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The problem of determining the ground-state energy and wave function' of a three-body system. is
considered anew. It is found that a particular Hylleraas-type expansion for the wave function arises naturally
in the present approach. The main problem is seen to be the determination of the action of certain matrlces ’
on a vector representation of the trial wave function. A method is introduced which avoids the need for, and
hence determination of, long algebraic expressions for matrix elements. As a result, computer programs do
not have to be altered when new potentials are considered. It is merely necessary to supply the parameter
values characterizing the two-body potentials, which, in general, are a linear combination of a Coulomb
potential and terms which are of the form of a polynomial times a Yukawa potential.

I. INTRODUCTION

The ground state of a three- body system inter-
acting through spm-independent two-particle
potentials has, in general, an internal wave func-
tion depending only on the interparticle distances.
Hylleraas introduced variational trial functions
of this type for the He atom.!" Other .authors soon
found such expansions useful in the calculation of
the ground states of the H, molecule? and the lith-
ium atom.® Subsequently, authors using electron-
ic computors have based their calculations on
Hylleraas expansions,*™® and there has been much
related work involving four or more particles and
excited states.”™" _ v i

The general form of the wave function of Hyl-
leraas is.

,¢=e-1 /ZkSZ_ Clm"sltmun, . (1 1)
where s, t,u afo the linear combinations

L SEV 4T, t=7, -71, U=71z, (1.2)

of the interparticle d1stances and % is a scale
parameter. The nucleus is treated as a point
source. Pekeris'® finds it convenient to work with
“perimetric coordinates” defined by

u=k(ry+7,—7,), 0=k +7y,—7,),

. 1.3)
W=k(r+7,—7y,) .

Perimetric coordinates were used earlier by
James and Coolidge® to investigate the conver-
gence of the Hylleraas approach. The work of
Pekeris and of Frost and co-workers?°™ is di-
rected towards an approximate series solution of
the three-particle atomic problem. Numerical
solutions have been given for a number of three-
body atomic systems by Accad, Pekeris, and
Schiff,?® including results for excited states.. The
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expansions used by these authors are closely re- .
lated to those which will be mtroduced here. For .
_another application of their methods see Elko—
moss? where many useful references can be
found. - A related approach leading to compact wave
functlons has been mvest1gated recently by Thak- ’

" ker and Smith,25:2¢

. Here we cons1der only the ground state of three-
body systems but allow more general interactions .
than in atomic systems. The development in the
early sections is essent1a11y not new. ‘It serves,
however, to introduce a particular notation and
results needed in the later sections. It also adds:
a measure of completeness to'the presentation.

In Sec. II we consider the action of the kinétic
energy operator on a wave function in thch in-
ternal motion is described through a ‘factor de- !
pending only on.mterpartmle distances. The type -
of integrals which arise in applying the Raleigh-~
Ritz prinoiple with a particular type of trial func-
tion are investigated in Sec. III. In Sec. IV a basic
integral is evaluated. The results of Sec. IV are
seen, in Sec. V, tolead naturally to ¢ ‘triangular”
parameters and to a particular basis set for the
expansion of the trial function.” The actions of
varidus operators associated with the kinetic and
potential energy operators are also considered.

In Sec. VI a particular ‘ordering of the basis func-
tions is introduced and the general procedure for
computing the ground state is outlined. The pro-
cedure is shown to depend on the ability of com-
puting the action of certain matrices on typical
vectors in their domains. This is to be done with-
out explicit formulas for the matrix elements.

The details of this crucial procedure are pre-.
sented in Sec. VII In Sec. VIII the first-order
approximation and other minor issues are dis-
cussed. Some general observations are included.
For an approach through the ¢omputation of ma-
trix elements see Benesch.?’
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II. KINETIC ENERGY OPERATOR

The masses and position vectors of the par-
ticles are denoted by m;, T;;1 <4 <3.

The kinetic energy operator K for the system is
given by

' 72 2 2

= 2_____ 2 2
Ko Vi= g V=5 V3 @.1)

where V,,1<¢<3 is the gradiant operator with
respect to the variable T,.

