
PHYSICAL RE VIE% A VOLUME 17, . NUMBER 4 APRIL 1978

Theory of inelastic co&»sions between low-lying excited- and ground-state Ne atoms

James S. Cohen
Theoretical- Divisiori, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545

Lee A. Collins*
Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards, Boulder, Colorado 80309

Neal F. Lane
Department of Physics, Rice University, Houston, Texas 77001

(Received 30 November 1977)

A qua&turn-mechanical study of low-energy inelastic collisions of excited- pnd ground-state Ne atoms has

been undertaken. Close-coupling calculations of cross sections for the. transitions 'P, ~'P&, 'P&~'P2,
'P, ~'P„and 'Po~'P, have been. performed at collision energies below 3 eV. All cross sections exhibit a
rapid falloff at low energies, reflecting barriers and repulsive walls present in the potential curves. Spin-orbit

coupling is assumed to be the transition mechanism. Comparison with experimental data suggests that

neglected rotational coupling might be important for some of the quite weak transitions at energies below

about 0.1 eV.

I. INTRODUCTION

The theory of low-energy (S100 eV) inelastic
atom-atom and ion-atom scattering has received
considerable attention over the past decade or so,
and significant progress has been made in under-
standing the basic mechanisms. It is well known
that for cases of resonant symmetric charge or
excitation transfer, where an actual electronic
transition is not required, the cross section can
be tluite large (i.e. , comparable with elastic) at
low energies. ' Even in cases of resonant or
near-resonant asymmetric charge or excitation
transfer, where an electronic transition is re-
quired, the cross section can still be very large
at low energies, provided the perturbation which
provides the electronic coupling is sufficiently
strong. ' Massey's adiabatic criterion, ' suitably
generalized to apply at finite internuclear separa-
tions, is useful as a qualitative indication of
where, in energy, the cross section is likely to be
Iarge. It is generally found that appreciable low-
energy cross sections arise from molecular
"curve crossings" or "avoided crossings. " Under
very restrictive conditions a remarkable simplifi-
cation of the collision problem is made possible
by the "Stueckelberg-Landau-Zener" (SLZ) ap-
proximation. ' Because it is so easy to apply, the
approximation is often stretched beyond its range
of applicability; it can give exceedingly poor re-
sults. Several investigators have made careful
studies of the SLZ and related approximations, ' '
in some eases by comparing approximate and ex-
act results for well-defined model problems. ' In
addition to direct applications of the theoretical
methods to particular collision processes, a num-

ber of more fundamental theoretical studies have
been made which shed light on such questions as
the nature of the "diabatic" state, """proper
treatment of electron "translation factors" in im-
posing scattering boundary conditions, "and the
consideration of dynamic symmetries in analyzing
curve crossings. "

Applications to inelastic collisions between ex-
cited- and ground-state rare-gas atoms, other
than helium, '" have not previously been made in
spite of the importance of such processes in the
dense-gas environment most appropriate to ex-
cimer' lasers. " Significant progress has recently
been made in the understanding of the electron-
bombarded dense-rare-gas systems by means of
careful time-dependent spectroscopic measure-
ments. '"" However, in attempting to determine
a consistent set of rates for the various processes
that control time development of the system, one
has at present very little theoretical guidance.
The processes of inelastic excitation transfer, or
"mixing, " in collisions of excited- and ground-
state atoms are important since they play a role
in determining the populations of gas. atoms pres-
ent in particular excited states, for example, and
thereby influence subsequent reactions leading to
excimer formation. An earlier study was per-
formed of resonant excitation and charge trans-
fer in Ne."

