the polarization angles. Let us
assume that k lies in the x-y plane, so that k
= (cos8, sin8, 0), and define 8' and o. so that e
=(sin8', cos8'cosa. , cos8'sine). Then e k =0
implies cos8sin8' = -sin8cos8'cos n= -8cos 8'cos n.
Evidently, 8' is smal. l al.so, and hence 8'=

—. 8cosa. .
One can then approximate the vector 5 =- e+s as
A„= c„~-8eosQ $2~= —

2 8'cosa, and h, = ~ 8'sinn.
Since P, =x, Eq. (18) reads 5P„=5P„/mcyo, 5P,
= 5P,/mcy„and 5P, = 5P,/mcy„, and to first or'der
in q', we have
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(5HQ = C, cos2o.&2F

x(&r 2 2-r y2, '-r,
—0'r'. [y, —r, (I + 1)]+r', (/y, }

-(5H,) = —C,y.&[G (o')~'[r, (y,
' —8') (r. —r, )

(.+ t g2(y2 y2)]

+ —,
' ((l' - y, ')(1-y, /y, )

+-,'(r. ' —r, ')+ ~(l'(] .

The other two terms are much smaller than the
above listed ones, by two powers of 8 and 1/y.
The above expressions are valid for deceleration
or acceleration. For the former, y, & y, . Some
simplification can be achieved if the ambient radia-
tion field is unpolarized, so that an average over
o.'can be taken. In that case, (cos'o) = —,

' and
(G(o.)) = 0.

It might be possible to construct a maser using
such a linear accelerator if values of 6 and y canbe
found such that (5H') & 0. The dimensionless ab-
sorption coefficient A, - or "optical. thickness, "
of such an accel, erator would be, except for a
geometrical. factor,

JI = -83Tn, (5H')/E;' =3,a'n, f(0, y„y, ), (25)

& = -~e&p&'yprg' (27)

The expression on the right-hand side of Eq.
(26) comes from 5H, and is therefore a "potential-
energy" contribution. Since 0 =0 it may be derived
from (23) by expanding in powers of y, , assuming
9 not large. Equation (22), the kinetic energy
term, is negative, but may be neglected in this
case. As stated in Sec. II, overall energy con-
servation is presumably maintained by energy in-
volved in injecting and removing the particle at the
accelerator boundaries, as in the ordinary radia-
tive beta process.

Unfortunately, the influence of collective effects'
has not yet been computed. The restriction that
~ = ~a/c not be large mean" that ~E~ 2~~ 'y, y, ',
where 2~ =— (4v en2, /pn)'~' is the plasma frequency
for a cold plasma. Since for maser action we
would like -E-&1, i.e. , &'& u~y, y, ', it is not ob-
vious that propagation effects can be negl. ected,
as has been done in this paper. Thus it seems
premature to discuss applications further at this
time.

where n, is the electron density, xo is the classi-
cal electron radius, and f is a dimensionless func-
tion. For exampl. e, for 0=0 and y, &&y„we have
the simple expressions

(5H') =r,E ) a'y2/By', ),
whereupon the "optical depth" is roughly

VII. DISCUSSION AND COMPARISON
WITH THE EINSTHN-COEFFICIENT METHOD

We have seen that the I'oynting-vector analysis
of Sec. II results in an interesting viewpoint on
energy conservation in Thomson scattering, and in
a perturbation theory which leads to stimulated
emission and absorption. Since the power input
into the ambient wave is proportional. to the wave
intensity and results in a gain or loss of photons
of the same % as the ambient wave, the stimulated
character of the effect is clear.

Another way of treating stimulated emission is
the Einstein-coefficient method, which has been
applied to classical problems with some success,
particularly to gyroradiation and synchrotron
radiation. ' This method has also been applied to
the relativistic linear accelerator, and the result
obtained' is quite different from that which appears
in the present paper. In our notation, the absorp-
tion coefficient derived by the Einstein method is
[Ref. 6, Eq. (18)J

c2 ~ 2P 3 82y3 (2 $2y2 I )

This expression is much simpler than the sum
of our (5H„), and also differs from it by a factor
of c2(a&a) '=2 '. Equation (2B) was derived by
assuming that the A. coefficient is given by the
classical rate of photon emission accompanying
the linear acceleration, ' and the usual. Gedapgkeyg-
experiment involving equilibrium with a blackbody
radiation field was used to derive the relation be-
tween the A. and B coefficients. The principal as-
sumption of the Einstein method is the detailed
balance hypothesis, which holds for quantum
systems in certain circumstances, but might be
violated here. Heitler' indicates that anisotropies
(e.g. , nonspherical molecules) can cause detailed
balance to fail. The linear accelerator is certainly
anisotropic. The "optical theorem" method of
the present paper seems more straightforward
than the Einstein-coefficient method, which is
basically quantum mechanical. However, it is
difficult to say u Priori. which of the two methods
is really correct.

It is interesting to inquire about the Lorentz-
transformation properties of Eqs. (25) and (28).
Since an optical thickness is observer indepen-
dent, one should be able to show that the two di-
mensionless absorption coefficients are scalars,
provided (1) that the transformation velocity is
parallel to the accelerator field E (otherwise a
magnetic field would appear in ihe new frame),
aiid (2) that the conditions ~8~ &&1&&y, are pre-
served.

Then if I is the Lorentz factor of the transforma-
tion, one can show that (2) is satisfied provided
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«y. and I'« 0 . If p is the velocity of the trans-
formation, and if we define H == [(1—P)/(1+P)]",
the transformed variables are ~' =-He, n,'=I'„
y,' =Hy, , 0' = 0/H, and E' = E. The scalar character
of Eqs. (25) and (28) is then ea.sy to demonstrate.

One might wonder whether the approximation
~q~ && 1 is consistent with the emission of photons
of the appropriate frequency, since q represents
the amount of phase of the wave experienced by
the electron as it travels. Thus, a distant observer
located in the forward direction woul. d perceive a
pulse of radiation from it for a time r t «2z/a.
However, this pulse would be essentially a 5

function and hence would contain photons of all
frequencies & I/At. If there were a, continual
stream of electrons entering the accelerator,
our distant observer would measure a nonzero
(P'), since the (aH„) represent averages over the
phase of the ambient wave; i.e. , over the initial
time t, of entrance of the electron into the accel-
erator. However„contributions to (P') at frequen-
cies other than the wave frequency woul. d be un-
correlated and randomly phased and would average
to zero.

The l.inear accelerator considered here might be

termed a "free-electron laser, " a phrase coined
by Madey, Schwettmann, and Fairbank, ' who pre-
dicted (and later observed experimentally) lasing
by relativistic electrons in a periodic magnetic
field. Hopf, Meystre, Scull. y9 and Louisell9"
using the relativistic Boltzmann equation, conclude
that this lasing is in fact a purely classical type
of stimulated emission9 with a gain coefficient
proportional to the first power of the electron den-
sity [cf. our Eq. (25)]. This problem could also
be attacked with the perturbation theory in our
Sec. IV, and it would be interesting to see whether
the results were the same.
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