In general the wave function for this system will
be a spinor function of the variables T,, T,, and T,.
We, however, are concerned only with states of
lowest internal energy. Such states will be a su-
perposition of states described by wave functions
of the form

Z,D_(I"l, ?25 -fs) = f"(ﬁj‘b(x, ) Z) ‘: ’ (22)

where F is a spinor function of the center of mass
position vector R defined by

(m,+my+mg)R=m, T, + MyT,+m Ty, (2.3)
and where x, 9, 2z are the lengths of the vectors,
X=T, =T, y=I =T, Z=T,—T,. (2.4)

The function @ in (2.2) is fixed, being the internal

wave function of the ground state while I is any

Lz(_ﬁ) function whose spin state is consistent with

ground-state symmetry requirements.
Introducing .

@=Ty = (MyTy+myTy)/(my+my) (2.5)

it is well known that the kinetic energy operator
(2.1) may be written

ne ne nE o,

K=—--=v2 Vz' 2.6
M VR 20 om @’ 2.6)
where
mm my(m,+m
M=m +my+mg, p=—>3—"2- m=——————————1( 2+ 7s) .
My+mg Mg+ Mg+
@.7)

By inverting the equations (2.3), (2.4), and (2.5)
or from the interpretation of MVR as a momen-
tum operator one finds

Ve=V,+V,+V, (2.8)

With the aid of the relationships (2];4) for any func-
tion «# depending on x, ¥, and z only, we have

Vu=u,h—uz, N (2.9)

£, 0 - S (2.10)

Vau=u, X —uyy, . (2.11)
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where %, 7, ‘and Z are unit vectors in the direc-
tions of X, ¥, and Z, respectively. From (2.8)—
(2.11) it follows that

Vzu=0, (2.12)

which is also clear from the translational invari-
ance of #. Thus operating on (2.2) with the ex-
pression (2.6) and noting (2.12) we have

KE@R(, 5, 2)= - 2 V5 FR(x, 9, 2)

+F(ﬁ)[K¢(x,y,z)]. (2.13)

Taking the divergence of (2. 9) with respect to r1
we find

VU=t U gy — 20,5 2+ 2/ V) + 220, (2.14)
Now s‘ince —#9+2 is the cosine of the angle opposite
the 51de X of the triangle formed by the vectors
X,¥,%, we have
Jez=(x% =y~ 2%)/2yz. ‘ (2.15)
Thus from (2.14) and (2.15) we have ’

Y2422 x? 2 2

V2U= gy + U+ vz yet Uyt e (2.16)
with

224+ x2% ~9? 2
Vzu:uzé'*'uxx'('_—z? 2 zx T Ug ; x 9 (217)
and

x24y2 -z 2 2
V§u=uxx+uw+——-i—y———uxﬁ}uﬁ;uy, (2.18)
being derived similarly.
Introducing
py=~l%/2m,, o,=~h%/2m,, T,=-K%/2my, (2.19)
and

Py=0;+Ty 03=Ty+ P, T3=Py+ 05, (2.20)

it follows from (2.1) and (2.16)-(2.18) that when
operating on a function depending only on x, y,
and z that the kinetic energy operator may be
taken to be

K=K1+K2+2K3_, (2.21)
where ¢
32 32 82 .
1=PigE 8y2 t 11527 (2.22)
_ yz_!_zz_x,z 92 - 22‘+,x2v;_y2 ‘92
Kz_p? vz oyez T2 zx "8z0x
x2492-z2 B2 ) )
+ Ty 7 5wy ’ (2.23)
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and
1 9 1 9 1 9
plxax+al§§§+T1232" (2.24)
For an alternative derivation see Frost.?

