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Collisionally induced transitions between two electronic states during atom-atom collisions are described in
the near-adiabatic formalism. The two-level system, in the semiclassical impact-parameter method, is
represented by time-dependent coupled differential equations which have been studied by many workers. We
present a method of solving the system of equations under the approximation of slow variation of the matrix
elements responsible for the transition. A general formula for the transition probability is obtained with
special reference to the problem of charge transfer, though the result is applicable to other two-level systems.
The formula reduces under various special conditions to other well-known expressions, such as those found
by Vainshtein and co-workers, the Landau-Zener formula, and that for resonance charge transfer.

I. INTRODUCTION II. BASIC EQUATIONS

In a previous paper' (referred to as I), we re-
ported the results of calculations of cross sec-
tions for electron transfer between ground- and
excited-state alkali-metal atoms and halogen
atoms. The computations utilized a near-adiabatic
approximation in which the nuclear motion was
assumed to be classical and rectilinear. These
studies were motivated by'a more general in-
terest in two-level systems where transitions are
induced by time-dependent perturbations. Such
systems occur in studies in radiation research,
controlled-thermonuclear -fusion plasmas, and
laser-matter interactions. Because of their im-
portance and the need for estimates of cross sec-
tions, we have extended our earlier work, pre-
senting here a more general formula for the tran-
sition probability appropriate to single-electron
two-center systems, in particular. Early investi-
gations of the two-level systems were carried out
by Landau, ' Zener, ' and Stueckelberg. They ob-
tained an estimate of the two-state transition prob-
ability for two potential-energy curves having a
crossing or near crossing. Estimates of charge
transfer probability have been considered by
Gurnee and Magee, ' Rapp and Francis, ' and
others. ' " Recently, Payne and Nayfeh" have
studied the problem of energy transfer in a two-
state model between slowly moving atoms and
have obtained a formula for the transition prob-
ability. We derive here, for a two-level system,
a more general formula for the transition prob-.
ability, which under special conditions reduces
to earlier known formulas. The new formalism is
less restrictive and clarifies some assumptions
made in the earlier studies.

The basic coupled differential equations. describ-
ing the electron in the quantum-mechanical two-
level system can be written in the following
form'""'"

i —= V, a+ V. e '"o'bii if

db
z —= V. e'"Ota+ V.O.

dt jj (2)

Here a and b represent the amplitudes of the in-
itial and final states of the electron undergoing
the transition, and &, is the energy difference be-
tween the states. The subscripts i and j on the
matrix elements V denote the initial and final
states. In the case of inelastic atom-atom collis-
ions, which concerns us here, Eqs. (1) and (2) can
describe excitation of one of the atoms, excita-
tion transfer and charge transfer. These pro-
cesses are represented symbolically by writing

A+ B A+ B, A+ B B+A, A+ B A'+ B

where A and B are the interacting atoms and the
asterisk denotes an excited state.

Recently, Payne and Nayfeh" have solved the
above system of equations in the case of energy
transfer between slowly moving atoms which have
nearly resonant energy levels. They point out that
their result is also applicable for calculating
the probability of leaving an excited atoner. behind
after the passage of a nea. rly resonant laser pulse
through a low-density gas or vapor. Their method
is designed to take advantage of the slowness of the
interaction, and the final result reduces to the one
obtained by Vainshtein et al."and others. "
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In the present treatment we solve the above sys-
tem of equations with special reference to the
charge transfer problem. We find S more general
formula than was obtained in I or by Payne and
Nayfeh. In the case of excitation, Eqs. (1) and
(2) are Hermitian (V,

&
= Vd'&). However, for

charge transfer and excitation transfer, ' where the
electron is bound to different atoms before and
after the collision, the set is generally not Herm-
itian (V~, .pt V,&). This difficulty, which arises
due to nonorthogonality of the iriitial and final
states of the electron, can be overcome by suit-
able transformation. " One finally ends up with a
similar Hermitian set of equations, though the
forms of the coupling matrix elements are not as
simple. '

a=A(t) exp (-t re dt'),
a 00

t
tr=Bft) exp (

—r (re —re ) d!)
m co

(3)

