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Calculations are reported for low-energy e-N, scattering cross sections in the static-exchange
approximation. Our approach involves solving the Lippman-Schwinger equation for the transition operator in
a subspace of Gaussian functions. A new feature of the method is the analytical evaluation of matrix
elements of the free-particle Green’s function. Another development is the use of an analytical
transformation to obtain single-center expansion coefficients for the scattering amplitude from our
multicenter discrete-basis-set representation of the T matrix. We present results for the total elastic and
rotational excitation cross sections, and the momentum-transfer cross section, for incident electron energies
from 0.5 to 10 eV. Comparison is made with other theoretical results and experimental data.

1. INTRODUCTION

The importance of electron-molecule collision
processes in several areas of current research
interest provides a strong incentive for dévelop-
ment of accurate methods of ab initio calculation.
Discrete basis set methods are of particular in-
terest since the lack of spherical symmetry makes
the application of numerical techniques considera-
bly more difficult for molecules than for atoms.
Theoretical work in electron-molecule scattering
has been reviewed by Takayanagi® and by Golden
et al.,? and more recently by Temkin.® Systems
larger than H, for which electronic_ally‘ elastic
scattering results have been obtained include N,,
CO, and CO,.*® Discrete basis set methods have
been applied to H,, N,, and F,.°"** To date the
most sophisticated calculations have employed
numerical techniques. The most accurate calcula-
tion using discrete-basis-set methods is the R-
matrix calculation of Schneider! for H,. The ad-
vantages and limitations of the vvarious\approaches
. referenced above have yet to be thoroughly evalu-
ated.

The subject of this paper is the discrete basis
function method for nonspherical potential scat-
tering introduced by Rescigno, McCurdy, and
McKoy.!% %15 The approach involves representing
the potential by its projection onto a set of Gaussian
basis functions and solving the Lippman-Schwinger
equation for the transition operator in the discrete
function subspace. We report new features of the
method and its application to electronically elastic
e-N, scattering in the static-exchange approxima-
tion.

Solving the Lippman-Schwinger equation in a
basis set requires an efficient method for com-
puting matrix elements of the free-particle Green’s
function. In previous calculations this involved a
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numerical quadrature and was in practice re-
stricted to cases of axial symmetry."* As Ostlund
has shown, these matrix elements may be evalu-
ated analytically.’® We have extended Ostlund’s
results for s- and p-type Gaussians'®'? up to
Gaussians of f-type symmetry and now we use
these results in our computational procedure. An
important feature of our prescription for the
Green’s function is that it is directly applicable

to polyatomic systems.

In previous applications of the method, elastic
cross sections were obtained from fixed-nuclei
scattering amplitudes by numerically averaging
over target orientation.'® To calculate rotational
excitation and momentum-transfer cross sections,
it is desirable to treat the target orientation de-
pendence analytically. This is now achieved by
means of a single-center expansion for the scat-
tering amplitude. We stress that the dynamical
problem, represented by the Lippman-Schwinger
equation, is solved as before using a multicenter
basis set. The matrix elements involved in the
transformation to the single-center expansion for
the scattering amplitude are evaluated analytically.
We also point out that, since the matrix elements
used to construct the basis-set representation of
the potential are evaluated using techniques
developed for bound-state calculations,'® all the
matrix elements required in our prescription for
scattering are now treated analytically using for-
mulas completely applicable to polyatomic sys-
tems.

In this work our results do not include a varia-
tional correction for first order errors due to the
truncation of the pétential. Including the correc-
tion would require considerable additional compu-
tational effort and it is interesting to demonstrate
that useful results can be obtained using moderate-
ly sized basis sets even when the correction is
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omitted. The calculation of yariationally stable
results will be the subject of future work. In Sec.
II a simple method for reducing variational error
at very low energies is discussed.

Results are presented for the total elastic and
momentum transfer cross sections calculated in
the fixed-nuclei approximation; and also for total
rotational excitation cross sections calculated in
the adiabatic-nuclei approximation. We compare
our cross sections with the theoretical results of
Burke and Sinfailam®* and with the experimental
data of Golden'? and of Englehardt et al.?° Our re-
sults are dominated by a resonance in the *II, chan-
nel in qualitative agreement with experiment and
other calculations.

