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Semiclassical expressions of two-photon ionization of atoms induced by radiative collisions are derived. The
dependence of the ionization yield on the atomic forces, field intensity, and energy gap is derived. Although
absorption tends to decrease as the field intensity rises due to stimulated emission at the second crossing, the
two-photon ionization yield can be nearly saturated at the first crossing, thus. enhancing the absorption. Both
regions, ionization in single collisions .and ionization between collisions, are treated. In the latter we find

that saturation of the ionization can be achieved at much reduced intensities. This process promises an

extremely sensitive method for studying radiative collisions, . especially when. absorption or fluorescence
becomes extremely weak.

I. INTRODUCTION

Atomic collisions in the presence of electrornag-
netic fields are continuing to receive attention
theoretically and experimentally' "-because. of
their relevance to laser fusion and isotope separ-
ation and to numerous other interesting applica-
tions which include development of radiative- colli-
sion la,sers, "up conversion of long-wavelength
radiation, increasing the reaction rates of selected
gas-phase chemical reactions, "extracting poten-
tial curves of the interacting system, "and study-
ing spin and charge exchange. "'" Recently we
extended the optical- collision studies by studyi. ng
two-photon ionization of the colliding atoms. "
Because complete conversion of every absorption
event to an ion pair is possible, "the ionization
channel promises extreme sensitivity since it is
easier to detect a small number of electrons than
a small number of photons. This allows measure-
ment at the extreme wing where absorption or
fluorescence becomes vanishingly small. " Even
single absorption events can be detected with ease
by gas proportional counters which are sensitive to
single electrons. "

In this work, we study some aspects of atom-
atom (-ion) collisions in the presence ot electro-
magnetic fields by studying two-photon ioniza, tion
of atoms assisted by radiative collision. The pro-
cess involves an atom in an excited state colliding
with another atom (ion). We assume that, in ab-
sence of the collision, the two-photon ionization
has a vanishingly small cross section because of
the absence of resonant intermediate states or be-
cause of a high ionization potential. In the pres-
ence of the collision and when the photon energy plus
the energy of the excited state of the atom matches
an energy level of the atom, resonant collisional
transfer takes place, thus providing a real resonant
intermediate level for the laser field interaction with

the system. These systems can be chosen such
that one more photon absorbed by the system can
further ionize it. Ionizing the atom-atom system,
therefore, can be sensitive in monitoring near
resonant collisional transfer, especially when the
yield becomes vanishingly srnal1. .

We derive the ionization-yield dependence on the
interaction forces between the atoms, as well as
on the excitation intensity and the energy gap. Al-
though the absorption of the system might normally
decrease as the intensity of excitation increa, ses
due to stimulated emission at the second crossing,
the two-photon ionization yield can be nearly sat-
urated at the first crossing, thus enhancing the
absorption. When the absorption is weak and the
ionization takes place between collisions, satura-
tion of the ionization can be achieved at moderate
excitation intensities. The far-wing wavelength
dependence of the ionization yield induced by col-
lisional transfer falls off with the square root of
the detuning, while the corresponding effect in
charge exchange drops faster and is more compli-
cated since it is due to overlap.

This paper consists of four sections. In Sec. II,
we give the formulation and the solution for the
absorption probabilities. Section III treats the
ionization yield, and, in Sec. IV, we give some
concluding r emarks.

II. ABSORPTION PROBABILITY

~e consider an atom-atom (-ion) collision in the
presence of an electromagnetic field. One atom
A is assumed to be in an excited state, while the
other atom (ion) B is in its ground state. In the
case where the process can occur at long range
with no overlap taking place, an atomic basis of
the process can be used. However, in the case
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where overlap is an integral part of the interaction,
the process should be treated from the viewpoint
of quasimolecular absorption. In any case, when
radiative collisions are considered, where one of
the colliding partners is in an excited state, the
effective interaction Hamiltonian depends on both
the collisional coupling and the electromagnetic
field coupling. This effective Hamiltonian can be
best derived taking an atomic viewpoint of the in-
teraction. Therefore, we will consider the atomic
viewpoint first.

To solve for the two-photon ionization of the
system, we start with the Schrodinger equation in
the dipole classical- field approximation:

Isa)

~xxPEx/P/i~Y/z~~xx/z [cb)

H =HA+H~+HA (2)

I IG. l. Energy level diagram of the colliding system.

where HA and H~ are the electronic Hamiltonians
of the isolated atoms; H» is the atom-atom inter-
action; p, A and p, ~ are the dipole moments of atoms
A and B, respectively; and p is the classical electro-
magnetic field E cos~t with frequency ~. In writ-
ing H», the impact-parameter method will be
used where the internuclear coordinates are treat-
ed classically and without acceleration in the mo-
tion. That is, R = b+ V, and b V = 0, where b is the
impact parameter and V the relative velocity of the
nuclei. However, deviation from straight-line
trajectories will be considered in the case of charge
transf er,at slow velocities.

