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Application of the new fermion-antifermion equation to positronium anti the numerical solution
of its static-interaction limit, the Breit equation
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The fermion-antifermion equation derived recently is applied here to positronium with the aim of laying the
groundwork fotr a systematic calculation of the higher-order' corrections. An equation valid to the fourth
order: in the fine-structure constant is obtained which is equivalent to the corresponding equation deriv'ed

withiri the Bethe-Salpeter formalism. The static-interaction limit of this equation, the Breit equation, is then
decomposed into 'angular momentum states, whereby four second-order differential equations are obtained.
The resulting eigenvalue equations a're solved numerically using the appropriate boundary conditions at the

.origin. The resulting spectrum is in agreement with perturbative calculations.

I. INTRODUCTION

In previous publications" (hereafter referred to
as Papers I and II, respectively) a new two-body
formalism including a fermion-antifermion equa-
tion was derived within the context of quantum
electrodynamics. This formalism was applied to a
representative spectrum of quantum-electrodyna-
mical bound-state calculations for the purpose of
demonstrating its effectiveness in dealing with such
problems.

In this paper, we take a preliminary step toward
a systematic application of the fermion-antifermi-
on equation of Paper II to the calculation of the
positronium hyperfine structure. As is well
known, on account of its great complexity, the the-
oretical calculation of this structure is lagging be-
hind the experimental determination in accuracy.
Indeed, calculations beyond the leading-order cor-
rections are nontrivial, and those of sixth order
(in the fine-structure constant u) constitute a deli-
cate and challenging task. ' Our task here, how-
ever, will be a limited one, consisting of an anal-
ysis of the positronium equation through fourth
order as well as the decomposition and numerical
solution of its static-interaction limit, the Breit
equation. ' That such a task is both necessary and
worthwhile may be witnessed in similar calcula-
tions, including higher orders, within the custom-
ary Bethe-Salpeter bound-state formalism. ' Spec-
ifically, we shall use the procedures of Papers I
and II to reduce the exact system of functional-.
differential positronium equations to an ordinary
equation valid to fourth order in z. As expected,
this will be the Breit equation augmented by an ef-
fective potential representing the (corrected form
of the) Breit interaction and the vlrtua, l annihilation
contribution, both of which are of the fourth order.
We will then proceed to an angular momentum de-
composition of the Breit equation whereby we ob-

tain four second-order differential equations, two of
which are coupled. The appropriate boundary con-
ditions at the origin are then found and the result-
ing eigenvalue problem solved by numerical inte-
gration. The spectrum thus obtained for the first
~o Bohr levels is in complete agreement with
perturbative calculations. This establishes the
Breit equation as a viable and physically well-be-
haved static-limit relativistic two-fermion equa-
tion. In the course of the above analyses, we also
obtain the (known) effective potential representing
all fourth-order corrections to the nonrelativistic
(second-order) Hamiltonian.

The paper is organized as follows: Section II
presents the derivation of the fourth-order posi-
tronium equation and the associated effective po-
tential. Section III contains the angular momentum

. decomposition of the Breit equation, and Sec. IV
continues with a consideration of boundary condi-
tions at the origin and numerical solutions. Sec-
tion V presents our concluding remarks.

II. DERIVATION OF THE FOURTHARDER POSITRONIUM
EQUATION

In this section we shall start with the exact sys-
tem of functional-differential equations describing
positronium, Eqs. (7) of Paper II, and obtain
therefrom an approximate equation valid to the
fourth order in the fine-structure constant. Al-
though our basic procedure will be the same as in
Papers I and II, we shall here proceed in a more
detailed manner as well as repeat some previous
steps in order to facilitate a clear presentation of
the derivations.

Let us briefly recall that the formalism involves
an auxiliary vector potential A" which appears as
a dummy functional variable upon which the vari-
ous amplitudes depend and upon whose vanishing
the physical values of these amplitudes obtain.
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With the notation of Paper II (except for obvious
minor alterations), the positronium equations in

the center-of-mass frame and for equal times are

(i
—-h g xy = U~'~x+tf~ ~

y X xy
+ e [P(e) y(e) F)t(x) P(» y(e)F])(y)]

x S(x, y)C (x'=y'=t), ,(1)

where

a =I (')(x)+I (»(y),

I (e),(])(Xy) (e)(» ,.p + p(e)(»~,

U( ).(»(x) —yeP( ).(» ( ) (» y])(x)

