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Rate of resonant two-photon ionization in the presence of a partially coherent radiation field
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A treatment is given of two-photon ionization iri which particular attention is paid to the influence of the
bandwidth of the ionizing light'on the ionization rate. The model adopted for the atom is a common one,
including two bound levels and a continuum. The model of the laser is general enough to allow short-term.
temporal fluctuations of amplitude or phase, and these fluctuations give rise to the laser bandwidth. It is
found that the fluctuations have the most interesting effects on the ionization rate when the laser coherence
time is shorter than the atomic memory time, as could be expected: In addition to laser baiidwidth, we
consider the influence og the, ionization rate of the detuning of the laser from the intermediate-state
resonance, the laser power, and the finite lifetime of the intermediate state; Coinparisons with related earlier
calculations are made and similarities and differences are pointed out.

I. INTRODUCTION

The theory of near-resonant two-photon ioniza-
tion rates' and the theory of the near-resonant in-
teraction of few-level atoms with electromagnetic
fields' have both been treated in the literature in
some detail but from quite different points of view.
We describe an alternative treatment of resonant
two-photon ionization rates that exploits the sim-
plicity of the two-level atom, but also. includes the
positive-energy continuum states and short-term
stochastic fluctuations in the ionizing applied field.

Our approach is formulated in the Heisenberg
picture. Besides the usual two-level-atom Hei-
senberg operators, we introduce explicitly the
operators referring to the atomic continuum. By
eliminating from the equations of motion the terms
related to the electromagnetic self-field as well
as the terms referring to the continuum, we obtain
transverse and longitudinal damping corresponding
to spontaneous emission and photoionization. The
use of simple amplitude correlation functions al-
lows us to account for the finite bandwidth of the
applied field. '

We consider examples where a unique two-photon
ionization rate can be defined, and calculate this
ionization rate as a function of the detuning from
the resonant intermediate state. The effects of
power broadening, laser bandwidth, and saturation
are included.

II. ATOM-FIELD MODEL

The atom-field model is illustrated in Fig. l.
Ionization is effectuated by a quasimonochromatic
radiation field of mean frequency 0. The energies
of the initial state ~1), the resonant intermediate

state ~2), and the final continuum states (~) are,
respectively, @u„@~„and@+. The ionization
threshold defines the origi. n of the energy scale.
The dipole transition matrix elements d» and d, ~
are assumed to be real vectors. The coritinuum
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FIG. l. Atom-field model for resonant:two-photon
ionization. The mean frequency' of the applied field is
cop, the applied field has a Lorentzian power spectrum
of full width at half maximum W. Energy conservation
occurs around me= m&+2cop, The fictitious cu dependence
of d2„,adopted for temporary convenience in the cal-
culations, is shown as a Lorentzian of full width at half
maximum Q» p'.
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states'are energy normalized,

(&g (&u'& = 5(h.&o —k&g'),

and all have the same angular momentum quantum
numbers. So, in this model, free-free dipole
transitions are excluded.

The applied field is characterized by a 'coherent'
state |(o.j&, such that

&(a)(E,(0; t) (( nj& =r(g, e-'"'+ g,*e'~'), . (2)

where E~(0 t) is the, free electric field operator
in dipole approximation, and & is a unit polariza-
tion vector. The fluctuating amplitudes S& and 8&*.

are particular realizations of a stochastic variate,
and we characterize the partial coherence of the
field by the following second-order correlation
function'.

(( g gg ))
g2s-w i1 t/2

The double parentheses denote an ensemble aver-
age. The coherence time v', is given by W ', and
the spectral density is a Lorentzian of full width
at half maximum 8':

our general approach, by working out briefly the
one-photon ionization problem.

In the much more complex two-photon case a
convenient set of Heisenberg operators is

A A

22 11 9

~ =~22 —~il ~

(8)

(8)

and the operators &,&, with a && and &, & =1,2, ~.
Note that r represents the total population of the
discrete states. Given its time evolution, the ioni-
zation problem is solved. The operators 0
0 + v, co'& ~ are ignored. They are manifestations
of the continuum population. Since the ionization
process is essentially irreversible, they cannot
have any important effect on the dynamics of ~.

Using Heisenberg's equation of motion and elim-
inating the electromagnetic self-field in favor of
the natural damping constants, ' one readily obtains
the equations of motion for the expectation values

r=(1 f((n)Jrgn)& fl&, etc.

Introducing the slowly varying quantities

ch' W/2 K

2K (&u- &u,)'+ (~W)'
' (4) 4 Q)pt

P2(d ' 2' (12)

Note that cga/2K is the total integrated energy flux
(W/cm') of the laser. Consequently, the energy-
conserving continuum states are distributed over a
band of width 8' centered at

(dg = (dl +2430 ~

p go e2$ pipel~ lN

and applying the rotating wave approximation, ' we
find

as is illustrated in Fig. 1. We assume that this
band of continuum states does not extend down to
threshold, and does not sample any structure in the
transition dipol'e moment d, . These assumptions
can conveniently be formulated explicitly by assign-
ing a fictitious Lorentzian structure to d'2~

du&(id, g~+p, +c.c.),

K.= A(K +r) —(Kiag g+pi2 +C.C.)

+ d(d sd2 ~gg+P2 ~ +c,c~

0

(14)

(15)

d,'„=d', ,B'/t 8'+4((u- (us)']. (6) p~2 = —( 2A + ilk) p~2 —Z g K~agtpI

Of course the dipole matrix element d, is usually
practically independent of e, so in the end we will
consider only the limiting case4

d~d2~Pl& ~

p, „=i(u),—(o)p, ~+(i/h)d, ~g,p„,
(16)

(17)
+«B« ~~, (7) p, „=i(u&,+ (uo —&u) p, +(i/2R)d, g, (se+r) . (18)

and the parameter B will not appear in any of the
results. However, if one were iriterested in a case
where the continuum really did exhibit some struc-
ture, then (6) could still be used as a model, and
one would simply drop the requirement B» W.