We report here a theoretical calculation of
cross sections for several transitions induced by
collisions of excited- and ground-state neon atoms.
Neon has not been experimentally studied as ex-
tensively as the other rare gases, but has the
advantage that a theoretical treatment of the mo-
lecular structure of Ne,* has been carried out for
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a number of excited states. " Moreover, it is the
lightest of the "heavy" rare gases, so that the
spin-orbit interaction, though important, may
still be viewed as a moderate perturbation. In
Sec. II we review the molecular structure of Ne*, .
In Sec. III, the quantum-mechanical theory of
atom-atom scattering is reviewed very briefly
and the approximations made in the present study
are described. In Sec. IV, the numerical pro-
cedures are outlined, and in Sec. V, the results
of the calculations are presented and discussed.
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II. MOLECULAR STRUCTURE OF Ne2+

A qualitative description of the ground and ex-
cited states of homonuclear rare-gas molecules
and the corresponding molecular ions has been
given by Mulliken. " In the molecular-orbital de-
scription, the 'Z' ground state is described ap-
proximately by the configuration (LCAO notation)

~ "(o,ns )'(o„ns)'(o,np)'(~„np)'(~, np)'(o„np)'

arising from two closed-shell ground-state atoms,
each described approximately by the atomic con-
figuration ~ (nsp(np)', where n= 2, 3,4, 5 for Ne,
Ar, Kr, and Xe, respectively, and where lomer-
lying orbitals are taken to. be fully occupied. 'The

low-lying excited molecular states correspond to
the promotion of one of these six molecular or-
bitals. 'The excited electron is expected to be of
Rydberg character, and the corresponding po-
tential energy curve, consequently, will resemble
that of the "parent" molecular ion (or "ion core")
to which this excited electron is bound (though the
well depths are generally somewhat smaller).
Tmo low-lying states of the molecular ion result
from the removal of an electron from either of
the antibonding orbitals o.„np or m~np; these states
are traditionally designated as A 'Z'„and B 'II,
respectively. Thus, depending on the symmetry
of the excited electron, a number of "'Z, „and
"Il~ „states are possible. The spin-orbit inter-
action is, of course, important for all the heavy
rare gases. The appropriate designation of the
states, including this effect, is 0'„, 1 „, 2, „,
etc. , where 0, 1, 2 are values of 0, the projec-
tion of the total angular momentum (spin and or-
bital) on the internuclear axis, and where the +
and — reflection symmetries for 0= 0 do not in
general correspond to degenerate states. Ab initio
studies of the ground states for various rare-gas
molecules have been performed; however, theo-
retical information on the excited states is scarce.

Cohen. and Schneider have calculated wave func-
tions, energies, spectroscopic parameters, and
radiative lifetimes for a number of the excited
states of diatomic neon. '0 " They applied a gen-
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FIG. 1. Potential curves of Net not including spin-
orbit interaction (A$ representation).

eralized valence-bond variational procedure, us-
ing a Slater-orbital basis set which is double zeta
plus polarization for the valence orbitals and
single zeta for the core orbitals including 2s. The
orbital exponents were optimized at several inter-
nuclear separations. In the configuration-inter-
action calculation. , typically about 30 configura-
tions, including the -most important single and
double excitations, were used. The spir'-orbit
coupl. ing matrix elemen's were taken to be inde-
pendent of internuclear separation, and were de-
termined semiempirically using atomic spectral
data. It was argued that the most important spin-
orbit effect a,rises from the ion cores, which do
not overlap appreciably except at very small inter-
nuclear separations. The ab initio calculations
were carried out ignoring the spin-orbit inter-
action, thus obtaining 'AS states"; the potential
energy curves for. the first eight states are shown
in Fig. . l. Vfhen the spin-orbit interaction. ,is in-
cluded, significant Z-II and singlet-triplet mixing
occurs, and the potential energy curves corre-
sponding to the 0 states exhibit features (e.g. ,
avoided crossings) not presen. ' in the AS curves.
The curves for A=0 and I are given in Fig. 2.
For later reference, we illustrate in Table I the
AS-state mixing and the separated-atoms corre-
lation for each of the Q sta".es.

Characteristic features of the potential curves
shown in Fig. 2, which inQuence the iiielastic
cross sections in the moat direct manner, are the '

barriers present in the lowest 0„('P,), 0„'"('P,),
0„'('P,), ard 1„('P,) curves, the replusive nature
of the other curves, and avoided crossings be-
tween the 0„'('I~,) and 0„'('@,) curves, and between
the cor. esponding g curves.

The repulsive nature of all the curves for 8 ~ 5ao



THEORY OF INELASTIC COLLISIONS BKTWKKN LOW-LYING ~ ~ ~ l345

.68

l.67—
TABLE I. M mixing and separy. ted-atoms correla-

tion.

