
PHYSICAL REVIEW A VOLUME 17, NUMBER 5

(
I

Determination of the onnd state of three-bod s stemsg

K. W. Thoiiipson
Florida Atlantic University, Boca Ru]on, Florida 33431

(Received 23 September 1977)
1, ,

The problem of determining the ground-state energy and wive function of a three-. body .system is
considered anew. It is found that. a particular Hylleraas-type expansion for, the wave function arises naturally
in the present approach. The main problem' is seen to be the determinatian of the actiori of certain matrices
on a vector representation of the trial wave function. A method is introduced which avoids -the need for, and
hence determination of, long algebraic expressions for matrix elements. As a result, compiiter programs do
not have to be altered when new potentials are considered. 'lt is merely necessary to supply the parameter
values characterizing the two-body potentials, which, in general, are. a linear coinbination of a Coulomb
poteritial and terms which are of the form of a polynomial times a Yukawa potential.

. I

I. INTRODUCTION

The ground state of a three-body system inter-
acting through spin-independent two-particle
potentials has, in general, an internal wave func-
tion depe'nding only on the interparticle distances.
Hylleraas i.ntroduced variahonal trial functi. ons
of this type for the He atom, ' Other authors soon
found such expansions useful in the calculation of
the ground states of the H, molecule' and the lith-
ium atom. ' Subsequently, authors using electron-
ic compqtors have based their calculations on
Hylleraas expansions, ' ' and there has been much
related work i.nvolving four or more particles and
exci;ted states. ' "

The general form of the wave function of Hyl-
leraas is ~

L

g=e ' ' '
. c s't"u"

tmn.

where s, t, e are the linear combinations

s=r, +r„ t=. r, —r„u=r„, (1.2)

of the interparticle distances and A' is a sca1e
parameter. The nucleus is treated as a point
source. Pekeris" firids it convenient to work with
"perimetric coordinates" defined by

2u=k(r, +r„r,), 2U=k-(r, +r„—r,),

co = k (r, + r, —r„) .
Perimetric coordinates were used earlier by
James. and Coolidge" to invest'igate the conver-
gence of the Hyllera@8 approach. The work of
Pekeris and of Frost and co-workers 0"2 is di-
rected towards an approximate series solution of
the three-particle atomic problem. Numerical
solutions have been given for a number: of three-
body atomic systems by Accad, Pekeiis, and
Schiff, including results for excited states. . The

expansions used by these authors are closely r'e- .

lated to those which will be introduced here. For:.
pnother application:of. 'their methods see Elk@;, :

mops where many useful references. -can be
found. A related approach-]eading to compact wave
functions has beeri investigated recently by Than-
ker and Smith. 2"26

. Her@ we consider oiQy the grourid state of three-
body systems bpt allow more general interactions.
than in atomic systems. The development in the,

early sections 'is.essentially. not new. Jt serves, '

however, to introduce a particular -notation and.
results needed in the later sectioris. It also adds
a measure of completeness to the preseikatign. '

In Sec'. II we consider the action of- the kineti, c
energy operator on a wave .function i.n which in-
ternal motion is described through a factor de--
pending. only on, int'erparticle distances. . T.he. .type.

'

of integrals which arise in gpplying' the Raleigh-
Rj.tz principle with a parti. cula. r type of trial func-
tion are investigated in Sec. III. Iri Sec. IV a basic
integral is evaluated. The re'suits. of Sec. IV are
seen, in Sec. V; to-lead naturally to "triangular"
parameters and to a particular basis set for the
expansion of the trial function. The actions of
various operators associated. 'with the kinetic arid

potential energy operators are also considered.
In Sec. VI a particular ordering of the bpsis func, -
tions is introduced and, the general procedure for
computirig the ground state is outlined; The pro-
cedure is shown to depend on the abili. ty of com-
puting the action of certain matrices on typical
victors in their domains. This is to be done with-
out explicit formulas for.thy matrix elements.
The Petails of this crucial procedure are pre-
sented in See. VII. Iri See. VIII the first-order
approxi. mati. on and other minor i:ssues are dis-
cussed. Sqme gener al observations are included.
For an approach through t:he computation of ma
trjx elements see Beriesch. "
1:583
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II. KINETIC ENERGY OPERATOR

2mj 2m2 2m3
(2.1)

The masses and position vectors of the par-
ticles are denoted by rn„r;; 1 ~ i ~ 3.