III. EXPECTATION INTEGRALS

In order to estimate the lowest energy of the
system we consider trial wave functions of the
form

Y(F,, Ty, Ty) = F(R)ulx, 3, 2) , (3.1)
where F (-f{) is as in (2.2) and
u(x,y, 2) =P(x, y, z) exp[—(ax+ By +72)/2], (3.2)

where P is the general polynomial of degree N,
say, in x, y, and z. «,B,Y are constants, whose
value is to be determined, but which satisfy the
conditions

a+B>0, F+y>0, y+a>0. (3.3)

These conditions are required, as will be shown
in Sec. IV, to make (3.1) a normalizable wave
function.

The Hamiltonian operator H will be restricted -
to the form

H=K+V, (3.4)

where the potential energy operator V may be
expressed

V=V, +V,+V,. . ' (3.5)

Potentials V,, V,, and V, are operators of mul-
tiplication by a function of x, y, and z, respec-
tively, which in general may be a linear combina-
tion of a Coulomb interaction and polynomial
times a Yukawa interaction.

The mean energy (H) of the system with wave
function (3.1) is given by

@) = JUHY dF3 dF 3 dT3
fzpz,bd"ld"gdrg

(3.6)

where 5 is the complex conjugate of ¥ and where
an inner product over spin states is implied.
From (2.4) and (2.5) we have

>_ - m2 -
y—w—m2+m3x 3.7
and
P=dr—Zs % (3.8)
My+Mg

Thus the function % of (3.1) depernds only on X and
@. We also note from (2.3)-(2.5) that the associ-
ated Jacobians satisfy

a((ﬁ)b (;)l’ (Z’)i)
8((¥1)b (?2)0 Gs)l)

=1, 1<i<3, (3.9)

where the subscript 7 indicates the ith Cartesian
coordinate. Reexpressmg (3 6) in terms of the
integration variables R, X, @ and using (2.13),
(3.17), and (3.5) we find

f F(R)( i VR)ll“('ﬁ)dﬁi

)= f F(R)F(ﬁ) d°R

quudsxda

fuud X d3d (3.10)

Since the operator —V% is positive definite, the
first term on the right in (3.10) is positive but by
a suitable choice of F may be made arbitrarily
small. Since we are seeking the greatest lower
bound to all expressions of the form (3.10), we
will assume

Hy= JaHu d% d%y

— (3.11)
i d®x d3y

where we have used (3.7). Comparing (3.2) with
(3.11) and noting that H involves terms of the form
(2.23) it is evident we need to be able to evaluate
integrals of the form

f___Q(x;C;:,z) exp(-ax - By —vz)d*kd%y, (3.12)

where @ is a polynomial, in order to evaluate
(3.11).
IV. BASIC INTEGRAL

To facilitate the evaluation of integrals of the
type (3.12) consider the integral

I(a,ﬁ,v)=fexp('“jy;ﬁy‘7"')d3;’<d3§. 4.1)

We shall show that

16m2
I(a £,7)= @+ B)(B+7)(7+a)

To introduce powers of x, y, and z into the inte-
grand of (4.1) we simply differentiate the equation
an appropriate number of times with respect to
the parameters «, §, vy which in view of its simple

(4.2)

form (4.2) is straightforward. The integral (3.12)

can then be calculated by expressing it as a linear
combination of such integrals.

To estabhsh the formula (4.2) let the polar co~
ordinates of X be (x, 6", ") and let K be a unit vec-
tor in the polar dlrectlon For ¥ introduce polar
coordinates ( y, , $) depending on X in the follow-
mg nanner; X is the polar dlrectlon for v and
K XX is in the direction of the * ‘y axis” for y.

(4.1) now yields
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T T g T T © :

Ho,8,0= [ ay [ a [ ax [“ao ["a0 [ aysind sineZ exp(-ax—fy-y2), (4.3)
: -1 0 o -r () 0 z

r
where we have
z=(x2+9%—2xycosf)’?, (4.4) Lo, p,7)
o ) XY ‘
Integrating out the variables ¢’, ¢’, and ¢ from =8 f ‘dxf dy exp(-ax—PBy —yz)dz,

(4.3) and noting from (4.4) that for fixed x and y

0 0 lx=yl

(4.6)
dz=(xy/z) sinb db , (4.5) or after integration with respect to z
o 8m?z %
I(a,B,v)=—;—f0v dx(fo expl-(a+y)x - (B-1)yldy
+fw exp[-(a —w)x—(Bw)y]dy—fo exp[-a+y)x - (B+y)y]dy> : “@.")