Here d;, =d;,- ~ c and

K„=2d„/k.
~ is the detuning (see Fig. 1),

4 = (U2 —(dl (dP ~ (2o)

III. EQUATIONS OF MOTION

The usual' Heisenberg "transition operators"
a', -=(l&(m [ are suitable for discussing the dyna-
mics of the ionization process. In Appendix A we
review the use of these operators, and indicate

and A is the spontaneous decay rate for level ~2) .
We have ignored the fact that p, and p, are

actually coupled to each other, as well as the fact
that p, is subjected to natural damping. In Appen-
dix 8 we show that this is justified, as expected,
if the continuum-bound matrix elements d, are
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sufficiently smooth functions of e [i.e., if B is
large enough in (6)).

Since only the dynamics of the atomic population
are of interest, we eliminate any reference to the
off-diagonal operators from the equations of mo-
tion. Formal integration of (17) and substitution
in (16) gives

p„=-(-,' A +i A) p» —i-,')(:» h,w

dr $,*$, ,p»(t - r)

x exp[i((d, —&u) r]. (21)

The continuum integration is carried out next. In
view of (6) and (7) we may extend the lower inte-
gration limit to -~ and write (r) 0):

. d(o d22„exp[i((d,—(0)r]
0

= (m'd2', /8) —,'Bexp( [—,'B+i([()~ —&u,)]w). (22)

After substituting this in (21), the 7 integration is
considered. With (4) and (7) one sees that only
times

7'«B '«((d —ur) ' W'A ' (23)

r = .'R„,(n -+-r),

2i) = -[Q y 2R 2 &] (2() +f)'
t

dt' exp

(25)

&t"[-',(&+ &...,)+(c))

x h,*S,, m)(t —f')+ c.c. ,

where we have introduced the notation

R„,=2m(d'„/12)h,*h, .

(26)

(27)

A„tis the qua, sistatic one-photon ionization rate from
level 2 into the continuum. Equations (25) and (26)
form the starting point for our subsequent discus-
sion of the two-photon ionization process.

IV. STOCHASTIC TWO-PHOTON IONIZATION RATE

In the case of a monochromatic field, it would be
a simple task to solve (25) and (26) by using the

contribute. Thus, to an excellent approximation
that improves as B-~, the r integration in (21)
gives

P» = -( 2'(A +(2))d', ,/8) ~h, ~') +is}P» —i —2'[[»g,g(),

(24)
where the exponentially damped term has been
dropped. Note that the transverse-damping rate
is one-half times the sum of the natural decay
rate and the instantaneous one-photon ionization
rate out of level ~2) . Treating the continuum inte-
grations in (14) and (15) as above, one finds, with
the formal integrations of (18) and (24):

Laplace-transform convolution theorem, or by any
pf several other methods. However, the stochastic
character of the time-dependent field amplitude
makes it rather difficult to start from these equa-
tions and untangle r from sv in the general case.
Fortunately this is not necessary. Most strong-
laser ionization experiments do not have the capac-
ity for time resolution of the ion current. The ob-
served quantity is a smoothed, time-integrated
signal, without most of the temporal features that
the exact solutions of (25) and (26) co[|tain. In
many cases, especially if the ionizing la.ser is not
so strong as to appreciably deplete the supply of
ionizable atoms, a theoretical analysis leading to
a single rate coefficient for ionization is complete-
ly adequate. We therefore look for the rate at
which population leaves the bound system.

Equation (25) shows that the rate of loss of pop-
ulation from the bound system is proportional to
both A2„and to zv +x. The first of these is the one-
photon ionization rate from level 2 (see Appendix
A, for example); and the second is seen to be ex-
actly twice the population of the second level, by
combining Eqs. (8) and (9). If the laser is not to
deplete the supply of ionizable atoms, we may be-
gin by assuming that A„tis small in the sense
that x does not change rapidly. Thus, we may
use the a.ssumption of approximately constant
2' and &„in using Eq. (26) to find &„.

The first step is to add (25) and (26) to obtain
an equation for 0„:

22, ( R2(:t) 22

1—gK 12
dt' S,*S,.(2(r22 —2), ~

x exp
t

dt [(A cA„,) +"(c)) +c.c.
I

(28)

Then, because of the slow variation postulated for
x a,nd 0„,we can remove ~ =20„—~ from the in-
tegral. In the case of a monochromatic field it is
easy to show that this is completely equivalent to
the "adiabatic" or "pole" or "Weisskopf-Wigner"
approximation. '

In carrying out the adiabatic approximation we
will encounter two conditions that establish the
limits of validity of the resultant rate coefficients.
First, we assume that ionization occurs in approx-
imately [R(A)] ' sec, where R(A) will be identified
below with the two-photon ionization rate. Tem-
poral features-of ~ and a„ontime scales much
smaller than [R(6)] ' are not of interest. That is,
we may sensibly adopt the approximation

(2o„-r),.=(2o„-2.)„f- i'«[R(S)] '. (29)
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R,.= (2 ~/h) d,'.8'. (30)

Combining these results, we see that only times

por the purposesof our present argument, in the t'
integration in (28) the product 8,*8, behaves ef-
fectively like 8'e ~' ' ~~', and the factor

t
1

exp
g

I

behaves like

exp[--,'R„(t —t ')],

where R„is the ensemble average of R„&..
2R„,~ +A+R„, (38)

Only in very specific limiting situations can this
ensemble average be calculated easily.

I

This result constitutes the starting point for the
subsequent discussion of two-photon ionization.
Expression (37) represents a simple yet complete
rate characterization of the ionization process.
The range of validity of (37) is determined by the
two inequalities (32) and (35).

The experimentally relevant quantity is the en-
semble average R(A):

t —t'6 (A+W+R„+2th( (3l)
V. SATURATION AND LASER-BANDWIDTH EFFECTS

contribute appreciably in the integrand. We may
thus pull the factor 2o» -r outside the t' integra-
tion, provided that

R(A) «(A. +W+R2, +2th( . (32)

The lower limit of the t' integration leads to a
damped oscillatory term which falls rapidly in
time intervals of [R(6)] sec. This switching-on
transient effect can be ignored, which we do by
putting the lower limit at -~.

With these approximations, Eq. (28) reduces to

0„=-(A +R„,)o„—(2v„—r)R„,(a),
where

R„,(~) =-,' '„dt'8+8„

(33)

t

x exp — dt" —,
'

A. +R„,. +i~
g. I

(34)

The notation is intended to suggest that R», is the
generalized stimulated transition rate between
levels 1 and 2. This point is clarified in Appendix
C.