We assume that the dipole-moment matrix ele-
ments between I2a) and Ioa) and between

I
lb) and

Iob) are oriented along the lines joining the two
atoms (rotating-atom approximation). The motive
for using the rotating-a, tom approximation is that
it eliminates the magnetic sublevels and thus simp-
lifies the calculation. However, it is only good
to a factor of 2. This approximation has been
previously used in dealing with collisions in line
broadening" (50% error), in Penning ionization by
atoms in resonance states" ($0% error), and in
several other types of collisions. " Therefore, the
system is represented by field-free electronic
states, and we consider only three product discrete
states and an infinite set of continuum states (Fig.
1). The wave function of the system can then be
written as follows:

g=ao exp [-i(&u»+ &use)t] Ila& lob&+a, exp [-i(~~+ &u„)t] I2a& Iob)

+ a, exp [-i(co„,+ cu )t ] I
Oa)

I
lb) + I a, exp [- i( ~„,+ ~„)t]oa)

I
cb&d@&...

where ~„, is the absolute frequency of level Iix)
withi =0, 1,2, or c; and x=A. or B. The product
state

I
la) Iob) is the ground state of the system

where atom 2 is an initial excited state
I
la) while

the atom B is in its ground state
I

ob). State
I
2a) Ob)

is reached after the system absorbs one photon,
and thus atom 4 is excited to I2a) state while atom
8 is still in its ground stste Iob). After the colli-
sion takes place and the transfer occurs, the sys-
tem evolves to the product state

I
oa)

I
lb) where

atom A is in the ground state and atom B is in an
excited state

I
lb). The product Ioa) Icb) describes

the photoionization of the system after the transfer
process has occurred. State Icb) is a continuum
state of the atom B. An infinite set of continuum
states has been included by performing the integra-

d
ao=i pAEe ' j-'a»

dt
(4)

d
dg 1 A
—a =i p, *Ee'~l'a +inc'~2'a

0 2P

tion over the energy of the photoelectron. Time-
dependent amplitudes of the discrete states and
continuum states are. represented by a and a„
respectively.

To calculate the two-photon ionization amplitude,
one ha, s to solve the equations of motion (1)-(3)
with the initial condition ac(-~) =1, a, (-~) =a2(-~)
=a,(-~) =0. Substituting Eq. (3) in Eq. (1) and

using the rotating-wave approximation, one gets
the following set of equations for the amplitudes
a and a, when the field is linearly polarized:
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dt
—a =iv*e '2'a +i p, Ee c'a d@~B c Bc&

d
dt c
—a =i@.*Ee'~c~a

2&

(6)

a, = ( jsE/S, ) e'~c'a, . (8)

However, when near-resonant states are consid-
ered, i.e. , ~, is small, a, can only be represented
as a full integral:

a, =i pg Ee'~ 'a, (t) dt.

Substituting expression (8), which is valid for
( h,

~

~ ~h', ~, in Eq. (6) results in anexpression for
the shift as an integral over 4,. Substituting ex-
pression (9), which is valid for

~
&,~-

~

&', ~, in Eq.
(6) and carrying out the integration over D, first
with the assumption that p, B is fairly constarit for

~
&,

~

~
~

&',
~

enables one to easily carry out tbe
integration over time:

where p, ~ is the matrix element in units of 5, of
the atomic dipole operator between states

~

la) and

~2a); v is the matrix element, in units of 8, of the
interaction Hamiltonian A„s between states ~2a)
and ~1b); g = ~,
p, B is the matrix element, in units of 5, of the di--
pole operator between the ~lb) state and the con-
tinuum state ~cb), where w,. are given in Fig. 1.
In writing Eqs. (4)-(7), we have neglected scatter-
ing between the continuum states by neglecting the
coupling between them in Eq. (7).

In order to simplify the calculation, we separate
the continuum states into two sets; the first set is
close to the resonance condition

(
6,

(
-

( cg (, where

~
&,'

~

is a small quantity, and the second set is
that which is sufficiently fa,r away from resonance

When b., is large, energy is not con-
served as a result of nonresonant continuum states;
consequently, intensity- dependerit frequency shif ts
are introduced in level

~

lb). The near-resonant
continuum states, however, result in intensity-, '

dependent sink, or decay to level ~1b). When

a, is large, the right side of Eq. (7) oscill-
ates swiftly; and if the field is a slowly varying
function of time, one can solve Eq. (7) for a, by
integri, ting over time by parts:

y0 is a spontaneous-emission decay rate included
phenomenologically,

2

s = —E I' —dhw Bc &

c

E2 ~2

(14)