II. THEORY

In the fixed-nuclei approximation the Schriodinger
equation for the scattered electron is of the form
(in atomic units)

[-2V2+V(R,F)-3F]Y:(R,T)=0, 1)

where V(R,T) is an optical potential for the effec-
tive interaction between the target and the scat-
tered electron which depends parametrically on

the relative coordinates of the target nuclei (de-
noted by R). The vector subscript K indicates the
dependence of the wave function on direction as
well as the magnitude of the incident momentum for
anonspherical target. The scattering wave function
vanishes at the origin and has the asymptotic form

Ui (F) = Le Frfy(p)e/r] /@mP /2, @)
as -, This corresponds to the normalization
@2, ug) =6(k -k . - (3)

Rather than solve Eq. (1) directly, we work with
the Lippman-Schwinger equation for the transition
matrix

T=U+UGHT , “)

where U=2V, and G} is the free-particle Green’s
function for the out-going wave boundary condition.
The T matrix solution of Eq. (4) satisfies the
identity

(K |7ky= (K [Ulup) , (5)
where E, K’ denote plane-wave states of the form

it.r

T

o) = (6)

(

In our notation the T matrix is related to the scat-
tering matrix S according to

S=1-48(E =ET , (7)

and is related to the scattering amplitude ac-

cording to :
fi(r)=—2ﬂ2<k’lT|k> ; ®)
where 7=F’. :

In actual calculations it is convenient to work
with the K matrix defined by the relation

(K| |Ry = = 3 m(k! [U |47, 9

where 97 is the scattering wave function for the
standing-wave boundary condition. The on-shell K
matrix satisfies the relation

S=(1+iK)/(1 - iK) . ' - (10)

Defining K’ = — (2/m)K, the Lippman-Schwinger
equation for the K’ matrix is

=U+UGFK’ , (11)

where G? is the free-particle Green’s function for
the standing-wave boundary condition.

To solve Eq. (4) the potential is projected onto a
subspace of square-integrable functions {¢,}.
This forms an N X N matrix generalization of the
separable potential approximation "~

Vi(E, ?>=EB 9o TN |V[B) o X(F) . (12)

Inserting the truncated potential V¢, Eq. (4) be-
comes a matrix equation with solution

Tt =(1-UtG) Ut . (13)
o .

The momentum representation of the on-shell T
matrix is obtained by the transformation

<E'ITIE>=Z;<E'|a><alrls>'<alﬁ>. (14)

The truncated potential is constructed from a basis
set of Cartesian Gaussian functions of the form

“;xnl}n:Nlmn(x "'.Ax)t(y _Ay)m(z —A‘)"e'“' *-did ’
(15)

where N,,.is a normahzatmn factor. The basis
function centers, denoted by A in Eq. (15), are
placed at the target nuclei and at the center of
mass. Cartesian functions are widely used in
molecular bound-state calculations due to their
convenient analytical properties.!®* The matrix
solution 7* involves Gaussian matrix elements of
the free-particle Green’s function

il @) = tim [ LBELLD g)

where E =342 Similarly, the matrix solution K*
involves Gaussian matrix elements of the free-par-
ticle Green’s function

' (u(|G§(E)|H1>=Pfd3k ————f—<“"]ql§>_<l,:2|“'> , am
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where P denotes principal-value integration.

As shown by Ostlund'® these matrix elements can
be reduced analytically to an error function with
complex argument for which efficient algorithms
exist.?’ Based on Ostlund’s techniques for evalu-
ating scattering integrals involving Gaussian and
plane-wave function, we have developed a straight-
forward procedure for deriving formulas for ma-
trix elements of G} (or G¥) involving Gaussians of
arbitrary center and symmetry type. Formulas
for s- and p-type Gaussians have also been ob-
tained by Ostlund.!” A description of our analytical
procedure and results for Gaussians of up to f-type
symmetry will be published elsewhere.?® Formulas
for s- and p-type Gaussian matrix elements of G,
are given in Appendix A.

