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A simple method for observing coherent optical-transient phenomena is described. Effects such as photon
echoes and free induction decay (FID) should allow studies of the dynamic properties of atoms, molecules,
~and solids on a time scale ranging from milliseconds to ~50 ps. The frequency of a cw dye laser is switched
with an intracavity electro-optic modulator, producing in an external sample coherent transients which are
detected in the forward beam. Measurements of long dephasing times are possible, as in FID, because the
laser can oscillate indefinitely at the new frequency following a step-function switching pulse. Measurements
of short decay times are also practical because the switching time is not restricted by the laser gain or cavity
ringing time. In addition, the dye’s dephasing time of a few picoseconds or less is too rapid to interfere with
these observations. Since the pulse sequence can be preselected, the entire class of coherent optical transients
is accessible. The method thus incorporates all of the advantages inherent in Stark switching, including
heterodyne detection and high sensitivity, without being restricted to Stark-tunable sytems. Laser frequency
switching is discussed also in terms of a theoretical model which exposes the time-dependent properties of a
phase-modulated cavity mode. Dephasing studies have been carried out thus far in atomic and molecular
gases and low-temperature solids containing inorganic impurity ions or large organic molecules. The utility of
the FID effect is emphasized where precise dephasing times are obtained from time-frequency Fourier
transformation of FID signals using a digital computer. The first quantitative and detailed test of FID theory
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is provided by these experimental techniques.

I. INTRODUCTION

Optical coherence phenomena such as photon
echoes! and free induction decay? (FID) have been
detected recently using a frequency-switched cw
laser.® The advantages of this new technique,
which have been described briefly in a recent
Letter, 3 include simplicity and versatility. As a
result, the general class of coherent dptical trans-
ients* may now be observed in atoms, molecules,
and solids, and in a way which closely resembles
the spin transients of pulsed nuclear magnetic
resonance.® Since specific dephasing and dissipa-
tive processes of coherently prepared systems
can be examined selectively, these dynamic stud-
ies offer a new and attractive alternative to the
traditional line-broadening technique used so ex-
tensively in the pre-laser era.

In this paper, various aspects of laser frequency
switching are treated. First, the characteristic
behavior of a cw laser subject to arbitrary fre-
quency or phase modulation is examined. Even
though a large literature® exists on amplitude and
frequency modulation of lasers, many of the prop-
erties uncovered here are not appreciated gen- ’
erally. Therefore, an appropriate theoretical
model of a frequency-switched laser is developed.

The experimental details of laser frequency
switching are presented also, and limits are pre-
dicted for decay-time measurements in the very
fast or very slow time regions. Last, some ap-
plications of laser frequency switching are con-

sidered. The utility of the FID effect is emphas-
ized where precise dephasing times are obtained
from time-frequency Fourier transformation of
FID signals using a digital computer.

II. BASIC CONCEPT

Consider a single-mode cw laser beam of freq-
uency £ which initially excites an atomic-gas
sample under steady-state conditions. For'a
Doppler-broadened atomic line shape, as in Fig.
1, the atomic group having longitudinal velocity
v, will be excited resonantly. These atoms are
coherently prepared since each excited two-level
quantum system is in coherent superposition.
The entire collection of excited atoms constitutes
a phased array of dipoles which can emit or ab-
sorb coherent light. The well known atom-field
interaction is described by the Maxwell and Schro-
dinger wave equations, and the relevant theory
can be found elsewhere.”®

Now imagine that the laser frequency is abrupt-
ly switched to a new value &’. The initial velocity
group v,, which is no longer resonant with the
applied field, radiates a coherent beam of light in
the forward direction—the FID effect. Simultan-
eously, a second velocity group v} is excited co-
herently; this group exhibits the nutation effect.
if the laser is frequency-switched twice in suc-
cession in two brief pulses, the velocity group
v; emits a photon echo in the forward direction.
Evidently, by varying the pulse sequence the en-
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FIG. 1. Observation of coherent optical transients
by laser frequency switching is illustrated for the case
of a Doppler-broadened line. When the laser frequency
is suddenly switched from @ to Q’, the initially pre-
pared velocity group v, is no longer in resonance and
radiates the FID signal. Simultaneously, the group
v}, comes into resonance with the new laser frequency
Q' and exhibits the nutation effect. When the laser
frequency is switched twice by two successive pulses,
the group v} emits the photon echo.

tire class of coherent optical transients can be
observed in this manner.

Note that heterodyne detection occurs automa-
tically because the coherent light radiated by the
sample overlaps the laser beam in space and time
and the two are displaced in frequency due to the
laser frequency shift. Thus, the sample retains
memory of the initial laser frequency in the prep-
arative stage whereas the laser at its new freq-
uency acts as a local oscillator.