(15)

dA0 = Z PgE+1,dt
(16)

'+i (&+ 6')A, = i V„"EA„+i,vA„
dt

(17)

d&2' e j(6' & s —ir)A, = tv*A, . (18)

The interesting situation is when 5~»kT so that
thermal collisional transfer does not take place.
Also, to prevent thermal transfer, p,~E has to be
much smaller than @4 so that power broadening
will not bridge the gap. Therefore, in this situa, -
tion A, is sufficiently far from resonance that
dA, /dt can be neglected relative to hA, in Eq.
(17); thus, one can solve for A& in terms of A,
and A2. This procedure of eliminating a nonreso-
nant intermediate state results in frequency shift
of the effective collisionally induced photoabsorp-
tion process

Q+ Ql 0 Q+ Ql
A. + (19)

Substituting Eq. (19) in Eqs. (16) and (18), we get

d i p,~E — i p,~Ev2-
g+ gl 0 ~+ Ql 2& (20)

(21)

and P stands for principal value. The above
scheme of eliminating the continuum states was
also used in photoionization of isolated" and col-
liding atoms. " We consider cases where the laser
is tuned to near resonance, i.e. , &, -4„and write
this as b,, = 4, + &', ~, = ~, where 6'«4, . Also,
let us define a, =A„a, =A, '.xp It(6, + &')t], and a,
=A,e"'. Equations (10)-(12) reduce to

da,
A

' =ijL(. Ee ' 1'a

da '=i p, ~Ee'~&'a +ive' 2'a
0

da~+(r+is)a =iv*e ' 2'a
dt 2 1P

where

(10)

(12)

Note that we labeled the matrix elements v by v,
and v, in order to allow for the possibi. lity of over-
lap in the interaction, as we will explain in more'
detail below. Equations (4)-(7), which describe
the two-photon ionization process assisted by col-
lisional transfer, are reduced to two-state problems
with frequency shifts caused by both the electric
field and by the collisional coupling. The inter-
mediate nonresonant state

~

2a) ~0b) causes a shift
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in the ground state jla) j0b). The continuum state
causes a complex shift p, + m in the eollisionally
populated state j0a) jib). The real part y, is an
intensity-induced decay due to photoionization, and
the imaginary part s is an intensity-induced fre-
quency shift due to the virtual transitions with the
continuum states. The two-state system is cou-
pled by an effective interaction potential which, is
the product of the laser field and the collision in-
teraction potential, and sealed down by the fre-
quency gap ~. With a phase transformation

2

A, = exp ", E'dt A„~+ 6~

(22)
I

A, =exp ". E'dt A, ,a+ 5I

Eqs. (20) and (21) become

v = ———e-+y+o
e' R

2 Sa, a,
(27)

where e is the electronic charge, a, is the Bohr
radius, and R is the internuclear separation. For
a single electron charge-exchange collision be-
tween different partners, Qlson et al.2 showed
that the interaction potential can be approximated
by a similar formula with an effective internuclear
separation R, and strength

G ~R
—0.86Ro

v, =-—~exp
ao a, (28)

(29)

The above form is expected to hold when the col-
liding particles are sufficiently far a,part and when
the wave functions are nearly hydrogenic. The
strength G depends on the ionization potential of the
respective atoms:

—A, =iaA„

—A, + (i 5+ 1")A, =in "A„
dt

where
2 g2 2

tttti= (tt't st a+51 ~+5~ '

P,~EV2
a+ 5I '

(23)

(24)

(25)

(26)

where I„=e'/2ao is the ionization potential of 'hy-

drogen and I, and I, a,re the ionization Potentials of
the colliding atoms.

When the charge transfer takes place in an in-
tense field, the form of the intera, ction Hamilton-
ian can be derived as discussed above, using atom-
ic basis. The result is the product p, „Ev,/(&+ &');
therefore, this product, when v, is substituted,
becomes

Note that when the process occurs at long range,
where there is no overlap, vj v2 This irises in
atom-atom collisions. However, when overlap is
an integral part of the interaction, as is the case
in charge-exchange collisions between an ion and
an atom, v, wv2. Below we discuss both cases.
The classical Hamiltonian for the interaction of a,

singly charged ion and a neutral atom is given by
H'=e'x/H', where r is the local coordinate of the
electron and R is the internuclear separation. To
calculate the energy shift, one uses an atomic
basis set which for a. two-level atom and to sec-
ond order gives an interaction shift v', = —c,/H'.
The classical interaction Hamiltonian between two
neutral atoms when dipole-dipole or Van der Waals
interaction is dominant is e' , x/Hx', where x, and
x2 are the local coordinates of the electrons of
each atom and R is the internuclear separation.
To second order, this Hamiltonian yields a shift

c,/H', if the two atoms are different, as
here, where c, is the Van der Waals interaction
constant.

