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Specific heat of the nematic, smectic-A and smectic-C phases of 4-n-pentylphenylthiol-4'-n-
octyloxybenzoate: Critical behavior

C. A. Schantz and D. L. Johnson
Department of Physics and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242

(Received 21 September 1977)

Alternating current microcalorimetry was used to measure the specific heat of 4-n-pentylphenylthiol-4'-n-
octyloxybenzoate in the nematic, smectic-A, and smectic-C phases. Critical exponents were found to be
consistent with the superfluid analogy of de Gennes for the nematic to smectic-A transition, i.e., a = a = 0
(logarithmic divergence). For the smectic-C to smectic-A transition, the data were consistent with
a'. = —0.54 and inconsistent with the superfluid analogy.

I. INTRODUCTION

Since de Gennes' suggestion' that the nematic-
smectic-A (NA) and smectic-A-smectic-C (AC).
phase transitions may be continuous by symmetry
and ought to have superfluid-helium critical ex-
ponents, there has been much experimental and
'theoretical effort spent studying them. Specific-
interaetion mean-field models of McMillan' and
Kobayashi' had previously confirmed the potential
for a continuous NA. transition; however, Halperin
and Lubensky' and Halperin, Lubensky, and Ma'
later showed that coupling between nematic direc-
tor fluctuations and the smeetic-A density wave, ' '
which was left out of previous theories, always
produces a first-order NA transition. For the
supercooling limit T,* they estimate T, —T,*)0.01
'K. 'The current experimental situation for the
NA transition is confusing. There is conflicting
evidence" concerning the question of a continuous
transition and concerning the value of critical ex-
ponents. Both mean-field and superfluid expo-
nents have been reported as well as exponents
apparently unrelated to either model. ' There are,
in fact, light scattering data' which, when inter-
preted according to the de Gennes' theory, suggest
the existence of more than one coherence length,
although more recent x-ray experiments' show that
this is not the case. There is clearly a need for
more experimental work ori the NA transition. Addi-
tional motivation for the work reported here
arises from the fact that the most extensive prior
work has been done on the compound cyanobenzyli-
dene octyloxyaniline (CBOOA) which exhibits
double layering' and, when pressure is applied
or a second component is added, "gives peculiar
phase diagrams. Theref ore, data on other com-
pounds are highly desirable.

Extensive theoretical work has also been done
on the AC transition. A mean-field model of Mc-
Millan, " though unrelated to de Genries' phenom-
enologieal Landau model, nevertheless agrees

that a continuous transition is possible, as does
a mean-field model due to Wulf. " Priest' s"
mean-f ield second- rank-tensor interaction model
also yields continuous AC transitions and was re-
ported to be consistent with superfluid-helium ex-
ponents as predicted by de Gennes. DeMoura,
Lubensky, Imry, and Aharony" have shown that
the helium analogy is not destroyed by coupling to
elastic degrees of freedom. Thus, theoretically
there appears to be some consensus concerning
the A.C transition, although the specific features
of the molecular. interaction responsible for the
phase are still very much in doubt. Experimental-
ly, there is less data on the AC transition than on
the NA transition and, as for the NA transition,
the evidence which does exist is somewhat con-
flicting. A recent light scattering study by Delaye
and Keller" of the softening of the tilt mode just
above the A.C transition in terephtal-bis-butyl-
aniline (TBBA) suggests mean-field behavior y =1.
Qn the other hand, tilt-angle studies below the
AC transition reported critical behavior in two
cases,"'"but classical behavior in another. "

The advantage of specific-heat measurements is
clear-cut for both the NA and AC transitions.
First of all very little high-resolution specific-
heat data is available for the NA. transition and, to
our knowledge, none is availabl'e for the AC tran-
sition. Furthermore, Landau theory predicts for
both the NA. and A. C transitions a simple finite dis-
continuity whereas the helium-analogy prediction
is, for both cases, a X anomaly or, more spe-
cifically, a nearly logarithmic divergence. These
two cases are easily distinguished from each
other experimentally.