The second step of, the adiabatic approximation
is to ignore d'» in (33). Since the smoothed &»
varies appreciably only over times of the order of
[R(A)J ' sec, this is allowed when

+ C.c.

R(~) «R„(~)+A+R„. (35)

This follows by inspection of (33), repla, cing R„,
and R», for order-of-magnitude purposes by their
ensemble-averaged values R„andR». Thus, in
the adiabatic approximation, a, quasistatic value of
&» follows immediately:

v22, =R„,(A)/[2R„,(6) +A +R„,] . (36)

Substitution in (25) immediately leads to the defini-
tion of a quasistatic two-photon ionization rate
R, (~):

Rt(t) =R2ctR»t(&)/[2R»f (&) +A+R2ct] (37)

A global view of saturation and laser-bandwidth
effects in two-photon ionization is easily obtained
from (38) by retaining only second-order correla-
tion effects. In Appendix D we calculate some of
the simpler consequences of retaining higher-or-
der correlations. In the "second-order" approxi-
mation we may write (38) as follows:

((R2& &))((R12~( ~) ))

((2R...(~) )) +A+((R.. ))
'

where ((R», (a)')) is given approximately by (C3):

(39)

R„(h)= 0'(A + W+R„)/[4A'+(A + W+R„)']. (40)
Note that the term "second order" should be under-
stood carefully. We have kept only second-order
correlations, but we have treated the numerator
and denominator of (38) quite separately in arriv-
ing at (39). Thus (39) really represents an "all-
orders" ansatz. Its advantages are that it is analy-
tically simple, and it reproduces faithfully the
fully saturated strong-field limits of the exact ex-

pressionn.

The decorrelation employed to obtain (39) from
(38) is also interesting because two entirely diff-
erent features of the stochastic field 8, and its in-
teraction with the atom are involved. One of these
features is the memory of the atom during the
course of the interaction, and the other is the
presence of fluctuations in the field during the time

' an experimental record of the ionization is -being
accumulated. These are obviously distinct aspects
of the experiment.

One can imagine circumstances in which a se-
quence of laser shots is required for an experi-
mental record, the laser being very steady during
each shot but wandering unpredictably in intensity
between shots. In this case, as far as any atom is
concerned, the laser is monochromatic. On the
other hand, the laser may be operating continuous-
ly, with atoms drifting through the laser beam. If
the laser fluctuates appreciably while interacting
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with the atom, on a time scale shorter than the
atom's effective lifetime, then the laser cannot be
characterized as monochromatic, and the atom's
memory of the field's fluctuations will be an
important element in the results.

An early investigation' of the simultaneous in-
fluence of field statistics and saturation on near-
resonant multiphoton ionization by Armstrong,
Lambropoulos, and Hahman (ALH) considered the
first of these two possibilities. In fact, Eq. (2) of
ALH can be obtained from (38) in the limit A» W,
R„.ALR take the view that the memory of
the atom can be disregarded, i.e. , that while
the field may fluctuate, it does not do so
rapidly enough for any one atom to notice. This is
consistent with the limit A» 8', R„.Our interest
is almost entirely in the opposite limit, where las-
er-bandwidth effects become important.

Even with the second-order decorrelations of
(39) and (40), the two-photon rate formula is rela-
tively complicated. In several important limits
R(b) takes simpler forms and a few of these are
discussed below. Unless stated otherwise, veri-
fication of (32) and (35) in any of the following ex-
amples is straightforward and left to the reader.

bation-theory prediction for the "direct" two-pho-
ton ionization rate in the presence of a coherent
applied field. The second term is of the "two-
step" form: (rate) && (lifetime) & (rate), and WQ'/
4A' is the correct first-order perturbation-theory
prediction for the transition rate from level 1 to
level 2, due to the on-resonance frequency com-
ponents in the tail of the power spectrum. The
lifetime of level 2 is determined here by its one-
photon ionization rate.

When the natural decay rate dominates the one-
photon ionization rate R„,

R„«A,8,
we find

0' WQR(S) = ", +R„—

(48)

(49)

The two terms are interpreted in a way similar to
(47) above. Note that the second term is the origin
of the remark that a "two-step" form for the rate
is obtained only if spontaneous emission deter-
mines the intermediate- state lifetime. However,
Eq. (47) above already shows that such a remark
can easily be false.

A. Recovery of perturbation-theory results

For detunings and field strengths such that

6» A+8'+R„ (41)

8. Resonant two-photon ionization rates when the applied field

is the dominant source of incoherence

The applied field being the dominant source of
incoherence, we have

R„(a)«A+R„,
we obtain, with (39) and (40),

(42)

8'» A, R„
and, in view of (40),

R, (b.) = Q W/(46 +W ).

(50)

(51)

and

R,~(b,) = Q (A + W+R2, )/4h (43)
We now distinguish between the following cases.

J. 8'eak fields

R(~) =R„R„(~).1

2C
(44)

In Fig. 2(a), the shaded region indicates the range
of laser bandwidths for which the perturbation-
theory formula (44) is accurate. Obviously, the
perturbation-theory region does not contain the
highest ionization rates.

If spontaneous emission is negligible, i.e., if
and

A» R„(0) (52)

"Weak fields" are defined by the condition that
both the bound-bound and bound-free stimulated
rates are dominated by the spontaneous emission
rate:

A. & W',

then these results reduce to

(45) With (39) and (40) the two-photon near-resonant
ionization rate is now

R(n) =R„(~),
which we write

(46) n'w""=4~"W A"". (54)

(47)
1 Wg'"' '= 4~ '""