The kinetic energy operator K for the system is
given by

where x, y, 'and z are unit vectors in the direc-
tions of x, y, and z, respectively. From (2.8)-
(2.11) it follows that

VRQ=O (2.12)

which is also clear from the translational invari-
ance of u. Thus operating on (2.2) with the ex-
pression (2.6) and noting (2.12) we have

g(r„r, , r,) = f (R)C (x, y, z), (2.2)

where E is a spinor function of the center of mass
position vector H defined by

(m, +m, +m, )R=m, r, +m r, +m, r, , (2.3)

where V;, 1-i - 3 is the gradiant operator with
respect to the variable r,-.

In general the wave function for this system will
be a spinor function of the variables r„r,, and r3.
We, homever, are concerned only with states of .

lowest internal energy. Such st;ates mill be a su-
perposition of states described by wave functions
of the form

Z(r(R)e(x, y, z))=- V', F(R) C(x, y, z)

y z= (x'-—y" —z.')/2yz.

Thus from (2.14) and (2.15) we have

(2.15)

+F(R)[ZC(x, y, z)]. (2.13)

Taking the divergence of (2.9) with respect to r,
we find

V,'u = u„,+ u„—2u„y z+ (2/y)u, + (2/z)u, . (2.14)

Nom since -y. z is the cosi.ne of the angle opposite
the side x of the triangle formed by the vectors
x, y, z, we hive

x= r3 —r2, . y.=, . rg —.r 8= r (2.4)

and mhere x, y, z are the lengths of the vectors,
y . +8' -x

V ~u = Qyy+ Qgg+-
yz

Q + Qy+ Qg py-' z (2.16)

2 = r, (m, r2—+ m, r3)/(m, + m, ) (2;5)

it is well known that the kinetic energy operator
(2.1) may be written

The function C in (2.2) is fixed, being the internal
wave function of the ground state while E is any
L'(R) function whose spin state is consistent with
ground-state symmet;ry requirements.

Introducing

with

8 +x y . 2 2
V.,u = u„+u„,+ Q8~+ Qg+ —Q

gx ' z ' x "'

and

+y 2 g2 2
V 3Q = Q ~+ Qyy+ —Q~y+ —Q~+ —

Qy ~xy x

being derived slmOarly.
Introducing-

(2.17)

(2.18)

&=-2M Vz

where

(2.6) p, = —@'/2m, o, = —@'/2m„ i; = -Ii '/2m, , (2.19)

and

M-m +I +m p,
— m =mm m (m +m)

3P rPl2+ m3 m1+ n~2+ m3
~~ = ~2+ ~2~ ~X=~2+I 2~ ~i =~2+ ~2~ (2.20)

:V~ = V~+ V2+ V'3 . (2.8)

(2.7)

By inverting the equations (2.3), (2.4), and (2.5)
or from the interpretation of -AV~ as a momen-
tum operator one finds

K=K~+K2+ 2K3,

where

(2.21)

it follows from (2.1) and (2.16)-(2.18) that when
operating on a function depending only on x, y,
aod z that the kinetic energy operator may be
taken to be

With the aid of the relationships (2,4) for any func-
tion u depending on x, y, and z oddly, we have

92 82 82
I lg 2++lg 2 + lg 2x

.(2.22)

"VjQ=Qyy —Q g '

V2Q = Qg 8 —Q~ x ~

(2 9)

(2.10)
y2+ ~ 2 . X2 ':82'. : . . ~ 2+ X2,y2', :&82

+~2-
yz ey~z " zx . ~z~x

and

V3Q = Q~ x —Qy y p (2.11)

2 + y2 g 2 Q2
+

yz ~x~y
{2.23)