Let us consider the form of the interaction coup-
ling v, . For the case of the interaction of a, hydro-
gen atom and a proton, the interaction potential
can be explicitly evaluated. The long-range inter-
action takes the form

p~E G ~R
—0.86RO

(30)

i —g(x, R) = (H„+H, „)g(x,R),
t

(31)

H„= T„+V, (x, R), (32)

where x and Rstand for electronic and nuclear co-
ordinates, respectively; T, is the electronic kin-
etic energy operator; v, (x, R) is the electrostatic
interaction among elections and nuclei; and H, „is

where R, is the internuclear sepa, ration where ab-
sorption takes place.

Equations (20) and (21) with v, cv, describe many
physical problems ~ 'These include dipole-dipole,
dipole- quadrupole, quadrupole- quadrupole, charge
transfer, S-S transition, and spin change. In the
cise where overlap is important (as, for example,
charge exchange), one can use the quasimolecular
absorption viewpoint, as discussed above. For
completeness, we describe briefly the two-photo-
ionization process induced by the charge- transf er
analog of radiative collision, using the quasimo-
lecular picture.

Let us consider the time-dependent, electronic-
field Schrodinger equation:
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the classical interaction potential between the mo-
lecular system and the laser field.

Since the effective interaction potential H, „ is
derived, one can proceed to treat the two-photon
process from the quasimolecular viewpoint. We
represent the system by two field-free adiabatic
discrete electronic states (t),.(x, R) and a continuum

We a,ssume ((t),.
l Q,.) = 6, , , where i,j =1, 2, or

c. We will not adttempt to include the magnetic sub-
levels in this study in order to simplify the deriva-
tion. Calculations of line broadening where aniso-
tropy of the system was included indicated that the
two-level calculation is only 50/p off from the com-
plete calculation. " '4 Therefore,

P(x, R)=a, (t)P, (x, R) exp (-—
t

g
(Rt)edt +a, (t)p, (tt, R)exp —— te, (R)dt)

t t

2+ a, (te., t)P.(x, R)exp(- — (Rte)dt) da„ (33)

where (t),. are the field-free adiabatic discrete el-
ectronic states, m,. are the corresponding field-
free adiabatic potential energy surfaces, (t), are
continuum states with corresponding zv, energies,
t, is some initial time, and a,. and a, are time-de-
pendent amplitudes. Explicit forms for a„a„and
a, are found by solving the equation of motion (26)
given the initial conditions a, (—~) =1 and a, (—~)
=a,(-~) =0.

In the case where the system is electronically
adiabatic. in the absence of the field, we drop terms
containing the nonadiabatic coupling ((t), l(t), ),

) &y. ly.) and(y. ly.) andin the rotating
wave approximation Eqs. (31)-(33) reduce to the
following set of equations:

da
1 2&

+ I'(t)a, = L,a„

where

1 (f)=y, +y„

Ll in exp

L, =in*exp i

e (t ') dt '),

it (t ') dt ) ,

I'(f) =y, +is +y„

(40)

(41)

(42)

(43)

(44)

dg~—'=inexp —i
dk

Il(t')dt') a (34)
2

s = —E'P ~dg) c
C

t
e(t ') dt )a, '+ pop2 = i Q* exp i

t~

t
+iE p, ~exp —i 6, t' dt' a, d~~„

t'=ta e pat' xil, (t')dt')a, ,Cg t 1

where

(35)

(36)

6(f) = (1/h)(m, —zv, —h(d),

6,(f) = (1/h)(zo, —a), —h+),

(37}

(38)

E GR*=(lla l2& (A+6t) h a,
(39)

Note that we used'the matrix-elements p, „and p~
which we used in the atomic viewpoint.

We eliminate the continuum states using the pro-
cedure described above in the atom-atom collision
case. Equations (34)-(36) reduce to

(46)

and P stands for principal VBlue.
Note that with a phase transformation of the am-

plitude a, =di, exp(if 6dt), Eqs. (40) and (41) be-
come identical in form to Eqs. (23} and (24} de-
rived using the atomic viewpoint. The two sets
become identical if 6+s in Eqs. (40) and (41) is the
same as 6 in Eq. (25). This implies that the dif-
ference frequency with all the interactions taken
into account is

s + i),'„E'/(~+ 6') —v'/(&+ 6') .

This includes Stark shif ts due to nonresonant con-
tinuum and discrete states.

The above system of two coupled equations with
time-varying amplitudes arises in many physical
situations such as collision phenomena, laser in-
teractions with isolated systems, and collisions
in the presence of laser fields.