Laser frequency switching obviously resembles
Stark switching.® In the latter, the molecule’s
transition frequency is switched by a dc electric
field pulse while the laser frequency remains fix-
ed. From the standpoint of the atom, -the time-
dependent interaction is the same in the two cases,
and the two techniques are equivalent. However,
laser frequency switching is not restricted to-
Stark tunable systems, and with a cw dye laser, !
the broad tuning range permits quite general stud-
ies in atoms, molecules and solids.

We note that a variant of the above ideas has
been reported by Hall'* who observed optical
transients from a methane sample located inside
the cavity of a frequency-shifted 3.39-um He-Ne
laser.

III. SWITCHING THEORY

The possibility of frequency shifting a laser by
means of an intracavity electro-optic element
was mentioned previously by Yariv.!? Using a
steady-state argument, he calculated the laser

frequency shift which accompanies a change in the
refractive index of the electro-optic crystal and
corresponds to a new optical length of the laser
cavity. We prefer to examine the time-dependent
behavior of laser frequency switching in order to
clarify the dynamic aspects of the problem, par-
ticularly as they affect the observation of coher-
ent-optical-transient phenomena. The unique role
which dye lasers play in this regard will be dis-
cussed in Sec. IVC. ‘

We consider in Fig. 2 a cavity of optical length
L which initially contains a standing-wave optical
field:

E(z~,t)=Eo(ei(wt'k‘?)+ ei(whkz))*_]c'c.‘ (1)
of angular frequency
w=v2r/T , (2)

v being a large integer. The light wave therefore
circulates through the cavity in the round-trip
time

T=2L/c.

Assume that the cavity introduces no loss and
that an electro-optic phase modulator situated
next to one end mirror imposes a time-dependent
phase variation ¢(¢) on the light wave.

The nature of the problem can be illustrated by
considering only one runhing wave

E(z,t):Eoe““’""‘) , (3)

of Eq. (1), as it propagates through a modulator
located between z =0 and z =z, where its thickness
z2,< L. We assume for the moment that the phase
of this light wave )

¢=kz, ' (4)
at the position zv=z, is modulated by a ramp func-
tion

o(t)=pt, 0<t<t,

o@t)=dt,, t,<t

as indicated in Fig. 3 where the phase time deri-
vative ¢is a constant. The ramp begins at =0
and reaches its final value at £=¢,. Also note that

04‘ zy L

(5)

Pulser

FIG. 2. Schematic of an optical cavity of length I
containing a phase modulator ¢(f) of thickness z, adja-
cent to one end mirror.
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FIG. 3. Graphical representation of the periodic be-
havior of an electro-optically phase modulated cavity
mode for three different ramp times ¢;. The top curve
¢ (t) shows the phase modulation as a function of time;
the second curve 6 (¢) is the resulting phase of the
light wave; and the third curve ¢ is its time derivative
which illustrates the instantaneous frequency shift.
Time is measured in units of the new cavity round-
trip time 7/. In (@), £;=7' and the mode is shifted in
frequency by — 4. In (b), ty=qT’, where the integer
g=2, and the frequency is shifted twice. In ‘), t{<T’

and more than one mode is produced as explained in
the text.

the phase excursion (5) involves a double pass
through the modulator since it is adjacent to one
end mirror as in Fig. 2. :

Taking the time derivative of (4), we can write
the phase variation (5)

o(t)= dt = 2(w/c)z it ‘ (6) .

in terms of the modulator’srefractive index »
where the factor of 2 accounts for the double pass-
age mentioned above. The field at z =2z, then be-
comes

E(z,,8)=E et $t-ikes  0<pcy (7a)

E(Zx, t)= Eoei[wt-o(tl)]-iu,, t1< t< T (7b)

where the new cavity round-trip time is 7’. Equa-
tion (7a) indicates that the injtial frequency w is
shifted to the new.value w — ¢ in the interval 0
<i¢<t,. From (6), we see that the frequency shift

b=2w/c)zn

takes the form of a Doppler shift if we associate
z,# with the effective translation velocity of the
modulator. In the Appendix, frequency shifting
is treated for the analogous case where the end
mirror of the cavity introduces a Doppler shift
due to its motion. It is also evident from (6) that
for times £>¢,, the phase change ¢({,) implies the
additional retardation

AT=¢(t))/w=2z,/cYit, (8)

each time the wave train passes through the mo-
dulator twice. Thus, the light wave circulates
indefinitely at the new round-trip time

T'=T+AT. (9)

We see from this argument that the initial period-
ic behavior is not affected by the above phase dis-
turbance. Only the period is changed from T -7,
and this change depends on the final value ¢(t,),
not on the phase-time path. Furthermore, this
consideration is not restricted to a ramp function,
but would apply in general for ¢(¢) of arbitrary
form.