We present specific-heat data for 4-n-pentyl-
phenylthiol-4-~'-octyloxybenzoate, which we shall
call 8S5." For the smectic-A. to smectic-C tran-
sition of 8$5, the data presented are consistent
with a cusplike finite discontinuity and inconsistent
with both the mean-field and helium-analogy pre-
dictions, whereas the nematic to smectic-A tran-
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sition data are consistent with a logarithmic di-
vergence as predicted by the helium analogy. The
data come from a- minicomputer-based ac-micro-
calorimetry experiment described below.

II. EXPERIMENT

a and b are related to the model parameters A and
and C by

a=1/R' b =C' .
I

We tested the model first for the empty calori-.
meter at frequencies in the range 0.01& co'& 0.06
rad'sec '. 4T was measured with thin flake
thermistors and T„was measured with a quartz
thermometer. Results of the linear- regression
analysis of these data are summarized in Table I.
It is clear from the coefficient of determination
that the lumped-parameter model explains the

(3)

The thermal configuration of the calorimeter and
lumped-element model of it are shown in Figs. 1(a)
and 1(b}. If an appropriate electrical heater cur-
rent is employed, the heat current Q will have both
a sinusoidal ac and a dc component. In the steady
state, the ac component Q„(t}induces an ac com-
ponent in the temperature difference between the
sample and the reservoir 6T(t) = Ts(t) —Ts, given
by

&T(t) = Q,R [1+ (+CR)'] ' ' sin art = 4T sin&et

for an appropriate choice of phase. A test of this
lumped-parameter response model may be made
by comparing values of Q, and b.T measured at
various frequencies ~ with the equation

(Q, /n, T„)'= a+ bto' . (2)

empty-calorimeter data very well in this fre-
quency range. Furthermore, an examination of
the last two columns of Table I shows that the
empty-calorimeter heat capacity C,«and the
thermal resistance R vary by only 0.15% and 1.0%,
respectively, over the entire temperature range.
Hence, systematic heat-capacity errors of less
than +0.001C,«age introduced through use of the
average values C «a and R in analyzing filled-
calorimeter data. This assumes that the data are
taken at some fixed frequency and C~ is calculated
from C~ = C- C,~, where C is found from Eqs. (2)
and (3) with B replaced by B.

All this, of course, assumes that the lumped-
parameter model is also valid for the filled
calorimeter. Over the range of frequencies 0.02
& ~& 0.2 rad sec ', which brackets the fixed fre-
quency e =0.1 at which data presented here were
taken, the lumped-parameter model was found to
be valid for the filled calorimeter to within +0.2%;
however, the optimum R was found to be 0.3%
lower than the empty-calorimeter value, a negli-
gible change. At higher frequencies, systematical-
ly lower values of C were found such that at co-0.4
rad sec ' this deviation reached —2%. Such a re-
duction of the apparent heat capacity is in the
right direction and of the right magnitude to be
accounted for by the thermal skin-depth effect.
The frequency dependence of the filled calorimeter
was measured at just one temperature 50 C, and,
of course, the skin depth is temperature dependent.
However, whereas the thermal skin depth" de-
pends only on the ratio (&o/tc)'t', where a is the
thermal diffusivity, and whereas we have shown
that increasing v by a factor of 4 from 0.1 to 0.4
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TABLE I. Condensed results of fitting the empty-calorimeter data taken at several temper-
atures and at frequencies in the range 0.01& co2& 0.06 rad sec to the lumped-parameter mod-
el defined in Eqs. (2) and (3).

Ts= Ts+QOR
('.C)

Coefficient of
determination

y2
a =1/R2

(W2'C 2 x10"4)
b=C~2
(J 'C 2) (J/ C)

R
('C W )

50

55

60

65

Average

0;9999991

0.999 9994

0.999 9993

0.999 9992

7.1627
+0.0585

7.1607
+0.0.479

7.286
+0.050

7.311
+0.055

7.230
+0.080

0.261 98
+0.001 4

0.261 30
%0.000 12

0.261 19
+0.000 12

0.261 96
&0.000 13

0.261 61
+0.000 42

0.51185
+0.000 14

0.51118
+0.000 11

0.51107
+0.000 13

0.51182
+0.000 13

0.51148
+0.000 41

37.36
~0.15
37.37
~0.12
37.05
+0.13
36.98
~0.14
37.19
+0.20

causes a —2% error in C due to. skin effect, we
may conclude that a nearly fourfold increase in
X, the thermal conductivity, would be required
to produce a -2% systematic error in C, since
C only changes by 40% throughout our range of
data. This seems unlikely even near a phase
transition. The effect is highly nonlinear such that
a threefold increase in ~ would produce less than
1% error.