Computing the elementary integrals in (4.7) yields

gmz 1 1 1
I =— —
(o, B,7) By aty "aiB
L1 1 1 1
B+y a+B B+y a+y’

(4.8)

which after simplification results in (4.2). The
conditions (3.3) are seento be sufficient to carry
out the integration steps. That this remains true
when a polynomial factor @(x, v, z) is introduced
into the integrand of (4.1) may be argued as fol-
lows. It is sufficient to consider the case in which

Q(x,y,z)=x"y"z", (4.9)
but

xlym2t<lexieyiez7, (4.10)
where

j=l+m+n. (4.11)

If a factor x7 is introduced into the integrand of
(4.1) the manipulations leading to (4.7) can be car-
ried out as before. Only on the last step from
(4.7) to (4.8) would there be a change and it is
clear that this can be carried through. From the
symmetry of the integral a factor y’ or z7 also
causes no problem. It follows from (4.10) that
any polynomial can be introduced.

The integral (4.1) has been evaluated previously
by Calais and Lowdin,? as an example of their
method for the evaluation of integrals with separ-
able integrands.

V. EXPANSION OF THE WAVE FUNCTION

Although the integral I(a, 8,v) is a simple func-
tion of its parameters, it is convenient to in-

troduce new “triangular” parameters by
r=3(B+7), s=z(r+a), t=z(a+p), (5.1)

in terms of which the original parameters are
given by )

a=s+t-v, p=t+r-s, y=r+s-1. (5.2)

Corresponding to the “triangular” parameters
(5.1) we introduce “triangular” variables by

X=y+z-x, Y=2+x-v9, Z=x+y-2, (5.3)

in terms of which the original variables are given
by '

=3(Y+2), y=3(Z+X), g:%(X+ Y). (5.4)
Introducing the parameters (5.1) into (4.2) we find
I(a,B,y)=2n%/rst, (5.5)

while substituting (5.2) into (4.1) and using (5.3)
gives

t )= [ UL ) 5. 09

The advantage of the “triangle” parameters and

‘variables is now clear. If we operaté on (5.5) and

(5.6) with

(&) () -2)

we find

exp (=rX =SY =12) .0 . 21%\min!
fX’Y'"Z" p v XA = g -
(5.7)

A formula for the integral differing from (4.1) by
an extra factor x’y™z" in the integrand is not so
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easily obtained from (4.1) and (4.2). Recursive
formulas for the evaluation of those integrals have,
however, been given by Sack, Roothaan, and
Kolos.*® It follows from (5.4) and (5.3) that a poly-
nomial in x,y,z is also a polynomial inX,Y,Z

and conversely, and since conversion both ways

is possible, the degrees must be the same, Thus
the trial wave function (3.2) may be expressed

ulx,y,2)=Q(X,Y,2) exp[-(rX+sY +Z)/2],

(5.8)

where @ is the general polynomial of degree N in
X,Y,Z.

A suitable basis for the class of functions of the
form (5.8) is the set {x;,}, defined by

&)/ 2
XimnlX,Y,Z)= %%——(m)’(slf Yz
. xexp[—(rX+sY‘+tZ)/2]. (5.9)

Introducing the notation

(lymyn, |O|lmanyy = 5“—'"L"1—ox,2 wama AEAF  (5.10)

xyz
where O is an operator, it follows from (5.7) and
(5.9) that

(Lmyny | 1| Lgmgngy = (1, + 1)1 (my + m)! (ay +n,)!