Since the phase-modulated field is periodic in
the interval 77, it can be expressed as a Fourier
series

E(x)= Y ae", x=2mt/T’ (10a) .

V=m0

where the amplitude of the vth mode is given by

T
a,:—lf E(x)e " dx=aX, v=0,+1,£2,...,
2 J_;
(10b)
its frequency is
Q=v21/T’, (10c)
and the new round-trip time from (8) and (9) is
T'=T+p(t)/w. (10d)

Whereas the mode frequency depends on ¢(Z;), the
mode amplitude depends on the specific form of
¢(t). In general, several modes might be genera-
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ted by phase switching. Some important cases
where one mode persists are treated below.

‘To proceed further, specific forms of ¢(t)
must be assumed and reveal still other features
of frequency switching. We continue to focus at-
tention on one running wave, Eq. (3), at the pos-
ition z =z, and again assume that it is phase modu-
lated by the ramp function Eq. (5). It will be con-
venient to express the periodic behavior of the
running wave prior to phase switching by

E@)=E(lt-T), t<0
and after phase switching by

E(t)=E(t -T)e**® >0 (11)
where the round-trip time changes from 7'~ T’
due to the phase factor e***) consistent with (7).

We may also express the phase-modulated field
in the form )

E(t)'-:E ei[whﬂ(t)]
0

where 6(¢) is the resulting phase. Inserting the
above expression into (11) yields the phase relation

0(t)= 6(t — T) — $(2) . (11a)

Equation (11a) states that the phase 6(#) at time ¢
is given by the phase at the earlier time ¢ — T plus
any additional phase modulation. It is apparent
that the phase advances each round trip according
to (11a). These ideas are illustrated in Fig. 3
where 6(¢) and its time derivative 6(f) are shown
for three different cases.

We now discuss three cases which differ only
in the time ¢, needed for the phase ramp to reach
its final value ¢(¢,).

A. Case 1: phase ramp, ¢, =T’
Assume that the initial field at position z=2z, is
E(t)=E'“t, t<0 (12)

before phase switching and that the ramp phase
function

o(t)=dt, 0<t<T’
o(t)=0(t,)= T, T'<t

reaches its final value in one round trip at #,=7".
In Eq. (12) and hereafter we drop the constant
phase factor e %, The simultaneous solution of
(10c) and (10d) for ¢, =T’ yields

T’=wl/(0-¢), (14)

so that the frequency of the initial mode v=wT /27
is now

Q=v21/T'=w-¢. (15)

(13)

The frequency is shifted downward by qb due to the

increase in the round-trip time, as expected.
The modulated field during the first round-trip
interval becomes

E(t)_.:Eoei(w-d‘)t’ o<t< T ) (16)
and from (11), in the second interval
E()=E(t - T)e T T'<¢<2T’. (1n

Successive applications of (11) yield the behavior
for all times as shown in the phase-time depen-
dence of Fig. 3(a). However, since E(¢) is period-
ic in the interval T’, knowledge of one peridd is
sufficient.

Inserting (16) into (10b), we obtain the following
Fourier amplitudes

a,=E,, v=(w-¢)/(2r/T")
a,=0, v=(w-¢)/(21/T")+1,+2,+3,... .

Hence, only one mode is produced. Since its freq-
uency according to (15) is R=w - cf>, it is apparent
that the frequency shift can be varied continuously
by vaying ¢.

From Eq. (16), we also see that the frequency
shift occurs instantaneously at the onset of the
ramp at ¢=0 as indicated in the 6 curve of Fig.
3(a). Obviously, decreasing the cavity ringing
time by relaxing the unit gain assumption will not

(18)

~affect this conclusion. However, the finite propa-

gation time of light through the modulator (zx/c
~50 psec) will introduce a distribution of phase
shifts which will limit the switching time. A more
detailed but more complicated boundary value so-
lution of Maxwell’s equations shows this beha-
vior.!3

This example also illustrates that once the init-
ial mode is frequency switched, the new frequency
persists as shown in the 6 curve of Fig. 3(a).
This would not be the case if the modulator were
external to the cavity as then the incident light
would be frequency shifted only over the interval
0<¢<t¢, when 4396 0. Thereafter, when ¢ =0, the
incident beam is not shifted. The numerous ad-
vantages of intracavity laser modulation, especial-
ly with dye lasers, will be taken up in Sec. IV.

B. Case 2: phaseramp,#, =q7',q=123...

Here, the modulation period extends over sev-
eral round trips ¢T’, where ¢ is an integer. The
initial condition (12) is assumed again, but now

(t)=pt, 0<t<qT’
o(t)=9(gT"), qT’'<t.