The 4-n-pentylphenylthiol-4'-n-octyloxybenzoate
(8$5) used in this study was synthesized and puri-
fied by Neubert. The precursors of each synthetic
step were carefully purified and the final product
was recrystallized three times from ethanol. Ele-
mental analysis of the carbon, hydrogen, and sul-
fur content differed from the calculated values by
+0.02, +0.04, and -0.02%, respectively. Based
on this result and the synthetic and purification
procedures used, Neubert estimates the purity
to be somewhat in excess of 99.9%.

Using thermal microscopy, we have simulta-
neously compared the melting, smectic-C to
smectic-A, smectic-A to nematic, and nematic
to isotropic transition temperatures of the present
material with corresponding transitions of 8$5 used
by one of us in a previous study. " The latter ma-
terial was synthesized and purified by the Motorola
(Phoenix) group. Each of the four transition tem-
peratures of the present material agreed with the
corresponding transition temperature of the
Motorola material to within experimental uncer-
tainty of 0.05'C. Computer analysis of the fusion
curve of the Motorola 8$5, taken on a Perkin-
Elmer (DSC-2) differential scanning calorimeter,
indicated a purity of 99.9+% in agreement with
Neubert's estimate for the present material. We
conclude that the best estimate of the purity of the
material used in this study is 99.9+%.

III. DATA

The result of our measurements are shown
graphically in Figs. 2-4. From the data it is
clear that the NA and AC transitions are qualita-
tively different from each other. In the following
sections these transitions will be discussed and
compared with each other and with theoretical
predictions.

Figure 2 shows the specific heat of 8$5 in units
of the ideal gas constant R, . Distinct anomalies
are found at temperatures of 56.20 and 63.43 C,
which, to within experimental uncertainty, are
found by microscope observations to be the AC
and ÃA transition temperatures, respectively. A
nematic-isotropic transition is also found under
the microscope at 86.5 'C, and upon cooling a
monotropic smectic-C to tilted-smectic-B transi-
tion is found at 20'C ~ The melting point of 8$5
is 56.5'C which means that both the C and B
phases are monotropic.
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FIG. 2. Measured specific heat in units of Ro, the
ideal gas constant, vs temperature in degrees celsius.
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FIG. 3. Measured specific heat near the smectic-
A —smectic-Q transition vs reduced temperature t
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The present measurements indicate that any
entropy discontinuity at the NA or AC transitions
is less than 0.002R, . This estimate recognizes
that the rounding of the transitions could be due
to the coupled effects of latent heat and finite
temperature resoluti. on or to sample-inhomoge-
neity- induced two-phase regions. However, . the
amplitude of the applied teniperature oscillations
ranged from 0;045& 4T & 0.01 C depending upon
the distance (&T (= (T —T, (

from th. e transition
temperature T, . This finite temperature resolu-
tion is of the right magnitude to account for the
rounding of the transitions seen in Figs. 3(b) and
4. Further evidence favoring instrumental

,rounding for the NA transition is that Freedericksz
transition and light scattering studies" of the bend
curvature coefficient enhancement indicate that
T,*-T, & 0.006 K. This is less than the observed
rounding. Therefore the rounding may be entirely
instrumental. We return to this point in Sec. IVA.

The features of these transitions that stand out
iluite clearly in Fig. 2 are (i) the NA transition
discloses a &-like anomaly, whereas (ii) the A.C .

transition appears much more like a simple dis-
continuity, namely, an Ehrenfest second-order
transition. Upon closer examination of the AC
transition [see Fig. 3(a)] we see that there may be
a very weak divergence or, as in nickel, a cusp-
like singularity. The truth about this is obscured
somewhat by the rounding of the transition and the
temperature dependence of the smectic-A con-
tribution on the high-temperature side. Note,
however, that Fig. 3(a) shows an increasing slope
on approach to the AC transition from below. In-
deed the slope is seen to become quite steep and
is increasing quite rapidly just before the rounding
begins at

~
T/T« —1

~

-1.2 x 10 '. The implications
of a vex'y weak divergence, or cusp are important,
and will be discussed in Sec. IV. If we assume a
simple discontinuity and linearly extrapolate the
data to the midpoint of the rounded region, we
find &C = 6RO and T„c=56.20 C for the specific-,
heat discontinuity and the transition temperature,
respectively.