(5.11)

Now with the trial function # expanded as a linear
combination of the functions (5.9) it follows from
(3.11) that we are interested in Eq. (5.10) in the
the cases when O is the operator xyz or xyzH.
Decomposing H in the form (3.4) the cases xyzK
and xyzV will be of interest. Recalling that on
functions of the form (5.8) K is equivalent to the
operator K defined by (2.19)-(2.24) it is observed
that xysz is a polynomial in the six operators
x,y,2,8/9x,8/9y,8/8z.  Accordingly we are con-
cerned with the action of these operators on the
basis functions (5.9). Noting from (5.3) that

9 _ 9 ) 9 9 _ 9 9 9

ax 8Y 8z 80X’ 8y 8Z 80X oY’

9 l 9 i}

PR i A A (5.12)
and usihg (5.4) we find

20Xy mn= (1/8Wameint (1/OX e 1 5 (5.13)

29X 1= (1/W gt (1/7 X yum » (5.14)

22X 0= (1/7 Wararmnt (1/ Wi mern 5 (5.15)

and

a 1

g;xlmn= '"E(S'Ft—r)xlmn"'mslm-ln
+ 1 s = WX 11 mm s (5.16)

3 1

@len= —z(t+7r —S)X1mn+ntxlmn-1
+lrxl-1mn—msxlm-1n ’ (5-17)

9 L

EXIm}r= —E(’V+S _t)xlmn"' l'yxl-lmn
+MSX g metn = X 1o+ (5.18)

With the potential as in (3.5) it is clear that xyzV
will in general involve terms which are polynomi-
als times an exponential factor, " say. To
compute matrix elements involving this factor we
absorb a factor e™ into the basis functions (5.9).
Thus noting from (5.1) that it is convenient to in-
troduce

S=s+m, t=t+7, (5.19)
we find from (5.9) that
€ Xy = (/8™ L/ TV 2 s (5.20)

where X, is defined identically to x,,,, through

(5.9) with the exception that s and ¢ are replaced

by § and ¢. The effect of operating on ¥, ,, with
x, v, or z is given by formulas of the form
(5.13)—(5.15) with § and { replacing s and f{. Sim-
ilar considerations apply in absorbing factors e™
and e™,

VI. VARIATIONAL PROBLEM

Since the basis functions {x, .} involve a triple
subscript some method of ordering must be de-
vised. Introducing

[=l+m+n+1, m=m+n+1, A=n+1, (6.1)

to each triplet (Z,7,n) we associate a triplet
(I,m,7) in a one to one manner. Thus by ordering
the triplets {(I,#,7)} we induce an ordering on the
triplets {(,m,n)}. Noting that I,m,n can be any
non-negative integers it follows from (6.1) that

[=m=n=>1, (6.2)
are the only limits on the triplets {({,7,7)}. Or-
dering the triples {(7,7,7)} lexically we find that

the triplet (7,#2;7) is that kth member of the se-
quence where

=3/ =11 +1)+5/0h= 1)+ 7. (6.3)

. It is convenient, therefore, to introduce

'Xk=xlmna (6'4)
where % is defined through (6.1) and (6.3).
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In the notation of (6.4) the trial wave function
(5.8) has the expansion

u(x,y,z) icka(X Y Z) (6.5)

where N,.is related to:the degree N of the polyno-
mial Q in (5.8) by: :

SN DD D/6. (6.6)

Introducing the notation ¢ for the column vector
with components ¢; and A'and B for matrxces with
elements defined by ;

Agr,=(lymm, |xyzH|lmony) (6.7)
and 3 FEEUNN )
Bk1k2=<l1m1"1 ixyz l Iymany) , (6.8)

where k; and k, are related to the triplets
(ll,ml,n ) (lz,mz,nz) through equations similar
to (6.1) and (6.3),. it follows from (3.11) and (5.10)
that . . .

(Hy=CTAE/C'BEC . (6.9)
Since from (6.4) and (5.9) the basis functions {x,}
are real and linearly independent, it follows from
(5.10), (6.7), and (6.8) that A and B are real sym-
metric matrlces and that B is posmve definite.