R 4~ .
2C

The first term is just the second-order pertur-

The region of validity of this large-bandwith weak-
field formula is shown in Fig. 2(b). Note that in
the range 2W? 4 the formula predicts that the
ioni. zation rate increases with decreasing power
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FIG. 2. (a)-(f) Portions of ionization-rate surfaces in perspective view. In every case the axes .in the base plane are
detuning 4, and laser bandwidth g, as labeled in (a). The vertical axis is the two-photon ionization rate B(A) of Eq.
(39). Each figure is individually normalized to fit into a unit cube, and the viewing point in (a)-(c), (e), and (f) is X
= &0, Y= &0, Z= 5. In (d) the viewing point is adjusted to X= ~, Y=10, g = z to give a frontal view of the side face
of (c). The coordinate grid is logarithmic in both directions, with the spontaneous emission rate g setting the scale.
In all cases 4 and W increase toward the front edges of the figures. Each figure contains a legend showing the value of
Babi frequency Q, and'one-photon ionization rate R2~, for which it is drawn, as well as the maximum value of R(A)
for those phrameters. The shaded portion of each figure illustrates the 4-g dependence of a particular limit discussed
in:the text, as follows: {a) perturbation limit, Eq. (44). : (b) Weak field, large bandwidth, Eq. (54). (c) Strong field,
bound-bound dominance, Eq. (58). , (e) Strong field', power broadened level g, Eq. (64). (f) Strong field, bound-free
dominance, Zq. {68). (d) is a special view of. (c) designed to illustrate the bandwidth dependence of the ionization line-
width given in Eq. (60). The label of the 4 curve that cuts the I"

&y2 line gives the ionization half width. In the shaded
region these half widths increase with increasing Q in rough agreement with Eq. (60).
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2 Strong fields, type 1

This domain of field strengths is defined by re-
qui. ring nominal saturation of the bound-bound
transition,

(56)R„(0)»A,
I

with fields weak enough that the intermediate-
state level width is still due to the bound-bound
deca, y channel

A» Jt,'„.
Together with (50) and (51), these conditions lead
to:

1 O'5'
"A 4~'+2n'w/A ' (58)

This behavior is shown in Fig. 2(c). At resonance
the two-level system is saturated, 0»= &, and

per unit bandwidth. This is seen clearly in the
figure. The interpretation of this result is ob-
vious: even though the spectral density of laser
power is made smaller when W increases, the ef-
fective power on resonance increases to a maxi-
mum at 2W= 4. At exact resonance,

R(0) =(n'/w)(l/A)R„,
a result first obtained by Lambropoulos. ' Note
that the resonant transition rate R»(0) = n'/W
is proportional to the power per unit bandwidth, as
it should be in this case. Note further that (54)
and (55) take the form (rate from 1 to 2) & (life-
time of level 2) && (rate from 2 to the continuum).
In contra, distinction to Lambropoulos on this point,
we mention that R» in (51) is the correct incoher-
ent stimulated rate when W» n, and so (54) and
(55) must be given a "two-step'* interpretation.

One sees by inspection that R(&), which is ap-
proximately &R„atexact resonance, is still- of
the order of 3R„for deturiings such that

R„(4)=R„. (62)

Note that the validity of our rate description is
weakest in this region. Criterion (35) is satisfied
by less than a factor of 10. For all; other values
of &, we obtain

R(&) =R +2„(4)/[2R„(&)+R„].
This can be written

(63)

R(b) = O'W/'[(2n'W/R„)+4&']. (64)

The width of the ionization-rate line shape is now

r =(2n'w/R )"'. (65)

R„»A,W. (66)

Thus, now, contrary to the situation in the exam-
ple of Sec. VB, the one-photon ionization from
level 2 is the 'dominant source of incoherence.
With (40) and (66) it follows that

R„(&)= O'R„/[4&'+R,',] (67)

Note that this width is field independent; i.e. ,
a saturation of the power broadening has occurred.
[Formally, the linewidth I" cannot be defined
exactly, since it is ~ust for detunings & = &I"
that criterion (35) is least well satisfied. ] The
domain of W and & relevant to expression (64)
is shaded in Fig. 2(e).

C. Superstrong fields; photoionization from the upper discrete
level is the dominant source of incoherence

In this example, we consider the resonant two-
photon ionization rate when the intensity of the ap-
plied field is such that

R(0) =-.'R„. (59) which leads directly to

The two-photon absorption line is power-broad-
ened with width I":

I (2 n2 W/A)l/2 (60)

3 Strong fields, type 2

In this case the saturating field is strong enough
that the one;photon ionization channel determines
the level width of the intermediate state:

, (0)» R„»A. (61)

So the linewidth depends critically on the ratio
W/A, and, except for the factor of 2, is exactly
the geometric mean of the laser bandwith lV and
the nominal bound-bound absorption rate in the ab-
sence of laser bandwidth, n'/A. Figure 2(d)
shows the bandwidth dependence of I' given in (60).

R(~) = n'R„/(4n.'+ 2n'+R,', ) . (68)

This formula is illustrated in Fig. 2(f). In the
limit Q»R„,it reduces to case A2 of Beers and
Armstrong, ' if their direct" ionization channel
is ignored.

. In view of (68), the ionization-rate line shape is
again. power broadened, this time with the width

r" = (2n2 R' )"'
2c (69)

Note that &" is qualitatively different from the
earlier example of a power-broadened width, 1
in Eq. (60), because at the highest powers' I'"
is proportional to 8' instead of 8. In this regime,
the on-resonance two-photon ionization rate is
completely independent of the field strength. The
explanation for this effect is simple. It signifies
not only saturation in the usual sense, but also the
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development of a "bottleneck" in the atom at level
2. The bottleneck comes about because, as R„
increases, it becomes the linewidth'of level 2, and
on resonance R» reduces to 0'/R„, which is in-
dependent of laser power. This bottleneck has
been described recently in several other con-
texts. ' Here it leads to a "zero-slope" ioniza-
tion process, one for which, a plot of log(ion, rate)
vs log(laser power) has zero slope.

Since R„is not subject to any saturation there
exists a domain of "superstrong fields" such, that
R„is also the dominant stimulated transition rate
(this is the ease labeled A1 by Beers and Arm-
strong'):

R„»R„(0). (I0)

Itis then clear from (39) and (69) that the reson-
ant two-photon ionization rate is"

In all of the cases considered under "strong" or
' superstrong" fields we appear to reach different
conclusions about saturation from those of Lam-
bropoulos. ' There are detailed differences that
arise from the different assumptions made about
the laser line shape. Our interest here is not in
these details, however, but in overall qualitative
behavior. In the first place we do not find that R»
ever plays the role of level zoidth, whereas Lam-
bropoulos includes it [under the notation y, &» in
Eq. (5.13c)] among the contributors to the width
of level 2. In the second place, we agree that the
width of the second level keeps increasing with
laser power, but we ascribe this increase to in-
creasingly important one-photon ionization from
2 to the continuum. As a result we do not find that
the width of R(&) saturates at a value equal to the
la.ser bandwidth. As expressions (60), (65), and
(69) show, we find that the ionization line shape
gets broader at the highest powers' and is there
proportional to R„itself.