We now proceed to solve Eqs. (40) and (41) for
a„ from which expressions for the photoioniza-
tion can be calculated. Since changes in the am-
plitudes can only occur at the resonance condition
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&(f,) = 0, we consider times near f, and define the
quantity A, :

a,ssumed; therefore, one can easily show that the
a,symptotic probability

A, =exp~
' I"(f)

dt ~a, ~' =(1 —e "~)e r', (57)

x exp —— —lnL dt a2 2& (47)

where v=t —t, and to is the time where resonance
occurs, 5(t,) =0. Substituting Eq. (47) in Eqs. (40)
and (41), we obtain

—2+ 7 A2= 0, (48)

where

d
f(t) = —L L ——

~

1 + —lnL
dt

1 d- 1d'
2 dt 2dt2 (49)

where we have defined ~= ~+s. Close to t =t, or
7=0, one can expand 6(v') as 7.d6(0)/d7 a,nd write

g', z d jrf(t) =g, +—ig, +—' ~-——lnn ——
4 gd7 g,

(51)

g = n'+ ——r+ —,
' —inn,

2 d7. 'd7' (52)

d 6(0)

Substituting Eqs. (51)-(53) in Eq. (48), and with
the definitions of z and n,

zr
g~ dT g~

(54)

n =—=g+sP,Zg() (55)

where q and p are real, Eq. (48) reduces to the
following equation:

d 1 8—+n+ ———A = O.
dz 2 4 (56)

Equation (56) reduces to Weber equation if n is
time independent. For constant pulse amplitude
and slowly moving particles, this condition can be

We proceed to solve Eq, (48) by the Landau-Zen-
er method near the resonance time t, . We first
write f(7) explicitly in terms of the field intensity,
detuning, and decay:

1 . d .. ' 1~r
f(t) = o.'+ — 6-i —1no. —iI +——

d7. 2 d7

1 d' .d6
+—

~ inn+id

where

Q

d6(0)/dv (58)

III. IONIZATION YIELD

Equation (57) describes the absorption at one
crossing point where the system is initially in the
ground state. In a single collision, there are two
times where the system comes into resonance with
the photon field: when the two atoms, separated
by a distance R, are approaching to, and departing
from each other. Since, during collision, not much
decay or ionization takes place unless those rates
are of order 10" sec ', one can show that after
two symmetric resonance times ~a,

' is
/

~a, ~' =2(l —e "~)e "~ (59)

where we have taken the probabilities induced at
the first crossing as initial conditions at the sec-
ond crossing.

We discuss now som'e limiting cases of Eq. (59).
The above calculated probability is valid for both
the weak- and strong-field cases. For strong
fields where 2mp» I, ~a, ~' goes to zero. Note that
after one crossing [Eq. (57) ]

~

a, ~' reduces to 1
for strong fields, which indicates that the first
crossing induces complete inversion, while the
second crossing induces complete stimulated

Note that the absorption probability 1 —e "~ de
pends exponentially on the function p. Since p
= n'(d6(0)/dr), the absorption depends on the square
of the coupling e and on the time rate of change of
the detuning from the isolated atom level evaluated
at the point of crossing. In radiative-type colli-
sions, as the processes we arq discussing, the
coupling n of the reduced two-level system depends
on the product of the collisional and electromag-
netic field couplings. This results in the depend-
ence of p on the parameters of the collisional in-
teraction through n' and d6/dr This .is in contrast
to optical-type. collisions where the electromagne-
tic field is tuned near the resonance in one atom.
In these collisions, the only dependence on the
collisional parameters enter through 6.

The absorption probability decays exponentially
due to spontaneous decay rate y, and the induced
ionization rate y„which depends on the intensity of
the field and on the oscillator strength of the trans-
ition between the excited state and the continuum
sta, te.
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/a., /' =4vrp. (60)

Far away in the wing —e.g. , when the atoms get
closer to each other, resulting in more distortion
of the resonance lines —we expect the slope of (5 to
be large. Therefore, in this regime the condition
2' «1 holds; a,nd the population of the excited
state .is linear. in the field intensity. This picture
is consistent, with the fact that the inverse Of the
slope of the potential-curve difference is a mea-
sure of the time the system stays in resonance.

We consider now the ionization yield. We first
consider the case where the ionization rate is of
the, order 10", there, appreciable ionization is
achieved before other collisions take place and
before the second crossing. This condition re-
quires power densities of the order 10" ~,V!cm'
for a photoionization cross section of the order
10 "cm2. Such high power will induce power
broadening of the order of 5 && ].0" sec ' which will
tend to xvash out the crossing. However, very fa,r
away on the wing, i.e. , when the atoms get very
close to. each other, the potential curves become
very steep and a slight change in R will induce a
detuning effect larger than the power broadening.
Therefore, on the extreme far wing and for nearly
comply. te ionization and inversion during the

collis-

ionn, one needs to consider only one crossing as
given in Eq. (57).