In order to treat the target orxentatlon dependence
of the scattering analytically, we use a single-
center expansion of the scattering amplitude. For
simplicity consider the case of a linear molecule.
In the body-fixed frame with z axis along the inter-
- nuclear axis, the wave function and scattermg
amphtude have the expansmns

B E)= goprr 2 eV PY5(B), (18)

fi(#)=4n Z F1im(R)Y 1 (P) Y, (R) . (19)

The radial wave functions have the asymptotic
form
g”'m(k,‘,) - (2i/k’}’)(5”,e' ier -ir/2) _ S”'mei(kr- l1r/2)) ,

(20)

as -, The single-center expansion coefficients
for the S matrix and the scattering amplitude are
related according to

Frirm= GV /260)(S m = B110) - (@1)

The single-center expansion of the on-shell T
matrix is of the form

> I (RY (R YE (R) . (22)

1n'm

- - 1
(K[Tk) =+

Equating the right-hand sides of Egs. (14) and (22),
and using the spherical expansion of a plane wave

e*i'*=4n[: G (BN Y, (P YE(R) (23)
we obtaln the single-center expansion for T¢:
Thin= 7 Z;: GiYinla) @[ TIBYBljnYim) - (24)
Comparing Egs. (7), (21), and (24) shows

Srom=—1"" ,Z: <jthml(Y) (a IT|ﬁ><B|jl'Yl'm>
’ (25)

R, B =4 Y

Noting that the single-center expansion of the K’
matrix has the same form as Eq. (22), and re-
calling that K’ = - 2K/, we have

K= ""kz; (G e¥ i | o) (a IK' |B> (B ]jz' Yin). (26)

The transformations (24)-(26) involve the matrix
element <u;"qs (7) 7,(-%) Y,;.(?)). As pointed out by
Schneider,* these matrix elements may be evalu-
ated analytically. The technique for evaluating the.
single-center transformation matrix elements and
formulas for s- and p-type Gaussians are given in
Appendix B. .

It is convenient to express the scattering ampli-
tude in the laboratory frame with z’ axis in the
direction of incident momentum. Using the rota-
tional properties of spherical harmonics and in-
troducing the rotational harmonics defined in
Edmonds,?* we find that the scattering amplitude
in the laboratory frame is given by

’
(214—;1) Sivm(k, R)

1 mm*

- xDW (BDS*B)Y,, () , (27)

where R denotes the internuclear separation (for

a diatomic) and B denotes the target orientation in
the laboratory frame (in-general a function of three
Euler angles); 7’ denotes the scattering angles in
the laboratory frame. Temkin et al. express the
laboratory frame scattering amplitude in the
form?®

F®,B,7)= Y. ay..(k, RDD, E)DSE)Y,, ) .
11 mm*
(28)
Comparing Egs. (25), (27), and (28) yields the fol-
lowing prescription for the fixed-nuclei dynamical
coefficients:

Aypomll, R)= = [4m (20 + 1)]2/2 V-0

xz;ummlaxa|T|B><Bljz.Y,,m> :

(29)

To calculate rotational excitation cross sections
we use the adiabatic nuclei approximation

;T ~T)=(0n R, B)|f,R,B,7)|0.R,F)) ,
(30)

where O, O, are wave functions for the target
nuclei. This approximation, due to Chase?® and
applied to electron-molecule scattering by Chang
and Temkin,?” is valid when the speed of the pro-
jectile is fast compared to the motion of the target
nuclei.
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The static-exchange approximation for the scat-
tering potential is obtained by representing the
electronic part of the scattering wave function by
an antisymmetrized product state

v ={1/[ @+ 1] Al8(L, 2, ... NWT N+ )],
(31)

where & is the Hartree-Fock wave function for the
targetand ¢; isthe wave function for the projectile.
Substitution of the wave function (31) into Schro-
dinger’s equation leads to the nonlocal static-ex-
change potential for a closed-shell target:

1 .
V= Z - &7 +; @J;-K)), (32)

where J and K are the usual Coulomb and ex-
change operators. The first term on the right-
hand side of Eq. (32) is summed over target nuclei,
the second is summed over occupied orbitals.

At very low scattering energies variational error
due to the difference V -~ V* may be reduced by
solving Eq. (4) at eigenenergies of the separable
Hamiltonian

H’=;|a)(a]H|B)(BI . (33)

To see this, consider the positive energy eigen-
functions x,(T) which satisfy

Htxk=%k2)(k ’ (34)

and are determined by diagonalization of H®.