DETERMINATION OF THE GROUND STATE OF THREE-BODY. . . 1585

and
8 1 8 1 8

K =p — — +0' ——+T'x ex 'y gy 'z ez

For an alternative derivation see Frost. ~

(2.24)

where the subscript i indicates the ith Cartesian
coordinate. Reexpressing (3.6) in terms of the
integration variables R, x, &u and using (2.13},
(3.17), and (3.5) we find

III. EXPECTATION INTEGRALS

In order to estimate the lowest energy of the
system we consider trial wave functions of the
form

P(r„r„r,) =F(R)u(x, y, z),
where F(R) is as in (2.2) and

(3.1)

n+P&0, P+y&0, y+n&0. (3.3)

These conditions are required, as will be shown
in Sec. IV, to make (3.1) a normalizable wave
function.

The Hamiltonian operator H will be restricted
to the form

H=K+ V, (3.4}

where the potential energy operator V may be
expressed

V= Vi+ V2+ V3. (3.5)

Potentials Vy V2 and V, are operators of mul-
tiplication by a function of x, y, and z, respec-
tively, which in general may be a linear combina-
tion of a Coulomb interaction and polynomial
times a Yukawa interaction.

The mean energy (H) of the system with wave
function (3.1) is given by

~) f)H)dr', drsmdr~~
(3 6)f(j)$ dr~ dr~ dr~

where p is the complex conjugate of p and where
an inner product over spin states is implied.

From (2.4) and (2.5) we have

and

mg x
m2+ m3

(3.7)

m
Z= + X. (3.8)m2™3

Thus the function u of (3.1) depends only on x and
We also note from (2.3)-(2.5) that the associ-

ated Jacobians satisfy

8((R)(, (x)), (~)() 1 1(.
e((r,)„(r,)„(r,),) (3.9)

u(x, y, z) =P(x, y, z) exp[ (nx+—Py+ yz)/2], (3.2)

where P is the general polynomial of degree W,

say, in x, y, and z. n, P, p are constants, whose
value is to be determined, but which satisfy the
conditions

f E(R)( ")E(R) d'R

f&(R)F(R)d'R

f uHu d'xd'~
+

fuud3xd'~
(3.10)

Since the operator -V'„ is positive definite, thd
first term on the right in (3.10) is positive but by
a suitable choice of I' may be made arbitrarily
small. Since we are seeking the greatest lower
bound to all expressions of the form (3.10), we
will assume

fuHu d3x d'y

fuud'xd'y
(3.11)

where we have used (3.7). Comparing (3.2) with
(3.11) and noting that H involves terms of the form
(2.23) it is evident we need to be able to evaluate
integrals of the form

exp(-nx —Py —pz) d'xd y", -(3.'12)Q xt ~j ~ ~ ~ ~ 3~
~

~ 3~~

~t

~

~ ~ I~

xy

where Q is a polynomial, in order to evaluate
(3.11).

IV. BASIC INTEGRAL

To facilitate the evaluation of integrals of the
type (3.12) consider the integral

I(n, &, &)= exp( nx Py -y-z)-
d xd y . (4.1)

xyz

We shall show that

16712

(n+ ~)(~+~)(~+n)
' (4.2)

To introduce powers of x, y, and z into the inte-
grand of (4.1) we simply differentiate the equation
an appropriate number of times with respect to
the parameters n, P, y which in view of its simple
form (4.2) is straightforward. The integral (3.12)
can then be calculated by expressing it as a lirieax'
combination of such integrals.

