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Induced transition probabilities and energies for the strongly coupled two-level system
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An exact method of solution to the time-dependent wave equation for a system interacting with a sinusoidal
field, which formally treats time and the phase of the field on an equal footing, is used to discuss (1) the
importance of averaging the properties of a system over the phase of the applied field and (2) the nature and
behavior of the characteristic exponents derived from the Floquet solution (with particular emphasis on the
frequency-sweep experiment). The results for the Zeeman tuning experiment are used to resolve recent
discrepancies in the literature which relate to the validity of Shirley s important result for the two-level

average induced transition probability involving the derivative of the characteristic exponents with respect to
the Zeeman splitting parameter 0JO. The explicit calculations included in this work are for the single-photon
two-level problem. Important implications can be inferred from them with respect to both the importance of
phase averaging and the usefulness of the characteristic exponents as a quantitative means of obtaining
resonance frequency shifts and half-widths for multiphoton and multilevel problems.

I. INTRODUCTION

The probability of a transition occurring between
two states. of an atom or molecule is, in general,
a function of time and the phase 5 of the sinusoidal
field inducing the transition. In most experiments
(see for example papers by Shirley' and Gush and
Gush') the initial phase of the field seen by the
atom or molecule is not well defined and then the
phase-averaged transition probability is of inter-
est. Finally, the long-time (steady-state) average
of this latter result corresponds to the physically
observed spectrum of the system of interest if the
effects of the perturbing field occur over time in-
tervals short relative to the important relaxation
times involved in the system. ' For weak fields
the phase dependence of the transition probability
is negligible. However, for strong applied fields
this is not the case and the failure to recognize
this point can and has led to difficulties associated
with evaluating the relevant transition probabilities
for intense fields (see Sec. II below). It is well
known" ' that the characteristic exponents or
dressed-atom energies associated with the solu-
tion of the time-dependent Schrodinger equation
yield the physically important resonance shifts
and half-widths for the two-level Zeeman tuning
experiment without the necessity of computing the
phase- and time-averaged transition probability.
Apparently, little attention has been given to the
analogous use of the characteristic exponents for
the corresponding frequency-sweep experiment.

Recently, ' an exact solution has been obtained
for the time-dependent wave equation of an N-level
system in a sinusoidal field of arbitrary strength,
frequency, and phase. This approach exploits the
time periodicity of the wave equation, and the
solution over the initial period of the Hamiltonian,

obtained by a matching power series technique, '
is used in an iterative way to obtain the complete
solution over arbitrary times and phases. The
solution can also be recast' in Floquet form to
permit the evaluation of the important time- and/
or phase-averaged properties of the system on
an equally efficient basis. Hence the approach is
ideally suited for discussing the importance of
phase averaging in the evaluation of transition
probabilities and is used in this paper.

The main purpose of this work is to stress the
importance of averaging the properties of a sys-
tem over the phase of the applied sinusoidal field
and to discuss the nature and behavior of the
characteristic exponents derived from the Floquet
solution with particular emphasis on the frequency
sweep experiment. In addition, discrepancies
recently raised by Ahmad' between his results for
the average induced transition probability and
characteristic exponents for the two-level Zee-
man-tuning experiment and those obtained earlier
by Shirley' are resolved. Difficulties in evaluating
average transition probabilities, analogous to
those encountered in Ref. 9, will also arise if
some"'" of the other available methods are used
for intense applied fields. While the calculations
discussed in this paper are for the single-photon
two-level Zeeman-tuning and frequency-s;veep
experiments, analogous problems arise in the
evaluation of multi-photon and multilevel transi-
tion probabilities, as discussed briefly in Sec. III.

The Hamiltonian H describing the interaction of
a spin- —,

' system with a static Zeeman field B, and
a transverse sinusoidal magnetic field 2B cos(cot+ 0)
is given by~'"

B=H, —yB, I, —2yB cos(&.et+ 5)I, ,

where I, and I„are the z and x components of the
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spin angular momentum I, y is the gyromagnetic
ratio, Hp is the Hamiltonian describing the system
in the absence of external fields, and ~ and 5 are
the frequency and phase of the applied sinusoidal
field. In the Schrodinger representation, the
coupled differential equations which govern the
time evolution of the spin- —,

' state amplitudes
a,. (t), j= 1, 2, are given in matrix form by

+ 2a cos((et+ 5) "" ' = 0, (2)
0 — a, (t)

where p, „=-y(--,' (I„(-,') = -y/2= p, „and E„ i -1,2,
are the. Zeeman split levels of the system, E,

+p+ p yBp and +2 +p p yB„where Ep is the
energy of the initially degenerate spin--,' states:
H, l +-,') =ED(+ —,'). lt is relevant to note the anal-
ogy "~ between this spin- —,

' problem and the cor-
responding problem concerning the interaction of
two electric-dipole-conriected levels with an
applied electric sinusoidal field.