We next calculate the ionization yield. Since the
continuum states were eliminated from the coupled
equations by introducing a shift and a, decay to the
excited state, one can use this scheme to calculate
the total ionization probability. From Eq. (41) and
from the result that the decay of the excited state
into the continuum i:s given by y, [Eq. (46) I, one
writes the total probability of ionization x. ap

, y, /a, /'df. (61)

Using the a,symptotic expressions calculated for
~a, ~', one finds that

y (1 e &wP)

1 —exp[—(y +y )T]
Yp+y p 1 (62)

where T is the pulse'width. Saturation of the ion-
ization can be achieved if y, » yo and (yo+ y, )T» 1.
In this case r reduces to

2' p (68)

When 27tp» 1, y, » y„and y, T» 1, both states are

emission which leaves a, unpopulated. Since in
the limit of very weak field ~a, ~' goes to zero,
there exists an intermediate field where ~a, ~'

rea, ches a maximum. However, when 2' «1, then

~a, ~' becomes linear in the field intensity:

47I' a' dR'
0

3 p d6' (65)

where up is n evaluated at the crossing, hand t/ is the
relative speed.

The velocity average can now be carried out.
The result is a thermal rate constant k:

k =N(8KT/wkf)'~'F, (66)

where

Np

x'e ~(x(x) dx,

k is the rate of absorption, M is the reduced mass
of the system, T is'the temperature, K iS Boltz-
mann's constant, x= (18/2KT)'~'V, and iV is the
foreign-gas density. This results in

d~o
3 d6' (68)

When the collision between atoms is considered,
v, = v, = c,'~'/8' and n', = lt'„E'v'/(n + 6', )'. There-
fore, 4 becomes

4' ~(2 p, gE 1
k

8
(kc6 ) (~ 5P)2 (69)

which predicts that the absorption rp, te on the far
wing goes like ~ ' '. This drop-off is much slower

saturated and the ionization probability becomes 1.
If the absorption is weak while the ionization is

nearly saturated, one has to consider both cross-
ings; and the ionization yield will be twice the
yield in Eq. (68) in the limit of 2' «1.

Let us consider a situation where the ionization
rate is much smaller than the reciprocal of the
time of resonance. This case typically a,rises with
power densities of the order 10' W/cm' and ion-
j~ation rates of the order 10iP &ec- i After the
absorption in a single collision takes place, the
system evolves according to the slower processes
between collisions. For a typical coupling and a

0
distance of 10 A, the frequency detunings can reach
10" sec ' which results in complete dephasing of
the intera. ction. Therefore, the rate equation treat-
ment is adequate for the processes between colli-
sions. In the rate equation treatment, one calculates
an absorption cross section first by integrating over
the impact parameters. Fa,r on the wing where
2' «1, ~a, ~' reduces to 4vp, as given in Eq. (60);
therefore, the cross section o is

Rp
0 = 47t 2pb db p, (64)

0

where Rp is the internuclear separation where
absorption takes place.

Substituting for p in Eq. (64) from (58) and carry-
ing out the integration, we get
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than that of optical collisions where the excitation
frequency is tuned close to a transition in one of
the atoms. " In such line-broadening cases the
far-wing absorption rate goes like 6 '~'.

In the case of charge exchange, the wavelength
dependence is much more complicated due to the
overlap interaction energies. Substituting for n',
from Eq. (38) and for 56 the quantity c,/R,', we
get for k:

p.'E' G' c
u =+~'

(n. +6')' n' b 69"

(7o)

Note that for large 6' ' the exponential becomes
negligible and the rate of absorption becomes pro-
portional to F2'5. The reason for this fast decay,
as compared to (69), is that the distortion in the
energy levels is less steep than that in atom-atom
collision and the interaction energies at the cross-
ing go like 1/R' for small R compared to 1/R' in

the atom-atom collision. -

Note that 0 can be written as Io, where I is the
fluence of the light source and 0 is an average
cross section. Note also that the temperature de-
pendence of the rate is absent. This result agrees
with results that are derived from statistical the-
ories. In these theories, the statistical distribu-
tion of frequencies is defined by regarding the in-
tensity at frequency v as proportional to the time
interval during which v is irradiated. This time
interval in turn is proportional to the relative
volume of configuration space in which the fre-
quency perturbation is v. Since our results [Eqs.
(69) and (70) j were derived on the assumption that

2' «1 in Eq. (60), we predict the statistical ar-
guments will fail as the intensity of light increases.
This can be reached at frequencies close to the
line center. However, one has to be careful since
our calculation requires sharp crossing, as was
discussed after Eq. (60). This, in turn, requires
somewhat steep potential curves. Therefore,
higher powers of 2' will be important; therefore,
higher powers of the configuration space become
important, resulting in temperature-dependent
rate constants.