We are interested in the conditions under which
the solution y, of Eq. (34) is proportional to the
scattering wave function

Py =3 +Gy T s . (35)

Clearly, this is not true in general because the
scattering wave function depends on the direction
of the incident particle, and this boundary condi-
tion is not taken into account in the diagonalization
of Ht, However, at very low energy ng and y, are
dominated by the lowest contributing partial wave
and, hence, have approximately the same behavior
at the origin. It follows that in this energy range
zp% and y, are approximately proportional,

¥ (F) = C(T) (36)

if we assume that the effect of truncating the
kinetic-energy operator in H* is small. The Kohn
prescription for the variationally stable scat-
tering amplitude is?® '

Fh =Tt —4m3(, [H-E) |0 ) . @7)

If our discrete basis set is adequate to represent
X beyond the effective range of the potential, then
approximation (36) may be used in Eq. (37). Since

X: is determined by a variationally stable pro-
cedure, the second term on the right-hand side
of Eq. (37) vanishes through first order. Hence

fi i i it OV =V, (38)

when E = L £? is an eigenenergy of H®.

III. CALCULATIONS AND RESULTS

The truncated static-exchange potential V? is cal-
culated in two steps. The first involves self-con-
sistent-field (SCF) calculation for the occupied
orbitals of the target. A standard basis set of con-
tracted Cartesian Gaussian functions is used. In
the second step matrix elements of the static-ex-
change potential, defined by Eq. (32), are computed
over a larger set of uncontracted functions, called
the scattering basis set. The scattering basis in-
cludes the primitive (uncontracted) Gaussians used
in the target SCF calculation. This insures orthog-
onality between the scattering subspace and the
target orbital subspace. This requirement may
be relaxed under certain conditions as noted below.
The scattering basis also includes functions which
account for components of the scattering subspace
which cannot be constructed from the target SCF
basis. In this calculation the target basis set is
augmented by adding diffuse functions at the center
or on the nuclei.

The ground state of N, has the electron configura-
tion ' (10,)*(10,)*(20,)%(20,)%(30,)*(17,)*. In the
SCF calculation we use a [4s3p,3p,3p,2d, ,2d, 2d,,]
contracted basis set on each nucleus plus two dif-
fuse p, functions on the center. The [4s3p] basis
is constructed from a (9s5p) set of primitives using
the contraction coefficients suggested by Dunning.?®
The choice of d-type functions, which are nec-
essary to obtain an accurate quadrupole moment,
is due to Truhlar ef al.>®* The quadrupole moment
for this basis is -1.02 a.u.

For a homonuclear diatomic the scattering poten-
tial is block diagonal in the symmetries *Z,, %,
*1,,%M,, ..., and, hence, the Lippman-Schwinger
equation may be solved separately for each case.
In this work we consider scattering in the T and
Il channels. Table I lists the scattering basis sets
for each symmetry. Target basis functions of d-
type symmetry are omitted in the scattering basis
sets since these functions have little effect at the
incident energies considered. The basis-set cal-
culations are carried out using standard bound--
state molecular integral programs.

To investigate the convergence of the scattering
basis set, we varied the basis functions for each
symmetry in preliminary calculations. Alternate
basis sets were constructed in several ways. The
use of contracted basis functions was rejected due
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s

TABLE I. Scattering basis sets. & denotes the coordinates of the center of the basis func-
tion u¢A (¥). (I,m,n) denotes the symmetry type of uf (¥).

s 2,

X=(0,0,41.03)  (0,0,£1.034)  (0,0,0) K=(0,0,+£1.034)  (0,0,+1.034) (0,0,0)
(1, m,n)=1(0,0,0) (0,0,1) (0,0,0) (L, m,n)=(0,0,0) (0,0,1) 0,0,1)
5909.44 26.786 0.128 5909.44 26.786 0.1
887.451 5.9564 0.0768 887.451 5.9564 0.06

204.749 1.7074 0.0461 204.749 1.7074 0.036

59.837 0.5314 0.0276 59.837 0.5314 0.0216

19.9981 0.1654 0.0166 19.9981 0.1654 0.0130
2.686 4 0.009 95 2.686 0.0078
7.1927 0.00597 7.1927 0.003
0.7 0.003 0.7 0.0015
0.213 0.0015 0.213

0.006
zl'lu zng
£=(0,0,£1.034) (0,0,0) K=(0,0,+1.034)
(1, m,n)=(1,0,0) 1,0,0) (1,m,n)=(1,0,0)

26.786 0.0992 26.786 0.0357
5.9564 0.0595 5.9564 0.0214
1.7074 - 0.0357 1.7074 0.0129
0.5314 0.0214 0.5314 0.007 72
0.276 0.0129 0.276 : 0.004 63
0.1654 0.007 72 0.1654 0.00278