Proceeding as in (14) and (15), the retardation in-
troduced for ¢ round trips leads to the final freq-
uency

(19)



Q=w-gqd ) (20)

for the initial mode v=wT/27.
We have for the first round trip

’ E(t)=Eoei(w-5)t’ 0<t< T
and by application of (11) for ¢ round trips
E(t)=E " “=®t (4 _1)T'<t<qT". (21)

Inserting (21) into (10b), the following Fourier
amplitudes result:

av=E01 V=(w_q¢.))/(277/T’)
a,=0, v=(w-qd)/(2n/T")1,£2,3,... .

(22)

Here too, only one cavity mode appears where
the frequency according to(20) is = w —q<f>. This
is physically reasonable since each double pass
through the modulator produces an additional
frequency shift, as shown in Fig. 3(b).

C. Case 3: phase ramp, ¢, <T'

In this éase, more than one mode can be gener-
ated. The initial condition (12) applies, but the
phase ramp . )

o(t)=dt, 0<t<t,

reaches its final value ¢ = ¢(¢,) in less than the
round-trip time, ¢, <7T’. Utilizing (10c) and (10d),
the cavity modes in this example have frequencies
given by )

Q=vw/[v’'+ ¢(t,)/2], (23)

where the initial mode prior to switching is v’
=wT/2m.
In the first round trip, the fields are
= E gitw=-d)t <t<
E(t)=Ez , 0<i<t, (24)
E(t) =Eoe[wt-0(t1)] , t1< i<T,

Thereafter, this time dependence repeats period-
ically in the interval 7', consistent with (11).
Figure 3(c) shows this periodic phase-time be-
havior., The Fourier transform of (24) yields the
amplitude of the vth mode

E, pitw=d-)t; _ 1
vETr < (w-—0-0) i(w-v2r/T"

gmiotty)

a

x (ein' _ ei(w-vzvr/T')h)) , (25)

where the cavity frequency 2 is given by (23). It
is clear that in the lim, .r.aq,= E,, in agreement
with (18). Also, it is evident that more than one
mode now appears.

These few cases illustrate some of the major
properties of laser frequency switching and out-
line how others can be treated as well.
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IV. SWITCHING TECHNIQUE
A. Apparatus

The experimental arrangement shown in Fig. 4
consists of a cw dye laser having an intracavity
electro-optic phase modulator. A dc electric field
ramp pulse applied to a modulator crystal of length
z, induces a time-dependent index change, as de-
scribed in Eq. (6), producing an optical phase
shift

¢(t)=2(w/c)z nt

in an incident beam of angular frequency w. As
explained in Sec. III, the time-dependent phase
variation shifts the initial frequency to a new
value. Because of the arguments discussed in
Sec. II, a resonant sample placed in the path of -
the external laser beam generates coherent ab-
sorption or emission transients in the forward
beam. The emerging light is monitored by a fast
photodiode and a sampling oscilloscope which is
interfaced with a computer for data storage and
subsequent data handling.

Electro-optic modulator: The geometry of a
Lasermetrics electro-optic phase modulator'*
element is given in Fig. 5. It is an X-cut crystal
of ammonium dideuterium phosphate (AD*P).
Voltage pulses applied in the X direction induce a
significant index change along the E direction
only, the polarization direction of the laser beam
as shown. The crystal is immersed in an index
matching fluid between antireflection coated win-
dows. Insertion of the modulator unit in a cw dye-
laser cavity reduces the output power by about
50%. :

Pulsers: Various square-wave pulse generators
have been used as modulator drivers including

cw Dye Laser

Oscilloscope

Dye
Stream

Detector
.

giimti

Generator

FIG. 4. Schematic of apparatus for observing co-
herent optical transients using a frequency-switched
cw dye laser. Taken from Ref. 3. -
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Electro-Optic Crystal: ADP

Electrodes E
Laser’(

Beam E

FIG. 5. Geometry of the electro-optic phase-modula-
tor crystal ammonium dideuterium phosphate (AD*P).

the Hewlett-Packard HP 19004, ‘the HP 214A, and
a Huggins pulser where the pulse rise times are

7, 14, and <1 nsec, respectively. The first two
operate in a single- or a double-pulse sequence
and are triggered repetitively at a 25-kHz rate.
The third generator produces a 100-nsec square-
wave pulse at a 60-Hz repetition rate. Frequency
shifts of 0.6 MHz/V are observed in the above
modulator, as indicated by the beat frequency of an
FID signal of I, vapor. The maximum shift detect-
ed thus far is about 300 MHz, which compares to
the laser’s axial-mode spacing of 390 MHz. Above
this frequency an additional axial mode is frequen-
tly noted.