The result is

-& )( = [U"(x)+U'"(y)+ U(x, y)])((x, y)at
+ e [P(e)y(e)F) (x) P(» y(»F) ( y)]

x S(x, y)C (x'=y'=t),

where

Zt(x, y) =-e' jd'zty, „(z,x)[l!(x-x)+tttz-y)],
and

U('(x) =ie d'z D„(z,x)
0 Z

(9)

(t)"(x) =A"(x)+) d'zD'"(z, x), ),
F„(x)= ie d'z D'„„(x-z) tr[y')((z, z)C];

C = iy'y'.
(4)

Here we have employed the usual bispinor notation
according to which a, Dirac matrix labeled (e) [(p)]
operates on the first [second] spinor index of its
operand, and orie without a label effects an ordin-
ary matrix multiplication. Moreover, the propa-
gators S and D which appear above are to be ob-
tained from the following Schwinger equations':

D, „(x,y)

=D'„„(x-y) —ie d'z d'z'D„'„(x —z)

-n'~ ~ e x +eg dt e(t —t') d''(t', x)) .
r

Here S and U are defined analogously to X and
U ', respectively. Note that the "electrostatic
field" A' has been integrated away and in its place
have appeared the electrostatic potential Q and the
higher-order corrections thereto (represented by
the VA' term).

Equation (9) is still exact. We now proceed to
omit from consideration self-eriergy contributions
and multiphoton exchanges, all of which contribute
to O(mn') and higher. These simplifications will
reduce the propagators D and S to their lowest-
order terms D' and S', 'U(x, y) to the Coulomb po-
tential Vc(x-y), U''(~ to

u"(x) = -en( A'(x)+ i d'z D,', (z —x)
5Bd z

x tr y ', D„(z', y),
5S(z, z)

g d(zy

(5)

x'"(y) =ezttP' e'(y) t d'ztt';;(z —y) ),
y

and Eq. (9) to

S(x, y) =S (x —y)+ e d'z S'(x -z)y„(I)"(z)S(z, y),

x(x, y).= e """x(x,y),

S(,y) = ""'"'S( y)

where

t)(x, y)=e Jdt e(t —t')[A'(t', x) —A''(t', y)].

(t)

(8)

where D' and S' are free propagators with an ar-
bitrary choice of gauge for the former. For con-
venience, we shall adopt the Coulomb gauge in the
present calculation. Note that Eqs. (5) and (6) con-
stitute a closed set and are independent of the po-
sitronium equations.

The first step in the reduction of (1) is the ex-
traction of the static Coulomb interaction. We
shall do this by integrating the' "electrostatic field"
as'in 'Papers I anxd D. We briefly recall that this
i's 'accomplished by 'means of the transformations

where

= [u ~ (x)+u ~ (y)]X(x, y)

"[P"y(„')f"( ) -P("y'„')f"(y)]

x S'(x -y)C (x'=y'=t), (IO)

ye(x)=te f d x'tt'„, (x —x')e 'z''*' tz[y'X(0, O)e].

Upon taking note of Eq. (8) of Paper II and the fact
that the total momentum I'" in the center-of-mass
frame has only a time component equal to the mass
of positronium E, we may convert the last equation
into

f'(x) = (-ie/Z')e ' " tr[y'X(O, O)C], (11)

with f' vanishing. Furthermore, to the desired
order of accuracy, F. in the denominator may be
replaced by 2m. Note that there are now two vec-
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tors A and 8 which appear as functional variables;
this change has the sole effect of preventing the
emission and reabsorption of a photon by the same
fermion. Also observe that the interaction 'terms
appearing in the right-hand side of (10) originate
in single (transverse) photon exchange in the for
ward (represented by the terms containing u) and
crossed (represented by the terms containing f)

channels.
We now proceed to convei. t the forward-exchange

contribution into a potential to the leading order.
This is most simply accomplished by considering
the interaction operator whose expectation value
will yield the first-order energy shift contributed
by u' +u ~ . That operator according to Eq. (22)
of Paper I is [see also Eq. (23) therein]

lim i dt't&u' (t') exp[-i(h -E')(t -t')] [6(t -t')A' —e(t' -t)A '] u (t)
A, 8~0

+ u ~&(t') exp [-i(h —E )(t - t')] (e (t - t')A' &' —e (t' —t) A -&'] u"(t)}, (12)

where A are the customary energy projection operators, and E' is the energy of the unperturbed two-
particle state. Note that in writing the above we have neglected the Coulomb binding in the unperturbed
states. Upon carrying out the implied functional differentiations, we can write the above operator (in con-
figuration space). as