To establish the formula (4.2) let the polar co
ordinates of x be (x, 8', (t)') and let k be a unit vec-
tor in the polar direction. For y introduce polar
coordinates (y, e, P) depending on x in the follow-
ing manner; x is the polar direction for y and
k ~ x is in the direction of the "y axis" for y.
(4.1) now yields
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dx dy sin!!' sin& —exp(-n x —Py —yz), (4 3)

where

z= (x'+y' —2xy cos&)'~'. (4 4)

we have

I(n, p, r)

Integrating out the variables &', (t)', and (t) from
(4.3) and noting from (4.4) that for fixed x and y

= Sm2 'dx
X+&

exp(-nx- Py —yz) dz,
~yf

(4.6)

dz = (xy/z) sin[! d[i, (4 5) or after integration with respect to z

8m2
I(n, P, y) = dx exp[-(n+ y)x —(P —y)y]dy

0 0

«p[—(n —1')x —(P+'V)yt dy— exp[-x+x)x- (() xy)X]dX) . (4.7)

Computing the elementary integrals in (4.7) yields troduce new "triangular" parameters by

8' 1 1 1
f(n, P, i)=

y P —y (y+y o. +P
1 1 1 1

P+y ~+P P+y n+y ' (4 8)

x= &(p+y), s=-,'(y+ n), t= ,'(n+ p)-, (5.1)

in terms of which the original parameters are
given by

Q(x, y, z) =x 'y"z", (4.9)

which after simplification results in (4.2). The
conditions (3.3) are seen to be sufficient to carry
out the integration steps. That this remains true
when a polynomial factor Q(x, y, z) is introduced
into the integrand of (4.1) may be argued as fol-
lows. It is sufficient to consider the case in which

Q =S+ t —Ã~ P = t+'V -.S) y ='V+ S —t . (5 2)

Corresponding to the "triangular" parameters
(5.1) we introduce "triangular" variables by

X=y+z —'x, Y=z+x —y, Z=x+y —z, (5 3)

in terms of which the original variables are given
by

x $ z ~1+x +$ +z (4.10)

x=-,'(Y+Z), y= —,'(Z+X), z= —,'(X+ Y). (5.4)

Introducing the parameters (5.1) into (4.2) we find

where I(n, P, y) = 2m'/est, (5.5)

j=l+m+n. (4.11)
while substituting (5.2) into (4.1) and using (5.3)
gives

If a factor x' is introduced into the integrand of
(4.1) the manipulations leading to (4.7) can be car-
ried out as before. Only on the last step from
(4.7) to (4.8) would there be a, change and it is
clear that this can be carried through. From the
symmetry of the integral a factor y' or z' also
causes no problem. It follows from (4.10) that
any polynomial can be introduced.

The integral (4.1) has been evaluated previously
by Calais and Lowdin, "as an example of their
method for the evaluation of integrals with separ-
able integrands.
1

I

V. EXPANSION OF THE N'AVE FUNCTION

Although the integral J(n, P, y) is a simple func-
tion of its parameters, it is convenient to in-

I(n p &) exp(-~X —sY —tZ)d, xd, y (5 6)
xgz

The advantage of the "triangle" pa, rameters and
'variables is now clear. If we operate on (5.5) and

(5.6) with

we find

„exp ( rX —s Y —tZ) 3-2)r I!tn! n!
XgZ . t' S

(5 7)

A formula for the integral differing from (4.1) by
an extra factor x'y. z" in the integrand is not so



DETERMINATION OF THE GROUND STATE OF THREE-BODY. . . I587

easily obtained from (4.1) and (4.2). Recursive
formulas for the evaluation of those integrals have,
however, been given by Sack, Roothaan, and
Kolos." It follows .from (5.4) and (5.3) that a poly-
nomial inx, y, z is also a polynomial in X, Y,Z
and conversely, and since conversion both ways
is possible, the degrees must be the same. Thus
the trial wave function (3.2) may be expressed

u(x, y, z)=Q(X, I', 2) exp[ (rX-+sY+tZ)/2],

(5 8)

8

Bx
—X, „==, (s+t-r)x, „+msj

+ ntX j mn-j lrx j -jmn ~

8
~jmn=-&(t+r —s)Xjmn+ntXjmn-j
Bg

+ h'y, ,m„- ms',
8

88 ™—
X j „=—2 (r + s —t)x j „+lrx, ,

(5.16)

(5.17)

x exp [-(rX+ sl'+ tZ )/2] .
I

Introducing the notation

(5.9)

where Q is the general polynomial of degree N in
X,Y,Z.