II. INDUCED TRANSITION PROBABILITIES

The exact state amplitudes for the spin-& system
can be written in Floquet form""

a(t) = Z,((et+ 5) e'—'"" 'b, (5)

where the periodic matrix g, the real diagonal
characteristic exponent matrix 6 and the column
vector b„which contains the initial condition in-
formation, are defined and di.scussed in detail in
Refs. 7 and 15. In order to discuss the problems
associated with phase averaging and to relate the

work of Ahmad' and others' "' to that of Shirley'
we define the phase-dependent and the phase-aver-
aged'" steady-state induced transition probabilit-
ies P,,(5) and P,, respectively:

2 5/QJ

P„(&)=
2 Q I~»(~&+5)l'«l~, (5)l', (4)

p 0-1

P,, = — P;,(5)d5.
1
7T p

(5)

To compare directly with the results in Ref. 9 the
coupling parameter s = yB-/(2 &u, ) is introduced
where ~p =E,-E, = -yBp represents the splitting of
the energy levels caused by the applied static mag-
netic field. %hile it is not difficult, using the
approach of Ref s. 7 and 15, to evaluate a(t), P,, (5),
and P,-,- as a function of vp and e, we will limit
ourselves in this section to the case studied ex-
plicitly by Ahmad, ' namely P,&(5) (and P,,) for
&u=. &u, . Figure 1 shows P»(5), for 5=0, m/4, and
&/2, together with P» as a function of s; a brief
discussion of the calculational methods can be
found in Ref. 7, details are in Ref. 15. The os-
cillatory behavior of P»(0), including the values
of s = 0, , 1.23 —1.24 and 2.07 where P»(0) = 0.5,
coincides precisely with Ahmad's' description of
his computed average transition probability. Even
though both Shirley' and Ahmad' start with the
same sinusoidal perturbation, corresponding to
5 = 0 in Eg. (1), Shirley' does a further averaging
over initial times which is equivalent to our phase
averaging. This averaging, however, occurs as
a formal step which makes Shirley's method of
solution tractable and this phase-averaging step
has apparently been overlooked or omitted in some
of the more recent treatments' "of the problem
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FIG. 1. Phase-averaged
steady-state induced
transition probability, P22,
and the phase-dependent
steady-state induced tran-
sition probability P22(6),
6=0, 7t/4, x/2, as a func-
tion of s = —yB/(2p) for
cu = cup. The initial condi-
tion corresponds 'to a )(0)
=1.
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(see however, for example, Refs. 2 and 16). The
results in Fig. 1 for P»(m/2) and P»(m/4), to-
gether with P»(0), show the strong phase depen-
dence of the time-averaged induced transition
probability and illustrates graphically how P»(6)
can average, as a function of 5, to P» ~ 0.5 in
agreement with Shirley. ' The points at which P„
equals 0.5, as a function of s, correspond to
successive n-photon resonance peaks crossing
the line &u=~, in the frequency domain [s-0, n= 1;
s -1.23-1.24, n = 3; s- 2.07, n = 5; and so on].

III. CHARACTERISTIC EXPONENTS

The behavior of the Floquet characteristic ex-
ponents in the vicinity of the single-photon transi-
tion will be analyzed briefly in this section. The
implications of these results for higher photon
transitions will become clear in the discussion
that follows. It is a straightforward matter to
show that the characteristic exponents satisfy the
following relations":

E,+E,= -(u(a, + b.,+m), m =0, +1, +2, . . . (6)

~,' =4,. +n, n=0, ~1,+2, . . . . (7)

The first relation connects the characteristic ex-
ponents with the energy reference" E„=-E,
= —(E, +E,)/2, while the second equation follows
from the definition of the characteristic exponents
in terms of multibranched inverse trigonometric
functions and indicates that there are infinitely
many solutions for the b, that are connected in a
periodic manner. """'"The original interpreta-
tion of the plots of the characteristic exponents
versus co or e, was made by Besset, Horowitz,
Messiah, and Winter" in the rotating field ap-
proximation (which is not applicable for intense
fields) and the usefulness of these plots, especial-
ly for the Zeeman-tuning experiment„has also
been discussed by several authors. "' The posi-
tions of the anticrossings in the plots correspond
to the locations of the resonance maxima (and
dqtermirie the half-widths of the resonance pro-
files) while in the presence of a transverse static
magnetic field, "forbidden" transitions occur at
the positions of the level crossings.