Our objective then is to minimize (&) of (6.9)
with respect to €. This is done using a standard
approach.®"3 The vector € is assumed to be real
with.¢,> 0 and normalized so that

¢rBt=1. - (6.10)
An initial choice for € is made by setting ¢,=0 for
k=2, A sequence of improved choices is then
found through iteration of the following procedure.
Denote by AC the vector whose nth component is

8/8¢c,(H), 1Sn<N,. Its components are computed
from (6.9), or since € is real from

(H)y=T8TAE/¢TBEC. '(6 11)

Introduce a functlonf(t) by replacing € in (6.11) by
S+ tAc We then have

A/ +2A|t+Agt

=3 ¥2B,f+ B, (6.12)
where
A,=TTAE, A, =(a0)TAE, A2=(A9)TAAE; (6.13)

B,=&TBE, B,=(A%)"BET, B,=(AT)TBAR.
The denominator of (6.12) is positive definite
and f(t) is found to be stationary when

Al AZ AZ AO AO Al

. =
2 B, Bét 0. (6.14)

B, B, *|B, B,

The root of (6.14) which makes £(¢) a minimum is

" substituted in the expression €+ tA¢€ to yield a

vector which when normalized to satisfy the con-

" dition (6.10) becomes the next choice of € in the

sequence.

Although this procedure is conceptually simple
it is of course necessary to be able to compute
AC and the coefficients (6.13). By taking the grad-
iant of (6.11) we find

A%=2B2{B,AT - A BT}, (6.15)

Examination of (6.13) and (6.15) shows that if we
have a way of computing Ad and BJ from a typical
vector d then we will be able to accomplish our
objective. Thus if we first compute A& and B¢,
A, and B, are easily found, followed by A& from
(6.15). This immediately allows the computation
of A, and B,. Finally, 4, and B, are easily com-
puted if we first compute AAE and BAE,

The question of how we compute’Aa and Bd
from a typical vector d is the subject of the next
section. The author’s procedure for the deter-
mination of these vectors is an important part of
this paper. Its merits are discussed in the con-
cluding paragraph.

VII. OPERATOR ALGORITHMS

The preceding section describes a method of
finding a vector ¢ which minimizes the expectation
value of H with respect to the wave function (6.5),
the expression to be minimized being given by
(6.11). As noted above the unresolved question is
how are we to compute the vectors Ad and Bd
from a typical vector d.

Although d is a vector with N, components, it is
convenient to regard it as an infinitely dimensional
vector of which all but the first N, components are
zero.

It follows from the definitions (6.7) and (6.8) that
the action of A and B on the vector € is closely
related to the action of xyzH and xyz on u(x,y,z)
of (6.5). It turns out that the terms of H which
have an exponential factor require special treat-
ment which will be discussed later. For the mo-
ment we will assume H has no such terms. With
this assumption both xyz and xyzH are polynomi-
als in the operators x,y,z, 8/6x,8/0y,0/6z.

Since the action of each of these on a basis func-
tion results in a fu”iite linear combination of basis
functions, this is also true of xyzH and XYz, Let
us denote the vectors whose components are the
coefficients in the éxpansion of ¥yzHu(x,y,z) and
xyzu(x,y,z), in the manner of (6.5), by a and b,
respectively. Both i and b will have more than N,
components. The vectors A€ 'and BT are simply
related to @ and b. Introducing

Gk1k2= Aymyn,\|11myn,) (7.1)
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and noting that the kth components of A€ and B¢
are obtained by forming the inner product of X,
with xyzHu(x,y,z) and xyzu(x,y,z), respectively,
we find

. (AE));Z Z le a; and (B_E)k = Z 'ij bj . (7.2)

Here 1< k<N, while j ranges over all values for
which the summand is nonzero. (A ©), and (B c),,
denote the kth components of AC and B¢, respec-
tively. By inner product of two functions ul(x v, 2)
and u,(x, y,z) we mean .

f ?t;(x,y,Z)uz(x,y,Z) PR, ' (7.3)

, XYz

as in (5.10).. :
We note that as a consequence of (5.11), the def-

inition (7.1) can be replaced by

Gy = a4 1)L (my+m) Loy +15) ! o (7.4)

Our problem thus reduces to the computation of 3
and b from €.