A suitable basis for the class of functions of the
form (5.8) is the set ~jX»„], defined by

rst "'
X „(X,I', 2)= = ( X) (sl ) (t~)jj/2

+ mSX jm- jn n Xjmn j ~ (5.18)

s=s+q, t=t+q, (5.19)

With the potential as in (3.5) it is clear that xyz V

will in general involve terms which are polynomi-
als times an exponential factor, e ~" say.- To
compute matrix elements involving this factor we
absorb a factor e "" into the basis functions (5.9).
Thus noting from (5.1) that it is convenient to in-
troduce

(,m„n, ~0~l,m,n,) = ' '"' Ox, „„2d'xd'y (5.10)
xgz

we find from (5.9) that

e nx „=(S jS)m+1/2(t/t )mj/2X (5.20)

( )

Now with the trial function u expanded as a li.near
combination of the functions (5.9) it follows from
(3.11) that we are interested in Eq. (5.10) in the
the cases when 0 is the operator xyz or xyzH.
Decomposing H in the form (3.4) the cases xyzX
and xyz V mill be of interest. Recalling that on
functions of the form (5.8) K is equivalent to the
operator K defined by (2.19)-(2.24) it is observed
that xyzK is a polynomial in the six operators
x,y, z, B/Bx, B/By, B/Bz. Accordingly we are con-
cerned with the action of these operators on the
basis functions (5.9). Noting from (5.3) that

5.11

8 . 8 8 8
+

Bx BY BZ BX'

8 8 8 8
+

Bz BX 8 Y Bg (5.12)

and using (5.4) we find

2 X...=(I/s)X...,.+(1«)X,...„
2yXj;—(1«)Xj .,j+ (1/r)X, .. .,

2zX j..= (1/r)X, ....+ (I/s)X j..„,

(5.13)

(5.14)

(5.15)

where 0 is an operator, it follows from (5.7) and
(5.9) that

(l,m,n,
~

1
~
l,m,n,) = (l, + l,)!(m, + m, )!(n, + n, )! .

where X, „ is defined i.'dentic. ally to X, „ through
(5.9) with the exception that s and t a,re replaced
by s and t. The effect of operating on X, „with
x, y, or z is given by formulas of the form
(5.13)-(5.15) with s and t replacing s and t. Sim-
ilar considerations apply in absorbing factors e "'
and e

VI. VARIATIONAL PROBLEM

Since the basis functions JjXj „] involve a triple
subscript some method of ordering must be de-
vised. Introducing

l = l+m+n+ 1, rri =m+n+ 1, 'n=n+ 1, (6.1)

l & m& n-1, (6 2)

are the only limits on the triplets ((1,m, n)]. Or-
dering the triples Ol, m, n)j lexically we find that
the triplet (l, re;n) is that kth member of the se-
quence where

!'j = +jj/(l —1)l (l + 1)+z /(m- 1)m+ n . (6.3)

, It is convenient, therefore, to introduce

Xk Xtmn &

where /'j is defined through (6.1) and (6.3).

(6.4)

to each triplet (l, m, n) we associate a triplet
(l, nj, n) in a one to one manner. Thus by ordering
the triplets ((l, m, n)] we induce an ordering on the
triplets Ol, m, n)]. Noting that l, m, n can be any
non-negative integers it follows from (6.1) that
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In the notation of (6.4) the trial wave function
(5.8) has the expansion

N

u(x, y, z}= cp»(X, Y,Z),
=1

(6.5)

where Ã, -.is related to:the degree N of the polyno-
mial Q in.(5.8) by:

N, = (N+ 1)(Ã+ 2)(N+ 3)/6. (6.6)

Introducing the notation e for the column vector
with'components c„- and A and B for matrices with
elements defined. by

(6.7)
i)

and

B, ,=(l,m,n, ~xyz
~
l,m,n,), (6.8)

where k, and k, are related to the triplets
(l„m„n,), (l„m, , n») through equations similar
to (6.1) and (6,3), it follows from (3.11) and (5.10)
that

(H) = c ~Ac:/c ~Bc . (6.9)
I

Since from (6,4} and (5.9) the basis functions Q»t
are real and linearly independent, it follows from
(5.10), (6.7), and (6.8) that A and B are real sym-
metric matrices and that B is positive definite.