-e' dt' exp -i e' +sf~ ~ -E t -t' D ' t -t', x-y' II) x-x'

& [e(t —t')A' (y-y') -e(t'-t)A &(y-y')]a&'&a, +exp[-i(e& &+a~' -E )(t —t')]
&&D ' (t —t', x'-y)5(y-y')[e(t t))A"-(x x') -e(t --t)A-&'&(x-x')]a'&~&'&}, (13)

where e, (ez) denotes an initial (final) energy. We
now observe that the dominant contribution to (13)
comes from photon momenta of the order of Bohr
momentum mz, for which the kinetic energies
[O(ma )] involved in e&, e)(, and Eo may be neg-
lected. Furthermore, only combipatiops which
render energy differences occurring in the expon-
ential terms negligible relative to the photon ener-
gy contribute to the desired order. This circum-
stance, together with the effect of the energy pro-
jection operators, reduces the four terms occurr-
ing in (13), respectively, to

g(A"UeA" +A 'UeA '),
,' (A' U, A-'-+A-U, A-),----

2 (A~+U As++ A+U)&A ),
-2(A 'UeA '+A U»A ),

whose sum, upon discarding the (negligible) terms
involving A, yields the (correct form of the)
Breit interaction

We are now in a position to assemble the time-in-
dependent, center-of -mass-frame positronium
equation to O(mu'):

EX(r) = [h&'&(r)+h& &(-r)+ V (r)+ Vs(r)]&&(r)

+ dr'V„r, r' y r' (16)

where

I

As is well known, U& is the interaction term ob-.

tained by Breit' op the basis of intuitive reasoning
and known to be incorrect. if treated beyond first
order. V~, on the other hand, js .correct to .order
ma' and agrees (to this order) with results ob-
tained within the 9ethe-Salpeter formalism. '

Finally we turn to the simplification of the vir=
tual annihilation potential. To the desired accur-
acy, we may replace S'.(0;x-y) in (10) by.
-&i5(x- y), which turns the virtual annihilation
term in (10) into (cf, Sec. IV. of Paper II),

(vu/m')e ' '5(x —y) tr[y&&(0, 0)C] ~ ZC.

(14)Ve(r) =A'+Us(r) A",
dr'V& r, r' X r' =

~ 5. r uC ~ tr yx 0 C

I

and V.(r) is defined by Eqs. (14) and (15), .

As repeatedly mentioned above', Eq, (16).is ac-.
curate to order mph''. , i.e., an, order a' i&igher, in,
accuracy than the, nonrelatiyjstip limit and the, f&rst
correction thereto. One could therefore define an
effective potential V'&'" accurate to O(m)u').
Clearly, V '&'" is the sum of the conti ibutions of
V» V„, and whatever O(ma') correction is pro-
duced by the Breit equation. The latter is calcu-.

where

= -o(&.'&&}&'&(5" V' v')V, (r—)
= ='(a&'& ~ oI&~&+ o«' rZ&~& r)V (r) . (15)

etc-. , and Uz is given by
r

U t%) =-Re'a('a} 'J " 'dt D"'(t";r}8(+t'')'
~oo

l
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lated in Sec. III where it is shown to be Ex( ) = t@"( )+ ~'"(=)+V( )]X(~), (17)

p' xnan(r) nL ~ S+e + +
4m m 2m r

where S is the total spin operator. Similarly, the
effective potential corresponding to V& may be im-
mediately obtained from its definition above (see
also Sec. IV of Paper II); it is

V„'"=(7(o.S'/m')5(r) .
The evaluation of V~" may be achieved by multiply-
ing out the Dirac matrices occurring in (14), and
retaining the leading-order contributions which
come from the even Dirac operators (i.e., terms
containing an even number of o.'s). This procedure
and some algebra lead to the result

where we are now denoting the Coulomb potential
by V. Although'we could equally well carry out the
same for the complete fourth-order equation (16),
we shall not do so, since the difference between
the two represents O(mo. ') contributions and is
not accurate beyond this order. Furthermore, the
main objective of illustrating the procedure of
solving a Breit-type equation is served equally
well, as well as more simply, by considering Eq.
(17).

It is convenient to revert to a matrix notation by
setting

x =4~. ,

which leads to

V~"'= —,
I
P'+ (r" ~ p)'] + ~Q 3 L S

2m r pl r

+
"™5(r)s(' ~ s'"+

Ett=H( -=I2 V+ o. ~ p+Pm, g], ,

where it is understood that

gp:—pg=--i%„g.