It is difficult to be certain but the differences
noted above all appear to arise from insufficient
consideration of power broadening in Lambropou-
los' formalism. As additional evidence for this
conjecture we point out that in both (59) and (68)
the peak ionization rate is proportional to intensity
and never to intensity squared. In fact the peak
rate takes the value ~R„,exactly what should be
expected if the 1-2 transition is fully saturated
with one-half of the population in level 2. This
is in agreement with Eq. (18) of Beers and Arm-
strong' in the limit y = 0.

VI. DISCUSSION

We have presented a study of two-photon ioniza-
tion. Our work has many contacts with earlier

work, "'9.but has one main difference. - This is our
integrated treatment of the effects of laser statis-
tics and of laser bandwidth, allowing both to arise
naturally from the assumption that the laser's
electric field fluctuates stochastically. We have
used a model' for the field fluctuations that is
simp1e enough to allow analytic expressions to be
found for the ionization rate in a variety of experi-
mentally interesting situations. These include
combinations of the following: on-resonance and
off-resonance with the intermediate' state, pojv'er-
independent finite lifetime of the intermediate
state, 'weak or strong coupling. of the ground state
with the intermediate state, dominance of the
bound-bound transition or of the bound-free transi-
tion, and arbitrarily large or small laser band-
width.

In order to allow properly for laser fluctuations,
one is obliged to take a time-dependent view of the
ionization process, even if a cw laser is assurqed.
Thus, we have first derived the appropriate dyna-
mic transition-operator or density-matrix equa-
tions (14)-(18), taking care to treat the final state
as an infinitely wide continuum of energy levels.
Two: approximations were introduced at the outset:
all far-off-resonance intermediate states were ig-
nored, thus eliminating the main cause of an ac
Stark shift of the intermediate state as well as of
a "dir ect" ground-to-continuum ionization channel;
and all free-free transitions in the continuum
were ignored. Both of these approximations can.
be defended easily.

There is no evidence that free-free transitions
are very important in multiphoton ionization, and
a "direct" far-off-resonance channel can be ex-
pected to be significant only at very early times in
the ionization process, in the first fraction of the
resonant transition's f'irst Babi period. " The ab-
sence of ac Stark shifts and widths from the model is
also unimportant. They have minimal influence on
the saturati'on properties of the ionization because
they are usually of small magnitude; and they have
no effect at all on the resonant character of the
ionization in the sense that, no matter what the
intermediate level's shift is, the level can. be lo-
cated with a tunable laser and the resonance pxop-
erties of the ionization studied. "

We have solved the dynamic equations in the rate
regime, first identifying those frequency compon-
ents in the ionization signal that can be ignored,
and then invoking the adiabatic approximation ap-
propriate to the remainder of the. signal. No sta-
tistical decorrelations are made in these steps,
and the ionization-rate constant given in (38) is a
general expression for two-photon ionization, valid
for a wide variety of laser powers, detunings, and
statistical characteristics. Again, w'e emphasize
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the need to account not only for the existence of
field statistics, something that has been widely-
done since Mollow's early two-photon-absorption
discussion, "but also to account for the fact that
such statistics imply the existence of an underlying
fluctuation time associated with the field.

We have shown in Sec. V that the ionization rate
can be quite different if the characteristic coher-:
ence time of the field is greater or smaller than
the atom's own memory time. This is perhaps
most evident in the ionization linewidth formula
(60), and in the rate (54) which grows larger as
the bandwidth gets larger. These considerations
underline the need to treat careftQly and complete-
ly the relaxation processes that are responsible
for atomic memory. Comparison of our results,
even in the limit 8'=0, with those of earlier work-
ers, particularly those of Ref. I, is hampered by
their unconventional treatment or neglect of one
of these relaxation processes.

Our own treatment of relaxation processes can
also be criticized on grounds of neglect because,
as mentioned above, we do not include a weak di-
rect-ionization channel from ~1) to ~e), but more
seriously because in common with other existing
treatments we allow, at most, only radiative decay
from ~2) to ~1). Collisional relaxationof ~2) andde-
cayfrom !2)that is trapped in a metastable level ~1')
are both ignored. However, our general result,
given in (38), has a structure that suggests how to
incorporate these effects a Posteriori. Let us take
the Bloch view that relaxation processes can be
separated into two kinds, transverse and longitudi-
nal. Then resonance theory shows" that we may
include collisional and other forms of relaxation
by the following replacement in (37):

A +R„,-A +R„,+1/T, ,

and the accompanying replacement in (34):

—,'(A +R„q-) - 2 (A +R2« ii) + 1/T, .

(72)

(73)

Here, 1/T, and 1/T, are the longitudinal and trans-
verse rates associated with relaxation processes
that may be present in addition to spontaneous de-
cay from ~2) to ~1) and one-photon ionization from
~2) to )&u) .' The only constraint between them is
1/T, ~ , 1/T, . Obviously—, the replacements (72)
and (73) would not alter the qualitative character
of our results, but might change drastically nu-
merical predictions in specific cases.

The absence of Rabi oscillations from our gener-
al formula (38) does not mean that Rabi oscilla-
tions are absent in the ionization process, but
only that under the conditions of validity of (38),
given in (32) and (35), any Rabi oscillations are
either much too fast or much too slow to -have an
appreciable effect in the ion current. One would

probably want to undertake a nonadiabatic integra-
tion of the dynamic equations if the multiphoton-
absorption process were being monitored, via
fluorescence for .example, with detectors having
response times in the few nanosecond range,
much shorter than ion-counter response times
currently available.