Our objective then is to minimize (H) of (6.9)
with respect to c. This is done using a standard .

approach. "" The vector c is assumed to be real
with c,) 0 hand normalized so that

e~Bc = 1. (6.10)

(H) = crAc/c Bc. (6.11)

Introduce a function f(t) by replacing c in (6.11) by
e+ t4e. %e then have. ,

I

Bo+ 2Bit+ B2t
(6.12)

where

A, =crAc, A, =(&c) Ac„A,= (&c) Abc;
(6.13)

B,=crBc, B,=(hc) Bcr, B,=(t F)rBt»c.

The denominator of (6.12) is positive definite
and f(t) is found to be stationary when

A, A, A2 At) AO A,

I

The root of (6.14) which makes f(t) a minimum is

(6.14)

An initial choice for c is made by setting c~=0 for
k)'2. : A sequence of improved choices is then
found through iteration of the following procedure.
Denote by 4c the 'vector whose nth component is
&/Bc„(H), 1(n No. Its components are computed
from (6.9}, or since c is real from

substituted in the expression e+ t4c to yield a
vector which when normalized to satisfy the con-
dition (6.10) becomes the next choice of c in the
sequence.

Although this procedure is conceptually simple
it is of course necessary to be able to compute
4c and the coefficients (6.13). By taking the grad-
iant of (6.11) we find

&c = 2B,'(Bgc A,B—c) . (6.15)

Examination of (6.13) and (6.15) shows that if we
have a way of computing AB and BZ from a typical
vector Z then we will be able to accomplish our
objective. Thus if we first compute Ac and Bc,
Ap and B, are easily found, fol lowed by 4c from
(6.15). This immediately allows the computation
of A, and B,. Finally, A, and B, are easily com-
puted if we first compute A4c and B4c.

The question of how we compute Ad and Bd
from a typical vector d is the subject of the next
section. The author's procedure for the deter-
mination of these vectors is an important part of
this paper. Its merits are discussed in the con-
cluding paragraph.

G»» = (l,m, n, ~ill»m, n,), (7.1)

VII. OPERATOR ALGORITHMS

The preceding section describes a method of
finding a vector c which minimizes the expectation
value of H with respect to the wave function (6.5),
the expression to be minimized being given by
(6.11). As noted above the unresolved question is
how are we to compute the vectors AZ and Bd
from a typical vector d.

Although d is a vector with N, components, it is
convenient to regard it as an. infinitely dimensional
vector of which. all but the first N, components are
zero.

It follows from the definitions (6.7). and (6.8) that
the action of A and B on the vector c is closely
related to the. action of xyzH and xyz on u(x, y, z)
of (6.5). It turns out that the terms of H which
have an exponential factor require special treat-
ment which will be discussed later. For the mo-
ment we will assume H has no such terms. With
this assumption both xyz and xyzH are polynomi-
als in the operators x, y, z, s/sx, s/sy, s/sz

Since the action of each of these on a basis func-
tion results in a finite linear combination of basis
functions, this is also trge of xyzH and xyz. Let
us denote the vectors whose eomponeiits are the
coefficients in the expansion of xyzHu(x, y, z) and
xyzu(x, y, z), in the manner of (6.5), by a and b,
respective1. y. Both a and b will have more than N,
components. The vectors Ac and Bc are simply
related to a and b. Introducing
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and noting that the kth components of Ac and Bc
are obtained by forming the inner product of yk
with xyzHu(x, y, z) and xyzu(x, y, z), respectively,
we find

(Ac)»= P G»a, and (Bc)»=P G»b; . (7.2)

Let us consider the typical term

V, =I (x)e-'""/x,

where P(x) is polynomial in x then

xyz V; = yzP(x)e '"".