IV. ANALYSIS AND DISCUSSION

Both microscopic mean-field theories and Landau
theories have been written for the NA 'and the AC
phase transitions. Critical exponents have been
predicted and discussed. We proceed to compare
these theories with the data presented.

A. Nematic-smectic-A transition

I
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De Gennes' has predicted a superfluidlike
anomaly in the specific heat rather than a simple
discontinuity as in superconductor. In his theory
the specific heat should behave as

160
I

~ ~

~ ~ AC;= —,(it i-" 1).a+Zt fo. T(T. ,

C&' = —(~t
~

—1)+B+Et for T) T, ,
A
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(T/Tiff-1) x 10"

. 0.5

FIG. 4. Measured specific heat near the nematic-
smectic-A. transition vs reduced temperature times
10+. The reduced temperature is defined as t =—t T/TN&
—1] and TNz= 336.578 is the temperature where a
smoothed C& vs T is maximum. For N= 3 the data were
all increased by 2R0 for clarity.

with n=o. '-0, A-A'. For CBOOA, Djurek et al.22

found n =0.16+0.01 with n'=0. 14 +0.02 so that,
to within their estimated experimental uncertainty,
at = n'=0. 15. This is not consistent with the super-
fluid analogy, but is consistent with the three-
dimensional Ising model.

In our analysi. s we have included the E and B
terms to account for the background contribution
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TABLE D. Results of fitting the specific-heat data for 8S5 near the nematic-smectic-A
transition to Eqs. (4a) and (4b). The first two columns give the range of reduced tempera-
tures included in each fit and the third gives the standard deviation of the data from the best
fit. The last five columns list the best-fit parameter values and their standard errors.

A'

80)
C

(K)
B'

(Ro)

5.79 x10 1.27 x10" 0.48

5.79 x 10 5 6.12 x 10-3 0.35

5.79 x10 5 3.15 x 10 3 0.?9

6.98 x 10 5 1.41 x 10 2 0.24

6.98 x 10-5
I

5.76x10 3 0.23

6.98 x 10 5 3.39 x 10 3 0.25

6.198
+2.98
4.998

+0.638
4.74

+0.71

4.129
+0.128
4.043

+2.87
4.297

+4,04

0.0012
&.07
0.0042

+0.017
0.0041

+0.018

0.0001
+0.003
0.01

+0.09
0.0014

+0.12

336.588
%.0084

336.576
+0.002

336.574
~0.0018

Tc

336.585
+0.0014

336.582
+0.0064

336.583
+0.0063

117.67
+11
126.84
&.64

128.96
.07

129.45
+0.77

129.89
+11.3
127.99
+16.4

524
+151
1271
+107
1586
+185

60.7
+32
183.5

+255
183.8

+522-
V

t:—1 —T/To, where T() ——336.578 is the temperature at the center of the rounded peak (see
Fig. 4).

which we shall call the gegulay eo@tyibutign. " The
data were fitted by Egs. (4a) and (4b), using a non-
linear least-squares fitting technique known as
Marquardt's compromise, "and the results are
shown in Table II. The error bars are standard
error's in the parameters and include the effects
of all parameter correlations. '4

The results shown in Table II reveal several
points. (a) The data below the transition cannot
befitted wellby Eq. 4(a) for If' ~~ 6.12 x 10 ' but
a good fit is obtained for

I
t'I =3.15x 10 '. The

data above the transition fit Eq. (4b) for all three
values of It I with remarkably little variation
of A, at, B, and T,. These results were addi-
tionally supported by an examination of deviation
plots. (b) Scaling is statistically allowed by the
data in that n = 6 is easily true within the com-
bined standard errors. Furthermore, a = n'=0
is allowed as is A. =A'. Thus a logarithmic di-
vergence is consistent with the data. (c) T, = T,'
is statistically allowed. (d) B =B' is easily con-
sistent with the data, however E =E' is not. B
and B' have very reasonable values as can be seen
by examination of Fig. 2.