As observed above the operators xyzH and xyz
are polynomials in the “simple” operators x, ¥, z,
9/0x,0/3y,8/dz. Thus if we have a procedure for
finding the new coefficients in the expansion of the
wave function obtained by operating with any of
these on a typical function of the form

N
u(xyyzz)zzdek(Xy Y;Z)3 (7'5)
where
N, =(N+v+1)(N+v+2)(N+v+3)/6, (7.6)

we will be able by a combination of applying these
procedures and forming linear combinations of re-
sulting vectors arrive at both & and b. The reason
for introducing N,, which is a generalization of
N, defined in (6.6), needs explanation. First it
will be noted that if N, <k<N,,, then x,(X, Y, Z)
has a monomial factor of degree N+v+1. Thus if
u(x,y,2) of (7.5) is multipled by x, v, or z the ex-
pansion of the resulting function will involve a sum
of N,., terms. Acting with 8/6x, 8/6y, or 8/6z on
the other hand does not alter the number of terms
in the expansion, as is easily deduced from Eqs
(5.16)=(5.18).

If the Hamiltonian H is expressed as a sum of
operators, its expectation value is the sum of the
expectation values of these operators This de-
composition holds for the matrix A defined in
(6.7), and for the numerator of (6.11). Thus if the
xyzV can be expressed as a sum of terms each of
which is a product polynomial in x, y, and z and
an exponential factor in x, y, or z, then their con-
tributions to the numerator of (6.11) can be com-
puted independently.

Let us consider the typical term

Vi=P(x)e " /x , 1.7
where P(x) is polynomial in x then
xyzV;=yzP(x)e *"™ : (7.8)

The objective here, when forming matrix elements
such as (5.10), is to absorb the exponential factor
of (7.8) into the basis functions on either side. The
result of this absorption is given in (5.19) and
(5.20).

It follows from (5.20) that if we operate on (6 5)
with =™ that we get

No

u(x,y,2)= Z CrXa( X Y,Z), . (79)

where
= (g/s)m+ l/z(f/t)'” 1/2 Ch ) (7.10)

The principle effect of the absorption operator
e~™ is thus the replacement of the vector € with
the vector ¢ whose components are given by (7.10).
A second effect is that when computing the effects
of the polynomial yzP(x) on ¢, it is necessary.to
use the parameters 7, s, f rather than 7,s,t. Let
us call the resulting set of coefficients 2. These
now must be operated on with the NyXN, matrix
G whose elements given by (7.4). N, is the dimen-
sion of 2. We now have
¢TA(v;)e=¢"Ga, (7.11)
where A(V;) is that part of A arising from V;. But
the absorption factors of (7.10) can easily be
transferred to the vector Ga, and we have

(AW )E)w= (/s)™ V2({ /8y V2(GR), .

In summary, to accommodate an exponehtial, we
simply include an absorption operation before and
after the other operations and use modified param~
eters.

A few minor points are in order.  The normaliza-
tion (5.9) of X, m.(X,Y,Z) may not be ideal if N is
too large, leading to unwieldy values for G, Jkyy and
to small numbers for ¢,. To avoid this, an addi-
tional factor such as Il!m!n! should be included in
the denominator of (5.9). If this is done (5.11) will
be altered and in consequence (7.4) will be re-
placed by '

(7.12)

Gk1h2=gillzgmlm2gr;1n2? (7.13)
where '
n+m )
Enm = ( > (7.14)
n

The matrix elements G, should be computed as
needed from a look-up table containing the bino-
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mial coefficients g,,.