(18)

&& I3s(') ~ r s( ) ~ r —s(e)"s )' ],
where s represents a spin operator. Finally, the
total O(mo. ') effective potential is given by'

V(4)eft P [«2 ( «)2] ( )
4~3 2~2„

x —s&'&. s& '+—,, L S +
~ g ~ p 3 cv Qf

3 2 m' r' rn'r'

&& (3 s ' rs ~ ~ r~ —s' s~ ) . ~

Returning to Eq. (16), we remark that the
"range" of the annihilation term V&, which reduced
to zero as a consequence of our approximation,
was originally finite and equal to I/m as expected.
If one wishes, one may make the reverse replace-
rnent

It,(r)
2m' r

where K is the modified Bessel function of the
secorld kind to obtalrl an lnteractlon of flrllte
range. Of course, the two are equivalent within
O(mo. ').

Ne conclude this section by reminding the reader
that the contributions to V~' '' have long been
known in one form or another; here we have de-
rived them within the new formalism.

III. DECOMPOSITION OF THE BREIT EQUATION

In this and the following sections' we will present
the decomposition and numerical solution of the
Breit equation

Let us record the standard symmetry properties
associated with (18)." The operator H is Hermi-
tian under the inner product

&elk) = drt try'( )0r( )]r, (19)

which is inherited from the bispinor inner product
of Eq. (17). The (total) angular momentum opera-
tor J and its square are represented by

3(( =L0+-'r~, 4],
&')(=L'0+L [~,4]+

(2O)

(21)

where L is equal to r &&p as usual. The parity op-
erator I' is defined by

PP(r) =4 (-r)P. (22)

In addition to the above, the exchange symmetry
of the equation (induced by charge conjugation
symmetry) may be represented by the operator Q,
where

Q4 = t3~,4'~,P.
It is now a matter of standard procedure to veri-

fy that the Hermitian operators H, J', J„P, and
Q constitute a commuting set. The latter four may
therefort: be used to classify the possible states
in the usual way. As usual, it: is convenient to
use n'=(-1) P instead of P. We therefore denote
by Qz„~o a,wave function which is an eigenfunction
of the set J', &„))', and Q with the corresponding
eigenvalues &(&+1), M, &, Q [e.g. , Q~„+ has
parity (—1) and is odd under Q]. We will omit
the steps involved in the construction of the Q's
and directly state the results:
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4,u" =lk(f, +f,)+zP(f, f,-)
+a (pg, +px Lg, )ly&u(&), (24)

(V- e)' a -.- p' &&'(r)r'~= — +--+' 4m 2m'x~ 4m' m'

~... =[-'.& ~ L(f, f,)+-'4 I(f, f,)-

+P~ (Pg, +PxLg, )]y&u(&), ~-1 (25)

4 w-+ = (P&,g, + o"Lg, )you(~),

=4& [P(f~+g, )+px«(f, +g,)1

+~PE ~

[p(f~ g))+pxL(f, —g, )1

+&sFi+Po' LFJ I'zu(~),

(28)

(2'I)'

tr[~'y'(] = 0, (28)

and apply it to Qzz + to deduce that g, must vanish.
The vanishing of g, is similarly ascertained upon
insertion 'into (18).

The next stage in the decomposition of (18) is
the insertion of the Q's above therein and the ex- .

traction of the resulting radial equations. Again
we will omit the details and record the results.
For singlet states we get

[(V —e)f +2p g ]y~(r) =0,

[( 4m +V e)f, +2p~g, ]y,„P)= 0,

[p(f, +f,)- (& -V)(pg, +p«g, )]y,.(~) =o, (»)
where we have set ~ =2~+~, -& being the binding
energy. Some simple steps transform (29) into a
single equation for u~= f, +f,:—

y4ma(i —a)—,,(
r ' (('juz ——0, (30)

where

J(8+1) dm 2 d V-e'
y2 ' P" ~y2 y ~y ' 4~

Note that a is O(o2) and that to O(ma'), Eq. (30)
reduces to

where f„f„g„g„F„andF, are arbitrary func-
tions of &, unrelated from one equation to another.
In terms of the customary classification of the
states of a pair of spin-2 particles, Q~„+, repre-
sents a singlet state, Q»+ a triplet state with
L 4, and ((()zu a triplet state with &=L- I and
L+1. As for Q~„+, we can easily verify that it
is unphysical by verifying that it cannot satisfy
(18). To see this, we obtain from (18) the easily
derived constraint (cf. Appendix of Paper II)

(31)

+V —q u~~

4mg'+» — 1+r ~ V u~ ~= 0, J ~ &,

with the O(mo. ') effective potential given by

(V —e)' o.———,—
—,(1 +r ~ V)

4m 2m'y'3

-p Q
(34)

where we have dropped an inconsequential &-func-
tion term because L, =J ~ 0 in this case.