(7.7)

(7 8)

Here 1.& k &Np while j ranges over all values for
which the summand is nonzero. (Ac)„and (Bc)»
denote the kth components of Ac and Bc, respec-
tively. By inner product of two functions u, (x, y, z)
and u, (x, y, z) we mean

u, (x, y, z)u2(x, y, z) 3» 3»
( )XJZ

as in (5.10)..
We note that as a consequence of (5.11), the def-

inition (7.l) can be replaced by

G»,» =(I,+I,)!(m, +m, )l(n, +n,)! . (7.4)

Our problem thus reduces to the computation of a
and b from c.

As observed above the operators xyzH and xyz
are polynomials in the "simple" operators x, y, z,
B/Bx, B/By, s/Bz. Thus if we have a procedure for
finding the new coefficients in the expansion of the
wave function obtained by operating with any of
these on a typical function of the form

«(«, «, z)= Qd x (x, (', z), (7.5)
k=y

where

N, = (N+ v+1)(.N+ v+2)(N+ v+3)/6, (7.6)

we will be able by a combination of applying these
procedures and forming linear combinations of re-
sulting vectors arrive at both a and b. The reason
for introducing N„which is a generalization of
N, defined in (6.6), needs explanation. First it
will be noted that if N„&k ~ N„„ then X»(X, Y, Z)
has a monomial factor of degree N+ v+1. Ihus if
u(x, y, z) of (7.5) is multipled by x, y, or z the ex-
pansion of the resulting function will involve a sum
of N, +, terms. Acting with B/Bx, B/By, or B/Bz on
the other hand does not alter the number of terms
in the expansion, as is easily deduced from Eqs.
(5.16)—(5.18).

If the Hamiltonian H is expressed as a sum of
operators, its expectation value is the sum of the
expectation values of these operators; This de-
composition holds for the matrix A defined in
(6.7), and for the numerator of (6.11). Thus if the
xyzV can be. expressed as a sum of terms each of
which is a product polynomial in x, y, and z and
an exponential factor in x, y, or z, then their con-
tributions to the numerator of (6.11) can be com-
puted independently.

)(((+ (/2(t/f)n+ z/2 (7.j.0}

The principle effect of the absorption operator
e "" is-thus the replacement of the vector c with
the vector c whose components are given by (7.10).
A second effect is that when computing the effects
of the polynomial yzP(x) on c, it is necessary. to
use the parameters ~, s, t rather than ~, s, t. Let
us call the resulting set of'coeffi. cients a. These
now must be operated on with the N, xN„matr ix
G whose elements given by (7.4). N„ is the dimen-'

sion of a. We now have

c A(V;)c=c Ga, (7.11)

where A(V;) is that part of A a.rising from V;. But
the absorption factors of (7.10) can easily be
transferred to the vector Ga, and we have

(A(V, )c) = (s/s) ' ' '(t/t)"" '('Ga)„. (7.12)

In summary, to accommodate an exponential, we

simply include an absorption operatiori before a.nd

after the other operations and use modified param'-
eters.

A few minor points are in order. - The normaliza-
tion (5.9) of X, „(X,Y, Z) may not be ideal if N is
too large, leading to unwieldy values for Gk k, and
to small numbers for ck. To avoid this, an addi-
tional factor such as Ll mInt should be included in
the denominator of (5.9). If this is done (5.11) will
be altered and in consequence (7.4) will be re-
placed by

Gk &k2 8 l &l 2 gm &I& gn&n2

where

(n+m )
gnm=

)
.

(7.13)

(7.14)

The matrix elements Gk,k, should be computed as
needed from a look-up table containing the bino-

The objective here, when formirig matrix elements
such as (5.10), is to absorb the exponential factor
of (7.8) into the basis functions on either side. The
result of this absorption is given in (5.19) and
(5.20).