0.004 0.0992 0.00167
0.002 0.0595 _ 0.001
0.0007 ’

to the lack of a criterion for choosing the contrac-
tion coefficients. One would not expect the contrac-
tion coefficients used in the SCF calculation to be
appropriate;, and this was verified in test calcula-
tions. Adding diffuse functions at the nuclear
centers instead of at the center of mass had little
effect except in certain cases when this led to
linear dependence problems associated with com-
puter round-off error. This occurred, for ex-
ample, when diffuse two-center s-type functions
were included in the calculation for =, symmetry.
Varying the number of diffuse functions added to
the SCF basis, or adding tight functions, also had
little effect. At the scattering energies con-
sidered in this work little effect was found for d-
type functions. These functions are probably more
important at higher energy. The basis sets listed
in Table I represent a consensus of our experience
with basis sets to date. Apart from fluctuations
associated with variational instability, and within
the constraints discussed above, our results are
insensitive to changes in the basis set. We esti-
mate the uncertainty in our cross sections due to

lack of basis set convergence at about 20%. Below -

2 eV this error may be larger.
In these calculations we work with the Lippman-
Schwinger equation for the 7 matrix, Eq. (4),

which is solved for each incident electron energy
and scattering symmetry. The dynamical coeffi-
cients a,;,,, of the fixed nuclei theory are then
obtained using Eq. (29). For the range of scat-
tering energies considered here, we find that the
coupled partial-wave expansion for the scattering
amplitude may be truncated with negligible error
after six partial waves.

In the fixed-nuclei approximation, the total elas-
tic cross section is given by*®

_ lap0, |2
o= 2 T | (39)
Our results from 0.5 to 10 eV are shown in Fig. 1,
together with the experimental data of Golden'® and
the static-exchange approximation results of
Burke and Sinfailam.* Vibrational structure pres-
sent in the data of Golden is not shown. The peak
in the cross sections is due to a shape resonance
in the ?II, channel.

Results obtained directly from 7-matrix calcula-
tions for a selected grid of incident momenta are
indicated by x’s in Fig. 1. Failure of these points
to form a smooth curve is attributed to varia-
tional error in the difference V - V. A$ Fig. 1
shows, this effect is quite small for incident en-
ergies above 3 eV; however, below 3°eV the ef-
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FIG. 1. Total scattering cross section. Broken solid
line: this work; crosses: results obtained directly from
T-matrix calculations; plusses: results obtained from
T-matrix calculations at eigenenergies and interpolation
of K matrix; circles: experimental data of Golden (Ref.
19), observed vibrational substructure is not shown;
dashed line: static-exchange results of Burke and Sin-
failam (Ref. 4).

fect becomes large. Our results obtained di-
rectly from T-matrix calculations for energies
below 3 eV are shown in Fig. 2. Note that Fig. 2
is plotted in terms of incident electron momentum.
As discussed in Sec. II, we expect a reduction in
variational error at the eigenenergies of H!. Since
eigenenergies are different for different sym-
metries, an interpolation procedure must be used.
In this work we interpolate the matrix elements of
the on-shell, coupled partial-wave K matrix. For
energies below the zng resonance, these matrix
elements are slowly varying. Our results ob-
tained by interpolation from 7'-matrix calculations
at eigenenergies of H t are shown by the solid curve
in Fig. 2 and by the +’s in Fig. 1. At very low
energy the slope of the total elastic cross section
should approach zero (for S-wave scattering in the
static-exchange approximation). Instead, below
k=0.2 a.u. our results obtained by interpolation

J

1
ALT3TaT 2

PAr'mp

20

TOTAL CROSS SECTION (A?)
1
[
~

| 1 1 | |
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FIG. 2. Total cross section below ZHg resonance.
Crosses are defined as in Fig. 1; solid line: results ob-
tained by interpolation from 7-matrix calculation at ei-
genenergies; dashed line: diagonal phase-shift results
of McCurdy et al. (Ref. 12).

drop off anomalously. We attribute this behavior
to the basis-set approximation for the potential
which becomes increasingly inadequate at very low
energy. The dashed line in Fig. 2 shows the
diagonal phase shift results of McCurdy et al.'?