Our most: general result, Eq. (38), is too general
to be .really useful. The decorrelation ansatz, ex-
pressed fn (39), is the ltey to our main discussion.
This decorrelation allows almo'st any combination
of detunirig, laser ba.ndwidth, laser power, and
atomic-dipole transition strengths to be studied
with ease. There is no confusion about the physi-
cal meaning of the ionization rate in any regime.
The structure of (39) shows that, when expressed
properly, the two-photon ionization rate is a nat-
.ural generalization of very well-known two-level-
system expressions. ''" That is, if ((R,«)) is re-
moved from the numerator, then the remainder
is exactly the quasi-steady-state population of
level 2 of a two-level system undergoing stimu-
lated emission and absorption ((R»,)), internal
spontaneous relaxatiqn A, and relaxation via pop-
ulation removal ((R„,)). Similarly, the expression
for R„(A)is intuitively clear, being composed in
the traditional way" of the Rabi frequency, the
overall level width, and the detuning appropriate
to the bound-bound transition.

In summary, the new features of our work that
appear to be of greatest interest are: the recogni-
tion that the two-photon ionization rate R(4) can be
cast into an easily interpreted form; the natural
appearance of the laser's bandwidth 5' in the bound-
bound transition rate R» .on the same footing with
the other relaxation rates, A and R„;and the in-
corporation of all saturation effects, All of these
features follow more or Iess directly from the an-
satz (3) that expresses the laser' s bandwidth as a
fundamental consequence of the laser field's in-
trinsic fluctuations. While the Lorentzian shape
implied for the laser's spectrum will not be cor-
rect in many circumstances, it still seems highly
likely that the role of the parameter W is given
correctly for a wide variety of cases. Finally, it
is obvious in all of our formulas'that the smooth
laser line shape implies a smooth ionization pro-
file.
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in the'loss of population from the bound level, and
so calculate the expectation value (&»(t)), the
probability of occupation of 4evel 1. From Heisen-
berg's equation we find

(A2)

Similarly, we obtain the equation for

APPENDIX A: ONE-PHOTON IONIZATION RATE
VIA HEISENBERG OPERATOR EQUATIONS

The atomic Hamiltonian that accounts for dipole
coupling with a classical electromagnetic field is

d . .~ dq; E(t)
my = Z Kmy+my + Z

dg E(t)

A

amp

(AS)

H= gkru„o —g d „~E(t)6„„, (Al)
m m ri-

where &;~ is the generalized projector ~i)(j~. We
consider a modelwith only one bound level and a
full range of coritinuum levels. We are interested

'(

In all of these Heisenberg equations the summations
are understood to include the one bound state and
all of the continuum states. " It is unnecessary to
specify the continuum normalization at this point.

The formal solution to (A3) is

ir, (t) =(L f dt'8' '~' ' '
.

" ' ' ir, (t )- ''" ' ir„(t')+ir,(0)e'
p

The homogeneous term can be ignored. We substitute (A4) into (A2) and use both (2) and (3) to obtain

d~~o g—(x„=P Q "' — dt'exp(- [-,'W- i((o ~- (d,)](t- t')j ~@ 6'„,(t')- '"
v~, (f')

+((o,- -(u,) +H.c.

(A4)

(A5)

We note that only the terms on the right involving
o»(t') make contributions in lowest (second) order
and drop all of the other terms.

It is convenient to take the Laplace transform of
(A5). We denote the Laplace transform of &»(t)
by &»(&). The solution for v»(s) is

((((o+ (d, —(ds)'+ (-,'B+ 3W+ s)'

In the usual case the matrix element d,
„

is a very
smooth function of ~. Thi's implies that our ficti-
tious width &B must be very large. If we ignore
&W+ s in comparison, then we find

6„(s)=8»(0) /[s+ R(s)], (A6) o„(s)= 6„(0)/(s+R), (AS)
where

i

de& ~ e '@ 2W+s
((d i- (joo) +(2W+s)

where the constant R is given by

(A9)

+ QPO (do

The summations in R(s) can be evaluated approxi-
mately in several ways. The representation given
in (6) for'the bound-free dipole matrix element al-
lows us to write it as the integral

(2B)'
5 (, (u) -(d~)'+(—,'B)'

~W+ s
(&u —&u, —&u,)'+ (-,'W+ s)'

The contribution from ~,- -~, is negligible.
Then, if ~~»B, 2W+s, the lower limit can be
put at —~, in which case we get

A more conventional approach that gives the
same result, but does not rely on the specific
shape function given in (6), proceeds as follows.
First one recognizes that d', is practically inde-
pendent of m, especially by comparison with the
Lorentzian function multiplying it. This Lorentz-
ian can simply be regarded as a representation of
v6(~„,—~,). Thus~ .one finds

~ 2l

R = 2(( Q '~ 8'6((d —(u, —(uo) . (A10)
tg

In this form R is immediately recognized as the
golden rule one-photon ionization rate. "

Finally, it is easy to see that R does play the
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'(

role of ionization rate in the Heisenberg picture.
This follows from the Laplace inverse of (A6):

&„(t)= o„(0)e"' . (Al 1)

That is, A is the rate at which bound-state popula-
tion disappears.

p, and p, leads, upon substitution in (Bl), to the
same damping terms.

The complete equations of motion for p, and p,
are

p,„=i((u, —(u) p, + (i lh)d, „S,p„-,'i —1B(,p,„(B2)
APPENDIX B: BOUND-FREE RELAXATION EFFECTS

In the text below Eq. (20), we claim that the
equations of motion (17) and (18) for p, and p,
can be used, in spite of the fact that these equa-
tions are incomplete. Expressions for p, and p,
were obtained by formal integration of (17) and
(18). Substitution of these expressions into the terms

ling QCOd2~P ~ $ q /=1' 2
0

which occur in (14), (15), and (16), resulted in
transverse- and longitudinal-damping terms des-
cribing the effect of ionization. To justify this pro-
cedure we establish the conditions under which the
solutions of the complete equations of motion for

p =(1((u + A —(u) —~}p
+(i j28)d, 8,(w+r) —',i~h+p, -

where we used (5) and (20) to write

(d +(d —(d=(0 +6-40.