(4)

III. METHOD OF SOLUTION

Equations (1) and (2) are to be solved for the
transition probability

~
b(+ ~)

~

' in the impact-
parameter method under the initial conditions
a(-~) =1 and ft(-~) =0. We start with a trial solu-
tion of the form

with

Ve being Hermitian. By Eqs. (7) and (8) the two
values of A and B are related through ~, and the
coupling matrix elements are given by

and

B,= [(~, v„)/v„. ]A,

B,= [(~. —V«)/V, ]A, .

(12)

(13)

g =A, exp -z
m tpO

t
~, dt' +A, exp -i ~ dt'

aCO

(14)

b=B, exp -i (d, —(d, dt'

+B,exp -z l ~ —~, dt' (15)

Applying the boundary conditions a(-~) = 1 and
5(-~) = 0 in Eqs. (14) and (15) and using Eqs. (12)
and (13), we have

and

Ax+A, =1 (16)

The most general solution for a and b is a linear
combination of the two solutions corresponding to

where the lower limit in the integration is the time
(f = -~) when the interaction starts and where A,
8, and are all real quantities. Substitution into
(1) and (2) gives

i A = (V, , —~)A+Bv,.), (5)

i B= [V —((u —~0) ]B+A V; . (6)

Comparison of the real and imagina. ry parts in (5)
and (6) implies tha, t

iA=iB=0

(which shows that A and B are constant in this ap-
proximation),

—V" z —V. .
1 V 2

ij $1

Solving (16) and (17), we obtain

A, = ((u —V„.)/((o —(u, )

A, =(v, , —&.)/(~ —~.').
From Eqs. (12), (13), (18), and (19) we obtain

, —V), co —V„
—9)+

and

(17)

(18)

(19)

(2o)

and

( V~; —(u)A+ BV)~ ——0 (7) V;) —(u,82=
V&; co

(21)

[ V,.) —((g —(a)0)]B+A V, , = 0. (8) Substituting the values of A, and A, in Eq. (14) and
using Eq. (9), we find that

Solution of the homogeneous equations (7) and (8)
gives aexp z V;, dt' = — — +& exp i ddt'

and

n=VJ, —V;, +~o

1
~~ = V]]+2 a a5,

where

(9)

(10)

+ 6 ——exp -i

&& exp -i —dt' (22)

& (~2 4V2)1/2 We next carry out a unitary transformation by
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introducing
r t

a=a' exp -i V&,. dt'
+ «oo

b=b' exp -i
~

Vz& dt'
& «oo

(23)

(24)

.OO

ib '(~) = V(t) [cosx(t)+ ip(t) sinx(t) ]
«OO

&& exp[t.'y(t))dt.

-Her e

t t

x(t) =
I

6dt'=
2

(n'+ 4V')'/'dt',
«OO «OO

(28)

. da'
i = V,-&b'exp

dt
Q dt (25)

(Q I
i = V, , a'exp i

& Oe

Q dt (26)

The left-hand side of Eq. (22) is tt'. Collecting
the real and imaginary parts of the expression in
the square brackets of (22), we find that

which does not alter the main quantity of interest,
namely, lb(t) I'. This substitution helps get rid
of secular terms in Eqs. (l) and (2) in place of
which we now write

t

y(t) = — n dt',
2

p(t) = n/26= n/(n'+4V')'/' .