The failure of the E =E' hypothesis strongly sug-
gests that the E and E' terms in Egs. (4a) and
(4b) cannot be understood in the present context
as regular terms. A recourse is to replace them
by correction to scaling terms. " Since the data
for T & T, are consistent with E=O over a wide
range of

I
tI, deleting both Et and E'f' is valid

and consistent. Tables III and IV give the results
of fits to equations of the form

C~ =-4'ln t' (1+O'It' )+B',

Co =-X inl t I(1+B) t I")+B
(5a)

(5b)

subject to the constraint T, =T,', We have assumed
that 336.571&T,& 336.581 K. D and D' are the
coefficients of the correction to scaling terms.
Table ID shows that for T& T„and T, in the given
range, we must have 0.749 + 0.073 &x' & 1.07
+0.172. Therefore x'=0.5, which is predicted by
theory for three dimensions, "is not allowed by the
data. However x'=1, which is predicted theo-
retically for two dimensions, ' is allowed by the
data. For T)T, we found (not shown) that the
data allow either x =0.5 or x =1 because D«D'.
In Table IV we have taken x =x'=1. The results
in Table IV are interesting for several reasons.
First, we find that only for T, =T,' =336.576'K
is the scaling requirement" of equal amplitude
(A =4') consistent with the data. Second, for
T, =336.571 K the data above T, show substan-
tial systematic deviations, whereas for T,
=336.581'K the data below T, show substantial
systematic deviations; this justifies our assump-
tion 336.571 & T, & 336.581 K given x =x' = 1. Fur-
thermore, we find that BcB' and that P—= (B'-B)/
A-1 compared to the value I'-4 predicted theo-
retically" for three dimensions. Finally, we
found that removal of the several points near T,
having deviations in excess of two standard devia-
tions resulted in a substanti. al improvement of the
fit below T, but had no effect on the previous con-
clusions. The results of these fits are given at the
bottom of Table IV.2'
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TABLE III. Results of fitting the specific-heat data for 8$5 below the nematic-smectic-A
transition to Eq. (5a). The first two columns give the range of reduced temperatures included
in each fit and the third column gives the standard deviation of the data from the best fit. The
fourth column gives the critical temperature which was fixed and the last four columns give
the best-fit parameter values and their standard errors. Th'e standard errors do not include
correlations with Tc.

Sp) Tc D' x'

5.94 x 10 6.12 x 10

5.94 x 10 5 6.12 x 10 3

5.94 x 10 6.12 x 10

0.301. 336.571

0.331 336.576

0.363" 336.581

3.770
+0.269
4.676 .

+0.237
5.360

+0.209

138.441
+2.912

130.235
+2.40

124.487
+2.00

-30.031
+6.15

—37.64
+16.32
-58.01
+43

0.749
. +0.073

0.901
+0.115
1.07

i0.172

Deviation plot shows systematic deviation of data from best-fit curve by an amount approxi-
mately equal to the random scatter.

Data show systematic deviation from the fit curve of approximately two to three times the
random scatter.

It is of interest to compare our results with the
predictions of Halperin and Lubensky' (HL). They
predict that the smallest supercooling limit of the
NA transition is given by

&~m&n &c

where 48,„ is the minimum estimated entropy

(6)

TABLE IV. Results of fitting the specific-heat data for 8$5 near the nematic-smecticM
transition to Eqs. (5a) and (5b) with T, (T,') and X (X') held fixed as shown in columns 4 and 8.
The first two columns give the range of reduced temperatures included in each fit and the
third column gives the standard deviation of the data from the best fit. Columns 5, 6, and 7
give the best-fit parameter values and their standard errors.