Finally, we turn to (t)zu, and define

5 =pf, +px Lf, , 8 =pg, +px Lg2, V= F —V.

Using these definitions, we may write the equa-
tions resulting in this case as follows:

[(2m —V) 7+2pF, —2ip x I.F, ]y~„(f)=0, '

[-(2m+ V)f +2pF, +2ip x LF, ]y~u(f) =0,

[VF, p(~+8)]y—.u(&) =o

[iL'VF. —(Lxf) (~-8)]y~u(&) =o

(35)

As in the above, these equations may again be
, simplified, but this time to one in terms of the
vector function A = F —9;

[(p ™—-) V )A —q p ~ A —(p x L)(ljL )(I.x q ) ~ A]

x y,u(i) =0, (38)

where

Next we turn to (t)z„+ (corresponding to, triplet
states with I. =&), where we obtain the equations

[(V- ~)fx+2iP %]I'zu(&) =0

[(4m +e —U)f, +2iI)'g, ] yz„(r) =0, (32)

[ pxI, (f, f,) -{z V)(pg, pxLg, )]y, ( )

As before, Eqs. (32) may be reduced to a single
one for uz~—= f, —f„.

2
+4 ma(1 —a) ——

Vl

x(1+r 'w)1u, , =0, 7-(. (33)

The corresponding equation to O(m o". ) is

e u — 4ma +p s
m 2m'r'

Thus the effective potential representing the
O(mn') energy shift for this case is given by

q =pin~.
It is clear from the definition of A that L A =0.

Using this property, we make the convenient reso-
lution
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A =A~ ~+.A~+, ,

A~, =(x+i n,r x"L)u~~,(x),

A~„=(i+in,rx L)uz ~„(r),
1 1

Q
I J ' ' a+1'

(SV}

defined are related to the original functions f„f„
g„and g2 according to

T T
QJ' l'-1 +EEZ d'+

=-'
s~ (A+gi) + (f2+v.) (33}
s J(J+1)

such that the two pieces of A represent the two
orbital angular momentum components of A;

L 'A J,F~~ =J(J—1)A~,Y'~„,

L'A~„F~u=(J +1)(J+2'}A~„Y~„.

, Let us also note. in passing that the functions just

T Tn, u~ ~, + z,u~ ~+,

1 8
(f, +g,) - —1+r

s (f, +g,).

Equation (36) may now conveniently be resolved
into a pair. of coupled equations for uq q, and
u~ ~„. These are

qJ(3+2J+2r ~ V') Jrq'
(2J+1)mr ' + (2Z+ l)mr

I

P': (J+1)(J+2) r, q(2+SJ+2J'+r ~ Yr Jrq'
m mx' ~'~" (2J +1)mr (2J + l)mr

q(J+1)(1-2J+2r ~ 9) (J +1)rq' r~I

~~

~

I
~

I
~J J~ I~

~» 0 7
»

40
(2J +1}mr (2J+1)mr

.where
8 8'

q = ln(1-2a}, q'= q.
. ,~7 . . . . . . . ~V

To obtain the O(mn ) equations, we first note that
to the desired order of accuracy,

Q', ' 1
2rnr' 2m ~r r '

given by

gg(J 1)
p van(lg (J 1)n
4 3 2 2 2 3 y

~,g, (J 1)
P' ver(r) (J+ 2)n

' 3 . . ~2: 2~2~3

(43)

(44)

n .9' 1, n 2q'=, — —, -'-. -4v5(r) +
251 .:9" " ' 'f' -':2':

Using these, we obtain the O(mn ) equations as
follows:

J(J-,1:)—'"+ i:- +(1'- &) ~ z-irn
' mW'- '

(J'- 1)n nr ~ V—4mq'-, :. ,~ 3 + . . ~, 3. gq ~, =0,
2m x ' 2' f'

(41)

P'„(J+'1)(J'+ 2)

4mg + ~ + 2 g
' u~ ~~g

—0 ~ ('42)

~ ~

~

(J+ 2)n nr ~ V

1

The corresponding O(mn4) effective potentials are

where we recall'that the (second) subscript on the
functions u ip all'cases itic.ates the orbital arigu-
lar- momentuln of the, ,none'elhi, vistic limit of that
function.