Laser source: Either a Spectra-Physics 580A
or a coherent 599 single-mode cw dye laser is
used where the axial-mode spacing is 390 and 283
MHz, respectively. The dye is Rhodamine 6G.
The output is linearly polarized and exhibits with
the intracavity modulator a maximum power of
~50 mW in a 0.5-mm beam diameter.

Detection: A P-I-N photodiode HP 5082-4227
possesses an intrinsic response time of ~1 nsec
and is matched to a B and H Electronics Co.
preamplifier having a 130-psec response time and
20-dB gain. In most of the work reported here,
another preamplifier with ~1 nsec response time
and 26-dB gain was used. The detector output is
monitored using a Tektronix 7904 oscilloscope
with a 7S11 plug in sampling unit and type S-5 or
S-4 sampling head having an ultimate response
of 1 nsec and 25 psec, respectively. An IBM
System 7 computer provides a digital time base
which sweeps the time axis of the oscilloscope in
steps while sampling and storing the time-aver-
aged signal amplitude point by point. Typically,
1024 data points are swept in a 2-min interval.

B. Performance

A direct measurement of the laser frequency shift
is illustrated in Fig. 6. By means of an opticaldelay

FIG. 6. Direct measurement of laser frequency
switching. A 370-V step-function pulse (lower trace)
applied to the AD*P modulator produces a 210-MHz
laser frequency shift as seen in the heterodyne beat
signal (upper trace) of the shifted laser beam and an
unshifted component, which is retarded in an optical
delay line. The time scale is 5 nsec/division.

line, the unshifted cw laser beam is delayed and then
recombined with the frequency-shifted beam to pro-
duce a heterodyne beat signal at a photodetector. A
beat frequency of 210 MHz, shown in the upper trace,
results form a 370-V step-function pulse (lower
trace) applied to the AD*P modulator, Note thatthe
beat signal is delayed relative to the voltage pulse
because of the time required for light to travel
from the laser to the photodetector. The beat
signal lasts ~20 nsec because that is the pulse
width of the unshifted beam. '

Figure 6 shows that the beat signal appears in
~1 nsec, which is the response time of the pre-
amplifier and detector. There is no slow buildup.
Clearly, the switching time is not limited by the
laser cavity ringing time of ~20 nsec. According
to Sec. III and Fig. 3 in particular, the frequency
shift occurs instantaneously, but as already men-
tioned, this conclusion cannot be sustained. The
finite length 2z, of the modulator introduces a
distribution of phase shifts corresponding to dif-
ferent transit times z,c/c~ 50 psec, which is per-
haps the limiting response time for this modula-
tor configuration and at present cannot be detect-
ed.

Examples of coherent-optical-transient effects
are given in Figs. 7-9 for free induction decay
(FID), nutation, and the photon echo effect. The
-sample is I, vapor at a pressure of ~30 mTorr,
and the transition (v,J)=2,59—~ 15,60 of X X}

- B®Il 4, falls in the visible region at 16956.43
cm™, ~8 GHz above the lower-frequency sodium
D line. Figure 7 is-a computer plot of 1024 ex-
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FIG. 7. Computer plot of 1024 experimental points
showing the free induction decay and nutation in I,
vapor at 30 mTorr under conditions where both appear
simultaneously. The transition (v,J)=2,59—15, 60
of x!=% — B M+, occurs at 16956.43 cm™ 1. The dye-
laser power is 7 mW and the beat frequency is 32 MHz
corresponding to ~ 50-V pulse. For other conditions
see Sec. IV.

perimental points which have been stored in a
single run. The heterodyne beat frequency of 32
MHz easily distinguishes the FID signal from the
slowly varying nutation signal following a step-

function switching pulse of ~50 V." Figure 8 shows an

FID signal for a ~90-V pulse, the beat frequency
being 34 MHz. In Fig. 9, a two-pulse sequence

Absorption —p

m—>p

I 1
200 300

Time (nsec)

I
0 100

FIG. 8. Free induction decay in I, where the laser -
power is 1.9 mW and the beat frequency is 54 MHz cor-
responding to ~ 90-V pulse. The nutation frequency
is smaller than in Fig. 7 because the laser power is
lower.
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FIG. 9. Photon echoes in I, occurring at ~1 usec
where the successive echoes decay with increasing
pulse delay time following two laser frequency switch-
ing pulses. Other conditions are the same as in Fig.
7. Taken from Ref. 3.

results in the photon echo which is shown for
three different pulse delay times.

It should be mentioned that laser frequency
switching can result in small changes of the laser in-
tensity. This effect is noticeable when the laser fre-
quency is shifted far off the peak of the response
curve of the thickest intracavity etalon. Ampli-
tude modulation is minimized by locking the peak
transmission point of the intracavity étalon to the
laser cavity.