The momentum transfer cross section is defined
by

0,= [ dlcose) d( )(1 coso) . (40)
Setting
do .
m”Z;ALPL(COSG) N (41)
we have
0,=Ay-34A, . (42)

In the fixed-nuclei approximation, the expansion
coefficients for the differential cross section are
given by’

[ @2+ 1)@X+ 1)]2/2(200 | LO)('X*00 | LO) (D ) (I"Nm 1 | Lim + m )y po @y 11 5 (43)

where (I,l,m m, |13m3) is a Clebsch-Gordan coefficient. Our results for o,, are shown in Fig. 3 with the
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the results of Burke and Sinfailam®* and the data, inferred from swarm experiments, of Englehardt et al.*®
In the adiabatic-nuclei approximation the total rotational excitation cross section is given by??

By (=1)mn
0]" = EJL ”'Z a”'ma’lkl'u. (2l'+ 1) Z (ll’

In this work we set the ratio k,,/k; equal to unity,
Our results and the results of Burke and Sinfailam
are shown in Fig. 4. Note that ¢, _, , is larger than
0, in the resonance region, indicating the nearly
pure d-wave character of the resonance.

IV. DISCUSSION AND CONCLUSIONS

This calculation shows that useful electron-
molecule scattering information can be obtained
using moderately sized basis sets and working
entirely within the discrete-basis function sub-
space. Two methods of improving the accuracy
of our results are currently being investigated.
One approach is to improve the flexibility of the
basis set by adding Gaussian functions of d type
and higher symmetry. The other approach in-
volves the calculation of a variational correction
for errors in the scattering amplitude due to the
difference V - Vf. A method for computing a varia-
tional correction for the K matrix is currently
being applied to e-H, elastic scattering and will be
described in a future paper. Preliminary results
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FIG. 3. Momentum-transfer cross section. Broken
solid line: this work; crosses and plusses are defined
as in Fig. 1; circles: experimental data of Englehardt
et al. (Ref. 20); dashed line: static exchange results of
Burke and Sinfailam.

, =m |JO)(IL’ 1, — i |J0)(jJ00 | jO)? . (44)

-
indicate good convergence properties for the scat-
tering basis sets of the type used in the present
calculation.

The discrepancy between our results and the
diagonal phase shift results of McCurdy et al.*?
below 2 eV is not understood and will be investi-
gated further. In this energy range the approxima-
tion involved in the “low-I spoiling” method of Mc-
Curdy et al, should be valid.

An important feature of our method for calcu-
lating the dynamical coefficients a,,,,, of the fixed-
nuclei theory of Temkin et al.?® is that it does not
involve single-center expansions of the potential
or scattering wave function as part of the solution
of the scattering problem. Thus the usual con-
vergence questions concerning these expansions
do not arise in our method. :

The dynamical coefficients a,;,,, refer to the
asymptotic part of the scattering wave function and
converge rapidly at low incident energy since then
only partial waves with low 7 are significantly scat-
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FIG. 4. Rotational excitation cross sections. Solid
lines: this work; dashed lines: results of Burke and
Sinfailam.
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tered by the target. In the case of e-N, scattering
below 10 eV we find that the coefficients a,,,,,7, I
=0,1,...,5;m=0,+1 are sufficient to describe the
scattering amplitude. This partial-wave expan-
sion for the scattering amplitude should not be
confused with the expansion for the total scat-
tering wave function. At low incident energy many
more partial waves contribute to the scattering
wave function in the region of the target molecule
than contribute in the asymptotic region. The high-
l partial-wave components of the scattering wave-
function are due to singularities in the potential at
the target nuclei.

Morrison and Collins® have recently analyzed
the partial wave close-coupling method for e-N,
scattering in the static approximation. They find
that convergence of the Zzg cross section requires
that partial waves be included up to: A=14 in the
multipole expansion of the electronic part of the po-
tential, A =28 in the multipole expansion of the nu-
clear part of the potential, =26 in the expansionof .
the scattering wave function. Incontrast the partial-
wave close-coupling calculation of Burke and
Sinfailam for e-N, scattering in the static exchange
approximation includes only A=0, 2,4 in the multi-
pole expansion for the static potential and !
=0, 2, 4, 6 in the partial wave expansion for the ZEg
scattering wave function. Morrison and Collins
show that the unconverged static potential ?z,
cross section lies above the converged result at
low incident energy. Figure 1 shows that the total
scattering cross section of Burke and Sinfailam is
a factor of 2 larger than ours at 1 eV incident en-
ergy. Thus it is probable that lack of convergence
in the calculation of Burke and Sinfailam accounts
for most of the discrepancy between their results
and ours. Buckley and Burke® have recently ana-
lyzed the calculation of Burke and Sinfailam and

they find that the latter’s results are not converged.
Unfortunately, Buckley and Burke do not present
their own static-exchange results for e-N, scat-
tering.