(B3)

(B4)

Now we evaluate the third term of (16), which is
given by (Bl) with j= 1, and compare the result
with the corresponding damping term

(«'-iI ) I&, I'P (t)

in (24). Upon formal integration of (B2) and (B3),
and elimination of p, , one obtains an integral
equation for p, . By iteration, the formal solution
for p, follows. We find

t1
dt 2

dE '0'
2

(B6)

2fI+ 1

dt,„„Dh, p,~(t,„„)exp[i((u, —(u)(t —t,„„)]
1

n-1

x ] [exp[(it). —-',A)(t„„—t,t„)]
j=O

2n+2

d(, , 11,„(l,)(w+r), , „exp(((e,—w)(t —t)],„,
0

a
I- D-.[(--~)(.„,—.„.)]

j=O

(w+r), =w(t)+r(t) (B7)

has been used; and the product

Here, and in the remainder of Appendix 8, for the
sake of notational simplicity, we ignore the dis-
tinction between 8, and 8*, .
Here, the notation

n-I

(B8)Z][ exp [(ib, —,'A)(t,g„ t„„—)]
j=O

in the first series is to be set equal to 1 for n =0.
With p, „given as a series expansion, the con-
tinuum integration in (Bl) can be carried out
term by term using (22). For example, con- .

sidering the first term of (B6), we have

de d2~exp[i((u, —(u)(t- t
„

i)] = (md2, /I')z Bexp[- [2 B+i((uz —(u, )](t- t 1)}2
0

= ( d,',I+)-' B Q e p (- [-,' B+i((u —,)](t,. —t,.„)}.

B»(a& (us, ), t), W, A. (B10)

As in Eq. (23), we assume that the continuum
width is much larger than the other rates that in-
fluence the time integrations in (B6):

In view of (B10) we can then ignore the product
(B8) and the factor exp[i(&ue —(u, )(t, —t,.„)]where-.
ever they arise in (B6). For the continuum inte-
gration involving the second term of (B6) we find
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deeda p (t)=s,(t)+s, (t), (811)

with

S&(t)=g S&..(t), j=l 2 (812)

and-

md' B izS, „(t)=—
@ b, 2 2 dt,

0

t1
dt 0 ~ ~

2

an 2n+1 2n

~h~ p-(t...) ge»[-l@t;-t;")l
0 j=1 'j=O

(813)

0

t1
dt ~ ~ ~

2

2tt+2

dt,„,) 118,)-,'(I+a), llexP[ B((=,-,—t„,)]) .
j= 1 0

(814)
The t,

„„

integration in (813) can be evaluated as follows:

~an ~an

dt,„„S,p (t, ) exp[- —'B(t,„—t,„,)]=8, p, (t,„) dt „,exp[- —'B(t „—t,„,)]
0

=@,,„p,.( .t;)(-'&) '(1 —e '"") (815)

This approximation, which will be referred to as the "adiabatic approximation", ' was discussed in the
text above Eq. (24). Substitution of (815) in (813) gives

da B i~, ,„()=—
0

't1

dt ~ ~ ~
2

'2n-1 dta„g,g, —,B p„
j= 1

2n -1

exp ——,'B tj —tj„
j=O

+e I. hg 2 2 dt~ dt, ~ ~ ' dt, 5, 5, — P12t,
„

(816)

The second term of (816) is strongly damped and
can therefore be neglected. In the first term the

tan integration as well as any of the consecutive
time integrations can be done in the same way as
the t,n+, integration. Thus, by applying the adia-
batic approximation each time and dropping the
exponentially damped term, we can reduce
S, „(t)to

Is.(t)l « Is (t) I

and with (811) and (818):

(822)

(821)

or, in other words, as long as no appreciable
continuum structure is sampled by means of
power-broadening, we have

S, (t) = (wd'/h)S', p-„(t)(txS,/B)'".
With (812),and (817) it follows that

1
S,(t) = —

@
h'g P„(t)

1

where

z = «8, /B.
In the same way, we find for S~(t)

d2
S,(t)=i h', —,'(~+v),' 1+32

Hence, for field strengths such that

(817)

(818)

(819)

(820)

FQ
d&o d, p, (t) = — S', p„(t). (823)

This is just the factor (85), occurring in (24).
Concluding, we see- that only the zeroth-order

term S, ,(t) of S,(t) in (811) contributes, pro-
vided that (821) is satisfied. This fact justifies
the use of (17) instead of (82). In the same way,
the use of (18) can be justified.

APPENDIX C: GENERALIZED STIMULATED ABSORPTION

RATE

It may be helpful to clarify both the notation R12g
adopted in Eq. (34), and the relation between our
transition rates, written in terms of Rabi frequen-
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cies, and the usual rates written in terms of photon
flux. For this purpose we can ignore laser cor-
relations beyond second order, and easily obtain
an approximate expression for

R„(~)=- {(R„,(~) )): (C1)

R„(a)= —,
' ii'„ dt'8' exp[ ——,'(4+W+R„)(t—t')]

This gives

x cosh. (t- f') .

0'(A+ W+R„)
4~'+(A+W+R )'

(C2)

(C3)

where 0 is the Rabi frequency:

0 = ii»h = (2d„/@)g .
We easily verify that (c/2')$' is the field intensity
5~,4, where 4 is the photon flux. If we put these
factors together then (C3} can be rewritten in a
familiar way:

(C4)

R,.(~) =.(~)4 . (C5)

Here a(h) is the usual off-resonance absorption
cross section,

)
4' I&» I'&0

@C
(C8)

and 1"» is the sum of all the incoherent rates af-
fecting the 1-2 transition,

=A. +8"+R~C . (C7)

We may emphasize here a point made before, ' that
an on-resonance transition rate —R»(0) for ex-
ample —is precisely the ratio of the square of the
Rabi frequency to the total transition linewidth.

APPENMX D: HIGHER-ORDER CORRELATION

EFFECTS

In Sec. V we adopted a special kind of "second-
order" decorrelation in order to study saturation
and laser-bandwidth effects in general. Although
this decorrelation is extremely useful in studying
the strong-field limits of (39), it is not numerically
precise in its treatment of weaker fields. In this
appendix we point out some of the errors of formu-
las {39)and (40), and give some of the lowest-
order corrections for R(b, ) in the cases of thermal
and phase-fluctuating fields.