(I tl.„) (ItI „) (o) Tc= Tc

B'
(B),

Dl

(D)

5.94 x10- 6.12 x10+ 0.325 4.377
&0.059 c

132.049 -71.82
+0.518 +3.56

5.254
+0.102
4.845

+0.066

4.908
+0.084
5.275

+0.078

4 543
+0.071
4.702

~0,.055
336.576

+0.094

(6.83 x 10 ) (5.76 x 10) (0.285) '

5.94 x 10+ 6.12 x 10+ 0.331

(6.83 x 10 5) (5.76 x 10) (0.251)

5.94 x10-' 6.12 x 10 0.361'

(6.83.x 10 ) (5.76 x 10 ) (0.229)

6.83 x 10 ~ 4.93 x 10 0.222

(1.28 x 10+) (5.76 x 10 ) (0.2113 (
6.83 x 10 5 4.93 x 10+ 0.226 336.578 +0.058

120.856
+0.866

128.518
+0.575

123.439
+0.718

125.33
+0.675

126.199
+0.613

129.720
+0.481

125.143
+0.792

128.535
+0.503

23.309
+2.52

-55.37
+3.26

18.814
+2 o37

-43.34
+3.27

12.293
+2.342

-62.55
+3.05

14.488
+2.54

-57.219
+3.00

0.311

0.304

0.319

0.217

These fits show, small systematic deviations near. T„but removing eight points below T,
having deviations in excess of two standard deviations and five such points above T, re-
sulted in the last three fits which show no apparent systematic deviations.

~o =[(N o'2+ N'o )/(Ã'+ N )]~, where N' and N are the number of data points above
and below T„respectively.

All uncertainties are standard parameter errors (Ref. 24). Correlations with T, and x
are not included.
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discontinuity and 4C is the underlying mean-field
specif ic-heat discontinuity. Since our instru-
mental resolution is 6T =0.02 K, we cannot make
a direct test of such a small supercooling limit.
On the other hand, if in Eq. (6) we may correctly
take 4C =B'-B, then experimentally we have .

hC- 5Rp and taking 4$-0.002RO our experimental
upper limit on 4$, gives 4T =0.07 K which is cer-
tainly greater than any experimentally allowable
value of T,—T,*, giving reason to suspect that in
fact 4$ «0.002R, . Furthermore, given A =A',
x= x'=1, e=n'=0 we may conclude". that T, —T,*
&0.002 C which is smaller than the HL estimate
of the lower limit of supercooling.

We may use our experimental value of &C =B'
-B, along with estimates of the zero-temperature
longitudinal and transverse coherence lengths ($,)„
and ($,)~, to estimate the width of the critical re-
gion 6T, using the Ginzburg criterion" as calcu-
lated for the smectic A by HL. They give

\

PT,
32''«(( )'(()' ' (7)

where hs is the Boltzmann constant. For ($,)„
=10 A and ($,)~ =3 A and ttC =5R„we get 5T,
-2.5'K, a reasonable value, though probably
somewhat small. One must note, however, the
very strong dependence of 5T, on (po)~ and (g, )~
which have not been measured for this compound
as yet. For CBOOA, a molecule with approximate-
ly the same size and shape as 8S5, x-ray scat-

tering measurements yield (e,)„=27.9 A and (c,)~
=4.82 A which would give 6T,-0.05'K, certainly
an unreasonable result for 8$5. Assuming that
27.9 A represents approximately twice the 8S5
longitudinal coherence length due to double
layering in CBOOA helps but not enough since then
6T, -0.4 'K which is probably an order of magni-
tude or more too small. We conclude that zero-
temperature coherence lengths significantly smaller
than the extended length and width of the molecule
are required if Eq. (7) is to give a, reasonable esti-
mate of the critical region for 8S5, given the
present measured value of ttC. Since 5T,/T, is
small, one expects the Ginzburg criterion, which
is based on mean-field calculations, to give a
reasonable estimate of the width of the critical
region.

B. Smectic-A-smectic-C transition

Equation (4a) was used to fit the data below T, .
The results are given in Table V. No attempt was
made to fit the data above T, because of strong
residual temperature dependence of the smectic-
A phase.

It appears that the data determine the exponent
z' quite well and that the value of n' is remarkably
independent of the range of data used in the fit, as
is 8' A'/n-'=C&(T, ). The best fit occurs for the
range 325.068&T&329.198 K. It gives T, =329;30
+0.10'K and n'=-0. 54+0.07. This value of n' is

TABLE V. Results of fitting the specific-heat data for 8S5 below the smectic-A-smectic-C transition to Eq. (4a).
The first two columns give the range of temperatures included in each fit and the last two give the range of reduced
temperatures. The third column gives the standard deviation of the data from the best fit. Columns 4-8 give the best-
fit parameter values and their standard errors. Column 9 gives the best-fit value of C&(T ).