:The list. pier of equations inlay be-further simpli-
fied by noting that the expectation value of the op-
erator L 6 is equal to J—1 and —2- J for Eqs.
(41) and (42) respectively. Therefore the above ef-
fective potentials may be unified as in

P' xnan(r) nl ~ 5
4m3 + m2 '

2nZ2Z3

Actually, Eq. (45) also represents the effective
potentials of Eqs. (31) and (34), and it is therefore
the O(mn4) effective potential for the Breit equation
(17).

We conclude this section by summarizing the re
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suits obtained above. The Breit equation (17) has
been reduced to four second-order differential eq-
uations for four wave functions as follows: Eq.
(30) for the wave function uz describing singlet
states, Eq. (33) for u~r ~ describing triplet states
of orbital angular momentum equal to J, and the
coupled equations (39) and (40) for the wave func-
tions u«, and u J J„describing triplet states of
orbital angular momentum equal to J —1 and J+ 1

respectively. In all four equations the nonrelativ-
istic limit is apparent, and the lowest-order ener-
gy shift, which is of order me~, : may be obtained
from the effective potential given by Eq. (45).

IV. NUMERICAL INTEGRATION OF THE RADIAL.

EQUATIONS

In this section we shall briefly discuss the nu-
merical integration of'the equations obtained above.
Actually, the only nontrivial aspect of this task
is the singular behavior of the equations near the
origin. This phenomenon is familiar within the
context of the Dirac equation with a Coulomb po-
tential, and it is simply a consequence of the union
of first order -(second-order) differential equations
with potentials behaving like r ' (r ') or worse near
the origin. " Again, Bs in the Dirac-Coulomb case,
the smallness of o, renders the situation harmless.

We shall start by considering the behavior of the
equations near the origin:

8 n2 sr' + 3r ——J(J + 1)+ —u~ = 0,8t J

9r' —+3r ——J(J+1)+ +1 u~r~=0, J~ 1,J, J

u~ -~ "'0,
Oq 1 (53)

J J+JU, J
J+1 J+I+P, J

Note the appearance of the mixing parameter g for
the coupled equations. Clearly, as long as n.is
sufficiently small, the solutions with the upper
choice of sign can be picked out as the regular. one,
and the others discarded. More precisely, for
those values of e for which the choice of the lower
sign leads to a non-square-integrable function at
the origin, the corresponding Hamiltonian is self-
adjoint, and one obtains a discrete bound-state
spectrum. " In this way one arrives at the con-
dition ot'& 3 by considering the J = 0 states and im-
posing the condition just stated. Needless to say,
thi. s condition is well satisfied by the physical value
of o..

With the boundary conditions at the origin given
by the regular solutions of Eqs. (50)-(52), one is
left with the straightforward task of the numerical
solution of the eigenvalue equations (30), (33), and

(39). Aside from the boundary conditions at the or-
igin, the procedure is the same as with the ordin-
ary Schrodinger equation. Omitting the details of
the computations, we wi. ll only note that sample in-
tegrations carried out for several cases,' including
the first two Bohr levels, yielded energy shifts in
agreement with the perturbative results obtained
from Eq. (45) within the accuracy of the latter.

2(J'+ 1) s J'' ug "g
y 0 '

(49)24+ 1 Sy ~

The asyiiiptotic behavio'r of the solutions of the
above equations are=then given by

us y ~"J
J~ J

T - 1~vu J J f J
P (51)
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V. CONCLUDING REMARKS-

In this paper we have presented a complete an-
alysis of the new positronium equation to fourth
order. This has- entailed the rederivation of a
number of known results, customarily obtained
within the Bethe-Salpeter formalism, as well as
the decomposition and numerical solution of the
static-interaction. Br'eit equation. The latter has '

demonstrated the prope'r physical behavior of the
Breit equation, especially its short-distance prop-
erties, in some detail. This is of some impor-
tance, since the Breit equation is the only simPle,
static-interaction, 'relativistic, two-fermi. on equa-
tion which has been derived directly from field the-



1582 M. HOSSEIN PARTOVI AND A. JABBARIAN-LOTFABADI

ory. It is even of more significance for our work,
since the treatment accorded the full fermion-anti-
fermion equation (l) relies upon it as the zeroth-
order approximation. We have therefore thought
these results of basic importance in attempting a
systematic application to the calculation of the
spectrum of positronium, a task which we hope the
present work has facilitated.
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