C. Advantages

It is now possible to summarize some of the
advantages inherent in the laser-frequency-
switching technique. (i) The entire class of co-
herent-optical-transient effects can be monitored
since the electronic pulse sequence can be tailored
to the particular experiment of interest. (ii) The
dye laser performs a unique role here because
its dephasing time is only a few picoseconds and
therefore is incapable of generdting coherent
transients of its own, which on a longer time scale
would obscure the measurements. Gas lasers '
such as the Ar* laser are unsuitable, for example,
because we have found that they exhibit coherent
transients on a ~10-nsec time scale when frequen-
cy switched. (iii) The only transient observed is
the desired coherent transient itself; this is not
the case with pulsed laser sources as the small
coherent transient signal often rides on top of
the laser pulse and the two are not easily sepa-
rated. (iv) Heterodyne detection occurs automa-
tically. This identifies the emission signal and
increases the signal amplitude by several orders
of magnitude. (v) The method is also quite sen-
sitive. Free induction decay signals have been

- observed at a laser power of 50 uW and with as

few as 5 x 10° I, molecules. In more strongly ab-
sorbing systems and with more efficient signal
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averaging, these numbers may be reduced even
further. (vi) The method is extremely simple,
and while it is similar to the Stark switching
technique, the difficulty of being restricted to
Stark tunable systems is removed. (vii) Decay-
time measurements should be feasible over a
very wide range, from milliseconds to ~50 psec.
Moreover, when these features are combined
with the broad tuning range available in a dye
laser, it is apparent that coherent-transient
phenomena can now be observed with ease in a
large number of optical transitions in various
atomic, molecular, and solid state systems.

D. External modulation

When the atomic decay time is less than the
round-trip time of light in the laser cavity, in-
tracavity modulation serves no purpose. In this
circumstance, the phase modulator might as well
be outside the laser cavity. For external modu-
lation, the frequency shift occurs only as long as
the modulator’s index is time-varying, i.e., as
long as the applied modulator voltage continues to
change. When the voltage assumes a constant val-
ue, the transmitted beam is unshifted.

This mode of operation contrasts with intra-
cavity modulation. In the latter, the frequency-
shifted light does not escape primarily into free
space, but rather is stored in the cavity. Thus,
the laser exhibits memory of the frequency shift.
When the modulator voltage reaches a constant
value, -as discussed in Sec. III, the shift remains
constant also. As a result, very long decay times
(T,> 2L/c) canbe measured, whereas with ex-
ternal modulation the required voltage would be
prohibitive. For example, in our FID studies of
I, vapor a 50-V pulse with a 7.5 nsec rise time
produces a 30-MHz shift. In the case where the
modulator is external to the laser cavity and as-
suming that ¢, =7’, the same voltage ramp pro-
duces the same frequency shift but now the ramp
must be maintained over the duration of the ex-
periment, i.e., over the dephasing time T, ~1
usec, and this implies a voltage rise of 6500 V.

E. Telle-Tang modulator

A very different manifestation of rapid electro-
optic tuning of a cw dye laser has been introduced
by Telle and Tang'® and perhaps some comparison
should be made. In their device, the intracavity
electro-optic crystal is driven sinusoidally at ex-
actly twice the axial-mode frequency. The time
variation of the modulator’s refractive index
sweeps the optical cavity length continuously, and
hence a distribution of frequencies circulates
through the cavity. A rather impressive sweep

of ~100 A in a few nanoseconds has been achieved.
However, in this steady-state device, it is not
possible to preselect a particular frequency in an
arbitrary pulse sequence, as in the method des-
cribed in this article.

V. APPLICATIONS

The coherent optical transients discussed here
and in an earlier Letter® offer new ways for ex-
amining atomic and molecular collisions as well
as dephasing mechanisms in solids. These time-
dependent interactions which often give rise to
a narrow homogeneous line shape'can now be
extracted from the much broader inhomogeneous
profile. In preliminary studies of I, vapor,® the
line-broadening contributions of dephasing and
depopulating collisions could be distinguished.
Laser frequency switching has been extended also
to Na vapor*S and to impurity ion solids at liquid-
helium temperature, such as Pr* in a LaF, host
crystal'” and the F,;* center in NaF.!® In addition,
organic mixed crystals such as pentacene in p-
terphenyl have been examined by this technique.!®?®

In this section, we wish to emphasize the impor-
tance of the FID effect in dephasing studies and
examine its characteristics further. For exam-
ple, in Figs. 7 and 8 we see that the entire decay
behavior is obtained conveniently in a single burst,
in contrast to an echo experiment where the pulse
delay time must be advanced repeatedly. Because
of the sensitivity afforded by optical heterodyne
detection, weak transitions can be examined, and
also, the laser power may be low so that power
and inhomogeneous broadening do not seriously
affect the decay rate. In comparison, the echo
experiments require higher laser intensities where
the pulse areas approximate 7.