One final question remains: what values should
be chosen for the parameters », s, and ¢. This
question is taken up in Sec. VIII. '

VIII. FIRST-ORDER APPROXIMATION

In order to carry out the procedures of Secs. VI
and VII some choice of values for the parameters
7,S;t must be made. Since our objective is to min-
imize the expression (3.11) we should ideally
choose these parameters so that (6.9) is as small
as possible. Such a choice would be difficult to de-
termine and would depend on-the value of N, in
(6.5). Accordingly we will choose these param-
eters so that (6.9) is close to a minimum for the
simplest case, N,=1. For this case it follows
from (6.1)-(6.8) that (6.9) reduces to

(H) = {000| xyzH|000)/{000| xy2|000) .  (8.1)

To find a rough minimum for (8.1) one can use
any standard numerical method, calculating (8.1)
for different parameter values by the methods of
Sec. VII. If only the first-order estimate (8.1) is
of interest, this expression can be evaluated with
the aid of formulas. We note Egs. (5.16)—(5.18)
simplify in the case when [,m,n are zero, so that
formulas for the various contributions to (8.1) are
not too complicated.

Using (5.11) and (5.13)—(5.18) we find after some

J

(000| xyze~2"*|000) =

stl(r+s+n)(s+t+2n)E+r+1m) —=7(s +n)(t+17)]

algebra

(r+8)(s +1)(t +7) —rst

(000] xyz(000) = et , (8.2)
(s+t-7)2
(000|xyz e ]000) “160st)?
X[r+s)(s+e)t+7)—rst],
(8.3)
(000| x(y%+2% - x?) |000)

8y 9z

(t +7 =S)¥ +8 —t)
8(rst)?

X [st(s+t) +7r(sP+st+t?) —r¥(s+1t)], (8.4)

and

(s+t=7)
8(rst)?

X[rst)(r +s +t) =2(st)?]. (8.5)

a _
(000| yz ™ |000) = -

For a potential energy, which is a supérposition of
Yukawa’s, it is useful to also have

(000| yze~2"*|000)
_ Stlr(r+s+t+2n) - 2(s +n)(t +n)]
4[7(s +n)(t +m)]? ’
where use has been made of (7.12).
Similar formulas can be obtained by simultane-

ously cyclically permuting x,y,z and 7,s,¢.
For an exponential potential we note

(8.6)

4(s +n)3(t+n)°r®

Powers of x can be introduced into (8.7) by differ-
entiating with respect to 7.

CONCLUSION

The introduction of “triangular parameters” and
“variables” into an Hylleraas expansion leads to a
well-defined and straightforward problem when ap-
plied to the ground state of a three-body system
for a large class of interesting potentials. In gen-
eral, the solution of such problems through the di-
rect derivation and use of formulas can be quite
lengthy. The alternative methods of calculation of
matrix elements through use of algorithms for bas-
ic operators, as presented here, should be a viable
and work-reducing alternative. This may be true
even for the first-order approximation of this sec-
tion, especially if a number of alternative poten-
tials are to be considered. This advantage derives

(8.7)

from the fact that it is not necessary to reprogram
to modify recursion formulas each time a

new potential is to be considered, since the action
of the various potential terms is constructed by the
programs from the descriptive parameters. In
fact, the action of all operators is constructed
from subprograms for the action of the simple op-
erators x,y,z, d/ox, 8/9y, 8/8z and for the action of
an exponential factor. No significant gain in com-~
puter efficiency is anticipated. Although the pro-
cedures developed here give an alternative way of
approaching three-body atomic problems, the re-
sults should turn out to be the same as those of

. Accad, Pekeris, and Schiff.?® These authors pre-
. ferred an expansion using a product of Legendre

polynomials instead of the monomial factor we have
introduced in (5.9). This, however, does not work
out well for potentials involving an exponential fac-

-tor.” The present approach should be useful in non-
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atomic three-body problems of nuclear physics and
in quark models. Programs for its application are
currently being developed. It should not be diffi-
cult to generalize the procedures to include excited
states, since this has been done for the atomic
problem.?*:2%:2¢ The results of Calais and Léwdin®®
should be helpful in this endeavor. Thakkar and
Smith?®**®® work with an expansion of the form

27 ¢y eXp(=apX =B, Y =4 Z), resulting by optimal
choice of parameters, in accurate results with
fewer terms than Pekeris.?® There are, of
course, four parameters per term. The proce-

dures introduced here could be adapted to such an
expansion, since the evaluation matrix elements
for H can be carried out in much the same way
TTAT is computed here.
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