The assumption of straight-line trajectories in
the case of interaction between an ion and a neu-
tral is not valid at slow velocities. The attractive

'force resulting from the polarization of the neu-
tral by the incident ion leads to curved or spiral-
ing orbits. In the classical model, all particles
incident at an impact parameter less than a cer-
tain value will, in fact, get trapped and spiral in-
ward to the origin. Although some particles might

where L is the angular momentum of the system
and R and M are the internuclear separation and
the reduced mass, respectively. Due to conser-
vation of energy and angular momentum, the total
energy and angular momentum can be written in
terms of the initial velocity V, and impact para-
meter p0 as I.' zM/0 and L MVOp0 The classical
capture radius p, is defined as that at which E is
equal to the maximum of the effective potential
V, :

= M VO2~~0 ~4
2a' Z4

. This results in

p, = (4c,/E )'i4

For p greater than p„ the maximum impact para-
meter p' such that a curve crossing at R =RO can
be reached can be calculated from Eq. (71) by
putting dR, /df =0. This results in

p = R,(1+p4/4R4)' ~' (74)

Also, from Eq. (71) one can find the minimum
curve crossing A, which may be reached for a' min
given impact parameter:

=f.-'b'-(p' p')"'D'"
Dmin C (76)

The velocity at the curve crossing can also be de-
rived from Eq. (71):

p2 p4 1/2

0 0 ' p2'
0 0

(76)

Due to the orbiting phenomena which result in the
above equations (73)-(76), the absorption cross
section

P max

@=47; e '"&(1 —e &)b d2b

0
(77)

gets modified. Note that the above equations imply
that for a crossing radius AO in the range 0&SO
~ pgM2, p is equal to p, ; while for the range
p, /~2 & R & ~, p is given by Eq. (74) .

Using the above equations and with x and the di-
mensionless quantities X and q defined below, one
can show that Eq. (77) becomes

approach at an impact parameter greater than that
of the curve crossing, ,they may still make it to
the crossing, but with a velocity that differs from
that of the initial approach. :Due to this orbiting
effect, we consider a modification to the Landau-
Zener result [Eq. (70)].

The total energy of the reduced system E is

dg 2 L2 C

p4'
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o = 4vR', (1+pg4B,') e ""(1—e "")x 'dx,

x = for p,/v 2 == R, (~,

where

(1+p'„/4R,')'/'x =
( 2/2 2) 1

fol'0 R2 p/M2,
Pc 0

(78)

(79)

(80)

This- absorption rate falls more slowly with & than
that of the case of straight trajectory.

With the absorption rates derived, one can write
the rate equations describing the two-photon ion-
ization. " Let n» n» and n, be the populations of
the ground state, excited state, and the number of
atoms ionized, respectively, and N0 be the initial
population of the ground state. Then one writes

A. = p,/4R,

2K Q~

(dR/d6)V, (1+~)"' '

x = (1+/l)'/ (1 + X —p /R') ' 2

(81)

(83)

dn 0 = —cr In0+0 I—'n, +y0n
g0

0 1 g. 0 g 1 i 1&+y n =0 In —cr I—n —a, In
0

dn
dt' = aiIn„

(90)

(91)

(92)

27rp = nx

Let us consider the ea,se of weak fields such that

2' «1 or q is very small, and the capture radius

p, is much larger than the crossing radius g, .
Then Eq, (78) gives

where 0, and cr,. are the absorption and ionization
cross sections, respectively; I is the photon flu-
ence', g0 and g, are the g factors of the ground and
excited states, respectively', and y, is a spontan-
eous decay of the excited state. Or one may write

2' BR
0 =4mp', (85) CP g1 d g—+ 0 I+0 I —'+cJ, I+y —+cr I y +0 I —'+Ofaa+ i odt a. o

2c4 BB0 1
(86)

Result (85) shows that the effect of'orbiting is to
replace the crossing distance R0 by the classical
capture radius p, . Note that p, depends on the en-
ergy of the system a.s given in Eq. (73); therefore,
the velocity dependence of- the cross section be-
comes 1/v2 rather than 1/v as in the case of no
orbiting. Substituting Eq. ('l3) in Eq. (85), we get

—a', I'~ o, Iy, n, =—0. (93)
8'0

Note that cr,.I is not equal to the isolated-pair ion-
ization rate y, [Eq. (46) ] because here ionization
takes place during collisions. During collision,
quantum substates are mixed. The cross section
0,. includes the degeneracy of the excited state. .
Equation (93) can 'easily be shown to have the fol-
lowing solution:

Note that the product p (BR,/Bt) is a velocity-inde-
pendent quantity. The thermal energy of the cross
section yields an absorption rate k as given in Eqs.
(66) and (67). The result is where

(e /1 t e:2t )-
N0O, I
f2 fl'' (94)

(87)

32N 3/2 4 ~2 0 (88)

The absorption-rate k dependence on the detuning
&=c,/hR' can now be written easily. Using Eqs.
(39), (58), (66), and (87), we get

f =~-&, f.—~+/3,

and

n =. (T,I 1+~ +O,.I+y0
0

P =- —y, + v I '+ o, I oI—-1 gg

- 1/2

(95)

(96)

Comparing Eq. (88) with Eq. (68) shows the reduced
sensitivity to the crossing radius when orbiting
effects are taken into consideration. Substituting
cJR' for h 6 reduces Eq. (88) to

+v'I'~+cr Iya + a 0

Therefore, the ioriization yield can be derived
from Eq. (92):

(97)

c' '/' p2 E' G' 13/2 4 A

hffZ1 (~ QI)2 h2 Q3/2

1.72 c, '/4
XeXP — „1/4Qo"

(89)

N, = cr,.I n1 dt, (98)
0

where r is the pulse length. Substituting Eq. (94)
in Eq. (98), we get'



MU1YIR H, N AYI F H AND M. (&. PAYNE

N„O, I 1 —e ~l' 1 —e ~2'
N = —"—'-o. I'f. fi -' A

(99) in(N, /N, ) = ——', in' —c„& '/'+ c, , (105)

age a —0 8 i
e

Q

which reduces when 0,. » 0, and 0, I7»1 to

(100)

N =N 1 e'al'
e- 0 (101)

Expressions (99) and (101) describe the ionization
yield of the gas mixture for arbitrary degree of
saturation of the ionization and for complete ion-
ization, respectively. The latter expression is the
absorption of the system since saturation of the
ionization is achieved. On the far wing and when
a.,IT«1, the absorption yield is

Let us again consider the case where the ioniza-
tion is saturated while the laser is tuned on the far
wing. This ca,se is of interest because the ioniza-
tion line shape reduces to the absorption line
shape; therefore, the analysis becomes simpler.
When y, «o,.I» v, I, one can show that f, reduces
to v, l and f, reduces to o, I Th. us.

which indicates that ln(N, /N, ) vs in' is not a
straight line. The inclusion of orbiting in the anal-
ysis results in fEqs. (89) and (102)]

N j. /2 2L p g2

N„KKT (&+ d')' 5'

72x exp ~' "a, (106)

which falls off as &
'/' for la,rge 6.

In the wing, and although the absorption cross.
section falls off rapidly with detuning, ogr [Eq.
(101) ] can still be of the order of unity even for
moderate electromagnetic fields. This can be
achieved by increa, sing the buffer-gas pressure.
With one atmosphere of buffer gas and with power
densities of the order of MW/cm', nonlinear ab-
sorption takes place even as far out as 70. A de-
tunings. Saturation of the absorption with such

0
power densities can be easily achieved at 10-15 A

detuning.

N, /No = c,I7 . (102) lV. CONCLUSrON

Equation (102) shows linear dependence on buffer-
gas pressure and on the light intensity. The de-
pendence on the detuning enters in 0, . Substituting
the velocity-averaged cross section in the case of
atom-atom scattering for (T„we get

2 2. 2
8 ~

( )1/2 i A g 1/2
N, 3 ' (~+ 6I)'

At a particular intensity, lnN, /N, vs in' is a
straight line with slope --,'- and intercept that de-
pends on c, and the other parameters; therefore,
an accurate measurement of the slope and inter-
cept determines the interaction force. Similarly,
substituting the velocity-averaged cross section
for the case of charge-transfer collision for 0, in
the ca,se of straight-line trajectory, we get

2~2 G2 5/4
g& /4

N, (~+&')'ff'a, m

We have derived expressions for two-photon ion-
ization of atoms induced by radiative-type collisions
or its charge-exchange analog. Both regimes
where appreciable ionization takes place during
single collisions and between collisions are treated.
The dependence of the ionization yield on the inter-
atomic forces at long range is derived, thus
making these results of importance to experiment-
al studies. This process promises an extremely
sensitive method for studying radiative collisions,
especially when absorption or fluorescence be-
comes extremely weak. 'This is made possible
because of the ability with present la,sers to ion-
ize every absorption event.

Although absorption tends to decrease a,s the
field intensity rises due to stimula, ted emission at
the second crossing, the two-photon ionization
yield can be nearly saturated at the first crossing,
thus enhancing the absorption.

x exp (104)
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