Tmin N', p) Tc B' B'-A'/n'

327.018 329.311 0.141

325.068 329.311 0.136

325.068 329.286 0.138

325.068 329.268 0.136

325.068 329.249 0.132

325.068 329.198 0.126

325.068 329.311 0.137

322.318 329.311 0.137

329.308
+0.003

329.308
+0.003

329.279
+0.003

329.274
+0.012

329.271
+0.028

329.297
+0.100

329.317
+0.013

329.312
+0.006

27.35
~3.98
28.39
+2.42
33.96
+2.92
34.97
+4.76
35.90
+6.27
34.15

+11.04
17.03

+14.66
43.62

+17.30

-0.500
+0.022
-0.505
+0.014
-0.540
+0.014
-0.546
+0.024
—0.551
+0.033
-0.540
+0..066
—0.439
+0.111
—0.551
+0.050

86.76
~5.62
85.28
&.30
78.31
&.81
77.08
+6.00
75.93
+6.00
77.96

+13.36
102.90
+23.83
62.30

+24.32

57.34
+86.85
—81.86
+58.44

141.08 3.0 x 10 4 1.30 x 10 2

141.2P 4.55 X 10 4 1.3P x ]P

141.69 1.12 x 10 1.30 x 10

141.47 1.12 x 10 2.13 x 10

141.46 1.12 x 10 4 7.07 x 10

141.50 1.12 x 10 1.3p x 10 '

141.20 1.88 x 1p 4 1.3p x 1p '

141.13 2.43 x 10 1.3P x 10 '

(t[~~ =—(T~/To 1[, where To ——339.34—8 is the temperature
ence in Fig. 3, where it is called T&&.

(t)~ = [T~ /To —1( with T0 defined above.

where dC&ldT is maximum. Tp is also the zero refer-
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consistent" with the n-vector model for the cases
n-5-8, 'd=3 and n=2, d=2, . where n is the number
of components in the order parameter and d is the
dimensionality of the critical fluctuations. For-
comparison, de Gennes' theory' of the AC trat'nsi-'

tion predicts a logarithmic divergence (6'=0),
i.e., m=2, d =3. This theoretical result has-been
confirmed by others"'" and found to be unchanged
by coupling to elastic degrees of freedo'm. -The'
data presented here aie not consistent saith a
logazithrnic divergence. It appears that renewed
theoretical effort is in order for the smectic-A-'
smectic-C transition. It may be argued that the:
nematic-smectic-A-like fluctuations are inter-:
fering and that the present results are not typical
of a pure AC transition. We believe the cusplike
AC transition is indeed typical of an isolated"A, C
transition because we also observe it for 4-n-
pentyloxy-benzylidene-4'-n-heptylanline which
has a 10' smectic-A range above the AC transition
and very little residual A-phase temperature de-
pendence near T„~.

in fact consistent with the prediction for two-
dimensiorial:models. We note that it has been
shown that, due to divergent phase fluctuations,
the smectic-A phase, in common with n~2, d =2
systems, lacks -conventional long-range order."
The effect- of divergent phase fluctuations on criti-
cal fluctuations has not been studied theoretically.
%e conclude that in the asymptotic limit the
present experimental results are consistent with
de Qerines' prediction-that the nematic-smectic-A
transition is analogous with the superfluid transi-
tion in helium-4, but that a deviation may occur
in the leading correction to scaling term. The
close proximity of the AC transition prevents a
firm conclusion concerning this latter point.

The smectic-A to smectic-C phase transition in
8$5 is consistent with the exponent 0.'=-0.54
+ 0.07 which, in. turn, is consistent with then-vector
model for n =d =2 and n = 5-8, d =3. It is incon-
sistent with the superfluid analogy predicted
originally by de Gennes' and subsequently by
others ""4

V. CONCLUSION

The specific-heat data presented here are
asymptotically consistent with the de Qennes
superfluid analogy' for the NA transition (n = n'
=0). However, the highest-order correction. term
has an exponent x'-1 contrary to the prediction
x'=0.5 for three-dimensional models. The ex-
perimentally determined correction exponent is
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