It follows from (5.20) that if we operate on (6.5)
with e "" that we get

«

j Np

e "*u(x,y, z) = Q c»g»(X, Y, Z), . (7.9)
k=1

where
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mial coefficients g„.
One final question remains: what values should

be chosen for the parameters r, s, and t. This
question is taken up in Sec. VOI.

algebra

(r + s) (s + t) (t +r) —rst
(8.2)

VIII. FIRST-ORDER APPROXIMATION

In order to carry out the procedures of Secs. VI
and VII some choice of values for the parameters
r, s;t must be made. Since our objective is to min-
imize the expression (3.11) we should ideally
choose these parameters so that (6.9) is as small
as possible. Such a choice would be difficult to de-
termine and would depend on-the value of No in
(6.5). Accordingly we will choose these param-
eters so that (6.9) is cl'ose to a minimum for the
simplest case, N, = 1. For this case it follows
from (6.1)-(6.8) that (6.9) reduces to

&& [(r+s)(s+t)(t+r) rst-],

92
&ooo~ x(y'+z'- x') ~ooo&

BP BZ

(t+r -s)(r+s -t)
8(rst)

(8.3)

and

&000) yz —~000& =-
ax 8(rst)'

x [st(s+t)+r(s'+st+t') -r'(s+t)], (8.4)

&a& = &000~ xyzH )ooo&/&ooo~ xyz [ooo& . (8.1) && [(rst)(r+s+t) —2(st)'] . (8.5)

To find a rough minimum for (8.1) one can use
any standard numerical method, calculating (8.1)
for different parameter values by the methods of
Sec. VII. If only the first-order estimate (8.1) is
of interest, this expression can be evaluated with
the aid of formulas. We note Eqs. (5.16)-(5.18)
simplify in the case when L,m, n are zero, so that
formulas for the various contributions to (8.1) are
not too complicated.

Using (5.11) and (5.13)-(5.18) we find after some

For a potential energy, which is a superposition of
Yukawa's, it is useful to also have

&000~ yze '"")000&

st[r(r+s+t+2q) -2(s+rt)(t+q)]
4 [r(s + q) (t + ti)]'

where use has been made of (7.12).
Similar formulas can be obtained by simultane-

ously cyclically permuting x, y, z and r, s, t.
For an exponential potential we note

4(s + rt)'(t+ q)'r' (8 7)

Powers of x can be introduced into (8.7) by differ-
entiating with respect to g.

CONCLUSION

The introduction of "triangular parameters" and
"variables" into an Hylleraas expansion leads to a
well-defined and straightforward problem when ap-
plied to the ground state of a three-body system
for a large class of interesting potentials. In gen-
eral, the solution of such problems through the di-
rect derivation and use of formulas can be quite
lengthy. The alternative methods of calculation of
matrix elements through use of algorithms for bas-
ic operators, as pr.esented here, should be a viable
and work-reducing alternative. This may be true
even for the first-order approximation of this sec-
tion, especially if a number of alternative poten-
tials are to be considered. This advantage derives

I

from the fact that it is not necessary to reprogram
to modify recursion formulas each time a
new potential is to be considered, since the action
of the various potential terms is constructed by the
programs from the descriptive parameters. In
fact, the action of all operators is constructed
from subprograms for the action of the simple op-
erators x, y, z, a/ax, a/ay, a/az and for the action of
an exponential factor. No significant gain in com-
puter efficiency is anticipated. Although the pro-
cedures developed here give an alternative way of
approaching three-body atomic problems, the re-
sults should turn out to be the same as those of

, Accad, Pekeris, and Schiff." These authors pre-
ferred an expansion using a product of Legendre
polynomials instead of the monomial factor we have
introduced in (5.9). This, however, does not work
out well for potentials involving an exponential fac-
tor. The present approach should be useful. in non-
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atomic three-body problems of nuclear physics and
in quark models. Programs for its application are
currently being developed. It should not be diffi-
cult to generalize the procedures to include excited
states, since this has been done for the atomic
prpblem. '"'" The results pf Calais and Lpwdin
should be helpful in this endeavor. Thakkar and
Smith ' wprk with an expansion pf the fprm
Z c, exp(-o. ,X —. P„E' —y, Z), resulting by optimal
choice of parameters, in accurate results with
fewer terms than Pekeris. " There are, of
course, four parameters per term. The proce-

dures introduced here could be adapted to such an
expansion, since the evaluation matrix elements
for 0 can be carried out in much the same way
c Ac is computed here.
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