We have neglected the small-time variation in. the
phase Q(t) of the matrix element V,;,. (replacing '

V= V, , =
I V, , I

e 'o"') „compared with that ob-
ta. ined from the integrals in the exponents of Eqs.
(25) and (26). Since lft( )

I

= lft ( ) I
it follows

from (28) that

r t
a' = —i n sin 6 dt'+ 2& cos ~ dt'

2

. "' n~ exp -i —dt'
&«cO

(27)

«OO

V [cosx cosy —P sinx siny

+ i (cosx siny

«o

+psinx cosy) j dt . (29)
Using this expression for tt' in Eq. (26) and in-
tegrating over the entire range of interaction
time with the boundary condition lb(- ) I

= lb'(- ) I

=0, we obtain

The transition probability for a straight-line class-
ica.l trajectory with impact parameter jo is given by
T(tt)= I&( )I'.

oo

Vcos
~ t (n2+ 4V2)l/2

2

Qdt'cos
2

dt' —(, 4--,)„, s1n
t (n2+ 4 V2)1/2.

.dt' sin
o.—dt
2

(n'+4V)' ', . "' n, n+i cos dt ' sin —dt '+ —

2 y/2n2+4v"- ' '
t (n2+ 4 V2)1/2 t n 2

& sin dt' cos —dt' dt
«oo

(30)

Equations (29) and (30) give a general result for
two-state problems when transitions are induced

by a slow-time variation of matrix elements.
Various special cases of interest follow.

Vsin(x+y) dh

'2

/
OO t . ''

.
.

",
2'

Vsin (n'+4V')'/'dt' dt

IV. SPECIAL CASES

OO

Vcos(x+y) dt

-t 2

V cos ~'+ 4V' '/'dt'dt
a OQ

(V even) (31,)

(i) When p- l in Eq. (29), we obtain for a po-
tential of, definite symmetry

(V odd) . (32)

These results w'ere obtained by Vainshtein et al."
and by Vora et al."by more-complicated methods.
Figure 1 shows the behavior of P for the charge
transfer reaction" Na+0- Na'+ 0 . The wave
function of Herman and Skillman" was used for the
3s electron in Na and that of. Clementi and
McLean" for 0 . We see that P- 1 only at large
internuclear dista. nces. Thus the results of the
earlier work"" give only. the contribution to the
transition probability from large internuclear dis-
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&.00—

0.'75

0.50

0.25

which is identical to the Born-approximation. re-
sult.

(iv) For near-'symmetric or near-resonance
charge transfer,

~
V&&

—V„~ «V and u&, -0, wnich
implies o.-p-0. The integral in Eq. (29) can be
written

OO 2

T(p) =
J Vcosx dt

aOO

Vcos Vdt' dt

:.15
This can be evaluated by introducing a change of
variable

-0.25 -.

-0.50 ~-

I

INTERNUCLEAR QISTANCE (RI

'g(t)= Vdt'
m OQ

to give

T(p) = sin'7l (~) = sin' Vdt,

-0.75 which is a well-known formula for resonance
charge transfer. "'

-1.00—

FIG. 1. Variation of P as a function of internuclear
distance between the colliding atoms.

tances, a feature that was assumed in I. .

(ii) In the charge transfer problem at large inter-
nuclea, r separations R, V,, ——1/R represents a
Coulomb attraction in the ionic (final) state. If
we neglect. V, &

compared w'ith &0, then, to a good
approximation, '

\

Q = (do —1/R .
If we assume that the main contribution comes
from the point u(R) = 0, we obtain a condition
equivalent to that in the Landau-Zener formula-
tion. For this case the integral in Eg. (31) has
been evaluated by Presnyakov, '~ and the final
result resembles, in its functional form, the
Landau- Zener formula.

(iii) At high velocities, when
~

o.'~» V and

VJ,. V, , I

+~ &, , Eq. (31) can be written

2

T(p) = V(t) cuor,st dt
mao

V. CONCLUDING REMARKS

The present work is bas'ically exploratory and
is aimed at finding a more general formula for
the transition probability in a two-level system,
where transitions are induced by time-dependent
perturbations. More-accurate results could .be
obtained by taking other levels into account. How-

ever, the present two-level treatment offers an
initial approach to the solution of a class of coll-
ision problems. It has the advantage that it covers
the entire interaction region, whereas other ex-
isting results give the transition probability only in
certain regions, e.g. , at large internuclear dis-
tances or around a crossing point (Landau-Zener).
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