Free-induction-decay experiments for I, are
presented here which explore the dependence of
the decay rate and amplitude on laser intensity
and thus provide a quantitative test of earlier FID
theories.»?' Precise dephasing times are obtained
by Fourier transforming the FID signals, a tech-
nique which we now describe.

A. Fourier-transform spectroscopy

In an earlier Letter,? Doppler-free infrared
spectra were derived from molecular coherent
transients using Stark switching and a digital
time-frequency Fourier-transform method. Here,
the same Fourier technique is adapted to the visi-
ble region using laser frequency switching. The
spectrum -

E(w):le%—) J: E@)ettar (26)



is obtained by Fourier transforming the time-de-
pendent optical field amplitude E(¢). For digital
evaluation, we replace the integral (26) by the
sum '

N
E(w)=7(227) 2;; [E(t) - E(T)] coswt , (27)

where
t=nAt, n=0,1,2,...
w=lw,, I=0,1,2,....

In the above, 7 is the finite duration of the trans-
ient signal, Atf is the increment that time advances
from one datum point to the next, and thus N=7/At
"is the number of data points, which in a given ex-
periment are stored in a computer. The frequency
wo=2m/7 defines the smallest resolvable interval.
In Eq. (26), we have symmetrized the field about
the time origin so that E(¢)= E(-t) and therefore
only the cosine term need be retained. To trun-
cate the integral and also to avoid a discontinuity
in E(¢) at t=7, which otherwise would introduce
undesired Fourier components (for example a
& function at the origin w=0), we have also re-
placed E(¢) by E(¢) — E(T), making the last point
zero. In addition, the time origin of the initial
point E(¢=0) must be carefully selected from the
experimental points otherwise the spectral lines

Arbitrary Units

x = Experiment

—— = Theory

L | 1 L S 1 L - 1
20 30 40 50
Frequency (MHz)

FIG.10. Computer plot of Fourier-transform spectrum
of an I, FID-nutation signal similar to Fig. 7. Only the
FID portion of the spectrum is shown where the center
frequency is 32.83 MHz and the Lorentzian line shape
has a FWHM value of 4.11 MHz. The nutation spectrum
appears at ~1 MHz. The laser power is 4 mW and other
conditions are the same as in Fig. 7.
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will be partly dispersiverather than absorptive.

Figure 10 shows the Fourier transform of a
transient signal similar to Fig. 7. Whereas the
nutation and FID signals overlap in time they are
separable in the frequency domain. The nutation
spectrum, which is not shown in Fig. 10, appears
at ~1 MHz while the FID line peaks at a beat fre-
quency of ~33 MHz and without any background.
Here, the pulse voltage ~50 V. The experimental
points (X) closely follow a Lorentzian line shape
(solid line) given by the Fourier transform of a
damped cosine.

E(t)= E(,e'f‘ coswt .

A least-squares fit yields the center frequency
w/27=32.83 MHz ,

and the linewidth at FWHM
w,/,/T=4.11 MHz ,

where the dephasing rate I'=w,,,. The high pre-
cision of about one part in 400 in the linewidth
determination is due to the excellent signal-to-
noise ratio of the transient signals and the high
data handling capability of computers.

B. Free induction decay

Before proceeding withthe FID measurements, we
briefly review the resultsof arecent FID calcula-
tion.?* We assume that the sample is coherently
prepared under steady-state conditions and then
freely radiates a coherent beam of light after the
laser frequency is suddenly switched. - Neglecting
unimportant factors, the FID heterodyne beat
signal for the optical transition 2-1 is of the form

(30 (1 - )

x exp{-[T'+ (I'2+ I'21/2]¢} coswt. (28)

The bracket ( ) signifies that an average is per-
formed over the Doppler line shape in the limit
where the free induction decay rate

T=T4+(r2+2)/2 (29)

is considerably) less than the Doppler width, i.e.,
T <ku. Thus, Eq. (29) depends on the dipole de-
phasing rate ’

r=1/T,=3(T,+T)+T,, 7 (30)
and a power-broadening term
2= (x20 /20, T,)(T, + T, -7), (31)

where the upper and lower levels, labeled 2 and
1, respectively, depopulate at the rates I';and T,
the rate of phase interrupting collisions is T',;
and 7 is the radiative spontaneous emission decay
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rate for the 2— 1 transition. The Rabi frequency
is given by x = u,,E,/7% with i, the transition di-
pole moment and E; the laser field amplitude.