The behavior of the d,.'s for the Zeeman tuning
of spin- —,

' states has been discussed in detail in
the literature, ' ' although some confusion has
arisen recently with regard to their physical sig-
nificance" and, in particular, to their "singular"
behavior in the transition region. ' The latter point
has cast some doubt on the validity of Shirley's
derivative formula [Eq. (26) of Ref. 1] for the
average induced transition probability due to an
apparent discontinuity in the characteristic ex-
ponents in this region. Our investigations show
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FIG. 2. Frequency-dependent characteristic expon-

ents in the neighborhood of the single-photon transi-
tion for the choice of energy reference E„=o The'
curves are labeled by the relevant values of the coupling
parameter p =- yE/(2~0). No discontinuity (interchange
of identity) occurs at any point in the frequency domain
and such plots will also retain. their symmetry at all
higher photon transition frequencies (Ref. 15). The
single-photon resonance peak occurs at the anticrossing
A

&
while the level crossing L2 signifies the position of

the "forbidden" two-photon transition.

that the discontinuity, which is nonphysical, can
be made to occur at random in the Zeeman-tuning
domain by an artificial adjustment" in the energy
reference E„and can be removed from the exactly
computed characteristic exponents by- choosing
E„=0 in agreement with Shi.rley. ' In particular,
there is no discontinuity at e = cv, as implied" by
Ahmad. ' The physical significance of the char-
acteristic exponents becomes obvious when E„=0
as. the quantities eh,. can be shown to coincide
precisely with the "dressed-atom" energies nu-
merically computed by Yabusaki, Murakami, and
Ogawa. ' This coincidence is not surprising when
one considers that an intense classical field cor-
responds to a high photon density in the quantized
field resulting in a classical behavior by the latter
as discussed, for example, by Shirley. ' Also the
choice of energy reference E„=O occurs natur-
ally in the fully quantized approach.

The behavior of the 6&'s for the frequency sweep
case is also important and has not previously been
discussed in detail. Unlike the Zeeman-tuning
case, the frequency-sweep 6&'s undergo a radical
change of behavior as a function of E„. In their
analysis of the problem, which involved a con-
tinued-fraction technique, Autler and Townes"
observed a very complicated behavior for the
~, 's as a function of + which they ascribed to the
jumping from one solution to another of the in-
finitely many solutions for the b, ,"s. Character-
istic exponent plots for the frequency-sweep ex-
periment are shown" in Figs. 2 and 3 for E„
= 0, 0.9, and 1.5 (keeping E2 —E~ = -yBo= eo = 1).
Figure 2 shows how these complications can be
eliminated by choosing E„=O while Fig. 3 shows
that when E„W 0 these frequency-dependent char-
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FIG. 3. Frequency-de-
pendent characteristic ex-
ponents corresponding to
(a) E„=0.9 and (b) E„=1.5
over the same frequency
domain as in Fig. 2 and for
the same values of the
coupling parameter g.
Moving tQe energy refer-
ence point E„out of the
branch [-0.5, 0.5] has
caused a dramatic change
in the behavior of the A~.
A discontinuity (interchange
of identity) in 4i and +2
occurs at the dashed lines.
Such characteristic expon-
ent plots will become
increasingly difficult to
analyze in the vicinity of
successive higher photon
transitions {Ref.15). In (b)
an ierchange of identity
occurs at M=coo, which is
not the position of A&. For
all the frequency-sweep
plots of Figs. 2 and 3, the
positions of the anti-
crossing A-& and the level
crossing 1.2 and the com-
plete spectra are indepen-
dent of the choice of E„.

acteristic exponents lose much of their inter-
pretive value and exhibit the same sort of be-
havior as described in Ref.19.

In general, the interchange" of identity be-
tween ~, and 6, in both the Zeeman-tuning and
frequency-sweep experiments has no effect on the
calculated physical observables for the system. It
is clear from these results that there is no physi-
cally important discontinuity in the characteristic
exponent plots for any choice of energy reference.
However, the less symmetric the plots of the 6, ,
the less useful they are for locating the positions
of the anticrossings and hence the less useful they
are for predicting the various characteristics of
the spectra assocated with the frequency-sweep
experiment. In both experiments the choice of
E„=O eliminates all problems associated with the
interchange of the identities of the 6,. and with the
symmetry of the plots.

The behavior of the characteristic exponents h~
in the neighborhood of higher photon resonances
will also depend critically on the choice of Ey+E2.
As long as this choice is confined" to the branch
[-0.5, 0.5j plots of the AJ's will remain informa-
tive and will provide accurate frequency shifts

and half-widths for various n-photon resonances.
This is particularly important for n& 1 since the
shifts are large and the widths are much narrower
than foi the single photon. case. Thus, it is im-
portant to have a tractable method for the predic-
tion of the positions of the resonance peaks for
multiphoton spectra that does not require a lab-
orious search involving the direct calculation of
substantial portions of the spectra themselves.
The results presented here for the two-level sys-
tem also have important implications for analogous
studies on multilevel systems. It is clear that the
phase of the oscillating field will also play an im-
portant role in such studies for intense fields.
The nature of the two-level characteristic expon-.
ents also suggests that their multilevel analogs
will remain well behaved and informative as long
as the energy sum g", ,E;: is confined to the
branch [-0.5, 0.5j. An extension of this study to
higher photon resonances and multilevel systems
will be the subject of future publications.
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