Phase fluctuations

Let us begin with a phase-fluctuating field. This
is a good model for the field of a stabilized laser
operating well above threshold. In this case we
denote the field amphtude by S~&"':

(D1)

where 8 is constant and

((eiyt e iyig)) c- ivl i - t~ I l2 (D2)

Obviously in this case the intensity 8', "'*8&,"' is a
constant nonfluctuating quantity. As a consequence,
the rate of one-photon ionization from level 2 is
also constant:

R&;,& =2v(d'„/e)h'-=R„. (D3)

This fact simplifies the calculation of some
averages. For example, the lack of fluctuation
of R„„,in the exponent of (34) allows R~&,y'(6)
== ((R,',y,'(n) )) to be evaluated trivially, and the re-
sult given in (C3) is reproduced:

(„)()
0'(A+ W+R~, )

4~'+(A. +W+R„)' ' (D4)

Similarly, one has ((R i&2y,'R 2;,')) = ((R,',",'))((R,',",')).
In the weak-field or perturbation-theoretic limit,

studied ln Sec. V A under the restriction +++~
»R», (&), the full two-photon rate was shown to
reduce to

R(~) =R„„((R...(&) )) .1
2c g+R2 (D5)

((q&, qr, ,)) = W5(t —f'),
which leads, as postulated in (3), to

((eiyi e" i yi)) c- lv l t- t~ I ly

as well as to the fourth-order result

(D7)

(D8)

((e2iyie iyit e iyigg))

=exp[ —W((t- f'(+ (t-t" [--,'(f'-f" ()] . (D9)

One consequence of (D7)-(D9) is a complicated
expression for ((R',y', R,y', )) that becomes simple if
TV»A+A~. In this case one finds

0
2c

(D10)

In passing we may. note, from an inspection of (50),
(51), and {D10)that the effect of correlations, cal-
culated consistently to second order, is somewhat
greater than allowed in the "second-order" ansatz
(39). That is, under the conditions assumed, it

Now we compute the first correction to this result
by expanding the denominator of (38}:

2R(c )
Rr ~ )(g)=( ** " 1 — '—'—'+ ~ ~ .

I ))
(Do|a+R„A+R„

The new correlation function ((Ri&,y,'R,'2y,')) is re-
quired for the evaluation of this correction term,
For simplicity, we adopt the Brownian motion
phase-diffusion model" for y„taking the "ir-
reversible" limit in which —,'Wt» exp( —~Wf). Then
we have
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follows that

((R(((')R(c') )) » ((R(((') ))2 (D11)

the remaining integral in (34) can be evaluated,
giving the following bound-bound transition rate:

Finally, to lowest order, the corrected version'of
(D5) and (44) may be written:

(, ) 02(A +2R,",) +W)
4t&2+(A +2R2", +W)2 ' (D17)

1"A+R +&'/(A+R )
(D12)

We have assumed W»A+R~, so this is also the
lowest-order corrected version of the weak-field
result (54) in the case of a phase-diffusing laser
field.

Amplitude fluctuations

The case of a light field with amplitude fluctua-
tions, denoted h,', perhaps appropriate to a noisy
multimode laser, presents for study a different
kind of correction to the ansatz in (39). Whenever
Gaussian amplitude fluctuations occur one expects
to encounter the "factorial effect" discussed by
Agarwal and others. " From the known property
of a complex Gaussian variate V, ,

((V*V*" V*V V " V))
= ((V,*V,))((V,*V„))~ ~ ~ ((V*V,)) + ~ ~, (D13)

where each of the n I combinations of pairs of the
indices 1, . . . , n contribute a term to the sum, we
have ((V*"V"))=n!((V*V)). We are considering only
two-photon ionization, but, because of the occur-
rence of saturation, factorials considerably higher
than 2 l may be encountered. We see this possibil-
ity as soon as we attempt to evaluate ((R(,',),)).

The two-level bound-bound transition rate, in the
presence of ionization from the upper level, is in-
teresting in its own right. From (34) we see that
it requires the evaluation of the infinite-order cor-
relation C,~2'(t, t'), where

We note that, due to the laser's amplitude fluctua-
tions, the influence of ionization (the R(;) term) on
bound-bound transitions is twice as great as given
in (C3). The factor of 2 is the same as the 2! in (D16).

Now let us consider the two-photon ionization
rate itself. There are a number of interesting
limits, the simplest being the weak-field limit of
Sec. VA. In that case, we take A»R, «+R», and
find

R '
(td. ) = ((R;„(1/A.)R,"„(b) )) . (D18)

In this case the R2(;)(ee term in (34) can be neglected
altogether compared with A, leaving a trivial
fourth-order correlation. The result is found to be

R ' (4) = (2!)R;, (1/A)R,"2 (t), ), (D19)

where R~(;)(t) ) is now given by (D17) in the limit
&„-0.This is the completely standard result
for the two-photon rate given a thermal light field,
except that the laser's bandwidth is now included
in R,",) via (D17).

A simple example of a correction. due to a cor-
relation of higher than fourth order occurs in the
limit 1/T, » R„»R». This particular limit was not
discussed in the text, but it might occur in several
ways. For example, a bound-bound quadrupole
transition could lead to a very small R» and colli-
sions could provide the dominant longitudinal re-
laxation mechanism [recall Eqs. (72) and (73)).
In this case we would have

) (
2„2„,(d)

i)
RQ) 0) ~

I/V, +R('&

c;,(e, ) )= ((d; d;)'exp- —' dt 2"
t

(D14) (D2O)

Again, we restrict ourselves to the first correction
to the partially decorrelated result (C3), and expand
the exponential, keeping only two terms. One finds

(c)(t td) ((g(c) g(c))) 2c

X dt" ((g&) g2('e)S(ce) S~')))+ ~ ~

gt

The result is

C(o)(t te) $2&-2'!&-&'!/a 1 (2!)& 2c g2(&-d')+. . .
12 ''N

(D18)
Under the assumption already introduced, that

ionization is not occurring rapidly, the second-
order term can be replaced into the exponent, and

The result is

1/7', (I/V, )'

2R('.)R(') g).) (D21)

R (2 ) (~ ) & t12 R (() )/[g2 + (R (2 ))2] (D23)

The effects of the laser's amplitude fluctuations

As a final example, we choose to look again at
super-strong fields, discussed in the text in Sec.
VC. In this case, we have

(D22)

From (D17) we obtain
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are to be contrasted with (67), which is the expres-
sion one finds for a phase-diffusing field. The
maximum rate on resonance is half as great for
an amplitude-fluctuating field. What is also inter-
esting is that the ionization linewidth is twice as

great, making the total number of ions in the ion-
ization profile for an amplitude-fluctuating field
equal to that for a phase-diffusing laser field in
this superstrong-field case.
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