Our results show that the static-exchange ap-

. proximation for scattering is in qualitative agree-

ment with experimental results for the total elastic
and the momentum-transfer cross section although
polarization and other electron correlation effects
are clearly important. The displacement of our
resonance peak to about 1.5 eV above the position
observed experimentally, and the rapid drop in the
e;{perimental cross section below 0.5 eV incident
energy are attributed primarily to polarization of
the target by the scattered electron. Methods for
including polarization in our prescription for scat-
tering are currently being investigated.
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APPENDIX A: GAUSSIAN MATRIX ELEMENTS
OF FREE-PARTICLE GREEN’S FUNCTION

The Fourier transform of a normalized Cartesian
Gaussian is given by

w1 = armias i ) (g ) ) e (2 5 ) 1)

where H,;(x) is a Hermite polynomial. Substituting (A1) into the Fourier integral representation for Gaus-
sian matrix elements of the free-particle Green’s function Eq. (16),

V2

(uer |G (E)|u,, ) =- = [ Q1= DIRY = 1)@m= 1)@m= 1)11(2n = 1)11(2n" - 1)11]1/2

Vv (@B’
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xH, [ Lx_
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where ¢ is a positive infinitesimal, E=2¢?, and
a=(a+p)/4ap . (A3)

Substituting the spherical expansion for a plane
wave, Eq. (22), for e'**® in Eq. (A1), and carrying
out the angular integrations, the following formulas
for Z and Il symmetries and s- and p-type func-
tions are obtained:

ah|Gr|ufBy =Arz (Ada)
<#5’3‘HG‘|uB >=(A/\/&_)P1(é)1§, (Adb)
(B Gy |uBB) =(ANaB )| -2 P,(R) I4+514] ,
(Adc)
=(ANeB)N -VET Qu(R)I}
+3P,(R)I2+51E] .
(A4d)

(nghlcy |usk,

In Egs. (A4), the integrations over %k are denoted by

. [ drkre ™
17 = N

jL(kR) , (A5)

where j,(kR) is a spherical Bessel function. The
constant

A=2/1)/2(ap) 3/, (A6)
P,(R) is a Legendre polynomial, and
Qru= YLM(é)+ YL-M(}E) . (a7

As shown in Ref. 15, the principal value part of
this integral may be reduced to an error function

J

27 3/4 p

-2 jaal [ L =M)L+M)
(heR[72Y 1) = < Ta ¢ "2/ [((2L+1) 2L -

with complex argument. Explicit expressions for
the real (principal value) part of the mtegra_ls ap-
pearing in Eq. (A4) are

Rel2=(1/2R)e” " Re[ e'*Rerf(R/2Va +ivag )] ,
(A82a)
Rel’=q?Rel2+ VT a=3/2¢™ /40 (A8b) .
Rel?=1%7e™* Re[ (1/R? - ig/R)eie®
x‘erf(R/Zw/;l_+i\/E¢—]—)

—1V7 e"RPlaeg-1/2/R) | (A8c) .
Rel}=(3/R)Rel?-Rel} . (A84)
The imaginary parts are givén by

ImI7%=~}mg" e~ (qR) . , (A9)

APPENDIX B: BESSEL GAUSSIAN OVERLAP INTEGRALS

To derive analytic formulas for the transforma-
tion matrix elements (u2A (¥)|j,(61)Y (7)), we
insert the spherical expansion for a plane wave,
Eq. (22), on both sides of Eq. (Al), the Fourier
transform of a Gaussian, and equate coefficients
of YfM(k) For an s-type Gaussian we have im-
mediately

000 I iz LM> = (21/a)/te ¥ /1% (RA)Y 1, (A) .
(B1)

Derivation of formulas for Gaussian of higher
symmetry is straightforward. For p-type Gaus-
sians we obtain

) s GAYY )

<(L+M +1) (L -M+1)
- @L+1)(2L+3)

YA ) ], (B2a)

3/4 - M 1)\1/2 .
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1/2
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1/2 R
) i A g e )
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’( (2L +1)(2L+3)

1/2 N
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-M =1)

Vo

- 2 3/4 —
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