We are now in a position to discuss the depen-
dence of (E%(#)) on laser intensity which is given
by the preexponential factor of (28),

¥ [1-T/(r2+12)1/2],

Clearly, at higher laser intensities when 12/
m>1, '

(E2(t))~Xx%eTt coswt . (32)
At low laser intensities when £'2/T2« 1,
~ -T 6 .. p
(E3(@#))~ x'e™* coswt+O(X*)+++ - . _ (33)

Inorder to test the above theory, the intensity de-
pendence of the FID amplitude {(E(#)) was measured
for I, vapor. The experimental conditions were
those of Sec. IV, but in addition some care was
taken to increase the uniformity of the laser’s
beam intensity throughout the sample cell, Thus,
the beam diameter in the center of the cell was
170 pm and varied longitudinally by 15% or less,
where a laser power of 1 mW corresponds to a
power density of 2.0 W/cm?, Figure 11 shows
that the observed signal amplitude depends quad-
ratically on the light intensity at low light levels,
-in agreement with the leading term of (33). Above
a laser power of 2 mW, the FID amplitude exhi-
bits a linear intensity dependence and thus follows
the limiting behavior (32).

Another verification of the theory can be found
in Fig. 12 which shows that the observed FID rate

FID Amplitude

! J
0 0.1 0.2

12 (mw)?

FIG. 11. Amplitude of the observed FID signal of I,
vs the square of the laser intensity I, showing agree~
ment with Eq. (33) in the low-intensity regime. The
experimental conditions are given in Fig. 7.
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FIG. 12. Free induction decay rate T vs square-root
laser-intensity dependence, showing agreement with
Eq. (29). Experimental conditions are the same as Fig.
7. : ’

T obeys the square-root intensity dependence pre-

dicted by Eq. (29). Here, the decay rate is ob-

tained by the Fourier-transform technique dis-

cussed in Sec. V' A. Obviously, in the
limT=2r=2/7,, , (34)
X=0

and therefore, these measurements allow a de-

termination of the dipole dephasing time T',.

These results seem to provide the first quanti-

. tative and detailed test of the above FID theory.

Finally, we note that (28) does not describe the
rapid first order FID because of the approximation
T < ku adopted in the Doppler average. This prob-
lem has been discussed previously in varying
stages of approximation®”2® An analytic result
which includes FID and nutation in the weak field
limit will be reported subsequently.?* We have
also observed in a high density vapor of either
Na or I, that a rapid spike appears near the time
origin of an FID signal and is quite distinct from
the nonlinear heterodyne beat signal shown in
Figs. 7 and 8. This new feature may be a mani-
festation of the first-order FID effect and will
require additional study.
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APPENDIX: MOVING-MIRROR MODEL

We wish to show that when one end mirror of
an optical cavity is set into uniform motion, the
initial mode exhibits a Doppler shift that is equi-
valent to electro-optic frequency switching. The
cavity geometry of Fig. 2 is assumed. We shall
examine the behavior of the running wave

E=E. it <0 (A1)

at the position z =0 where the initial frequency
w=v21/T. The end mirror, located initially at
z=0, is set into uniform motion at #=0 in the
negative z direction with velocity v and comes to
a stop at £=%,.

The light wave reaching z =0 after reflection by
the moving mirror travels the additional distance

Az =20t and thus is retarded in phase by
O(t)=kAz=2kvt, 0<t<{,
(A2)
o(t)=2kvt,, t,<t<T’.

The modulated field during the first round-trip

interval becomes

E(t)__._Eoei(w-zkv)t’ 0<t<t1 (A3)

E(t)=Eqef (i) -y <t
It is also evident that the new cavity round trip
time is

T'=T+(2v/c),, (A4)
and the frequency of the vth mode is

Q=v21/T". ) , (A5)

The Fourier amplitudes can now be obtained for
the various modes v using (A3)-(A5) and (10).
For the case that {, =T’, the amplitudes

a,=E,, v=(w-2kv)/(21/T")
(A8)

a,=0, v=(w-2k0)/(2n/T")1,£2,£3,...

Thus, the initial mode v= wT /27 persists where
the new frequency

Q=w-2kv=w(l-2v/c) (A7)

is Doppler shifted to lower frequencies by (2v/c)w.
The factor of 2 arises in (A7) because the light
wave reverses direction upon reflection. With the
Doppler shift 2%y replacing ¢ in (15), it is clear
that this mechanical model is equivalent to elec-
tro-optic frequency switching.
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FIG. 6. Direct measurement of laser frequency
switching. A 370-V step-function pulse (lower trace)
applied to the AD*P modulator produces a 210-MHz
laser frequency shift as seen in the heterodyne beat
signal (upper trace) of the shifted laser beam and an
unshifted component, which is retarded in an optical
delay line. The time scale is 5 nsec/division.