.66—

.65—
Slate AS Mixing

Separated-atoms
correlation

o

64— og, u

A~
&g, u

2g

3. +Z
3II
3 +'

~g, u
3 II

30

3P2

3'
3p
3p

3p

3p ip

.62 —'

.6l—

.60—

I.58 l

5 6 7
R(a )

—Ip
. I

3p

3p

l

8 9 l0

clear wave functions. ' ' The coupled equations
which result from substitution of this expansion
into the SchrOdingbr equation may be written
(atomic units are used throughout)

f-(li2) )~', —8]F.(R)

(b)
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FIG. 2. Potential curves of Nef including spin-orbit
interaction for (a) Q=O and (b) Q=l.
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III. THEORY OF Ne*-Ne COLLISION PROCESSES

The theoretical framework employed here is
essentially that of coupled perturbed-stationary
states. '" The time-independent wave function
of the diatomic system 4'(r, R) is expanded in a
basis set of electronic functions g (r, B) which
may reflect some degree of adiabatic molecular
formation. '4 The expansion takes the form

e(r, R) =g F.(R)y.(r, ft),

where the coefficients F (R) play the role of nu-

results in inelastic cross sections which are very
small at low energies, but which rise rapidly as
the energy is increased. The avoided crossing
between the curves for 0'('P, ) and 0„'('P,) results
in an enhanced 'I', -'P, cross section, which for
energies ~0.1 e7 is larger than all others con-
sidered here.

+ (1/2g)& o.
l
&2sl o. ') ]F ~ (R), (2)

where p, and 8 are the reduced mass and total en-
ergy, respectively, and H, is the electronic Hamil-
tonian including nuclear-repulsion terms; it is as-
sumed that V„and V'„ in the matrix elements do
not operate outside the integrals. If a completely
adiabatic (i.e. , Born-Oppenheimer} basis is
chosen, then H, is diagonal, and all coupling be-
tween different states arises from the relative mo-
tion of the nuclei. Many of these matrix elements,
however, are difficult to calculate accurately,
even for rather simple diatomic systems. As a
compr'omise, investigators often seek an inter-
mediate nonadiabatic basis set which exhibits rela-
tively smooth variation with R, where coupling via
H, dominates that resulting from relative nuclear
motion. ' "

In the Ne, system, we make use of the approxi-
mate wave functions of Cohen and Schneider. As
an intermediate nonadiabatic basis set, we choose
the states lnAS) which diagonalize the electronic
Hamiltonian neglecting the spin-orbit interaction,
where n stands for all quantum numbers in ad-
dition to AS necessary to specify the state. These
states are then coupled by the spin-orbit inter-
action, approximated in the semiempirical manner
of Cohen and Schneider. " It is assumed that the
additional coupling via the nuclear motion, i.e. ,
the V„and V'„matrix elements, is less effective
in inducing transitions, and the latter is ignored
in the present study. Therefore, the expansion
of Eq. (1) becomes

4'(r, R}=Q F„agR}g„~s(r,R) . (3)
nAS

The reflection and inversion symmetries of the
system are not broken by the coupling, so that the
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full wave function 4, and hence the coefficients
F„~~, may be characterized by the + and g, u
labels which appear on the adiabatic-state desig-
nations of Table I (i.e. , 0„0„', etc.). The pro-
jection 0 of total electronic angular momentum
on the internuclear axis is not, in general, con-
served in a collision. However, in the present
model, where all transitions are assumed to re-
sult from the spin-orbit interaction, the value of
0 does not change in the collision. This is simply
a "Z,-conserving" approximation, "where z is the
internuclear axis, which rotates throughout the
collision. Hence, the wave function 4 and coef-
ficients F„~~ can be characterized by 0 as well.
Referring nowto Table I, one sees that 'P0—'P,
transitions occur in the 0 „"scattering sym-
metries, " 'P, —'P, in the 0,' „and 1 „symmetries,
and 'P, 'P, or 'P, in the 1 „symmetries. All
other transitions are "forbidden" in the frame-
work of this. model. The extent to which this
limitation is physically realistic will be discussed
in Sec. V.

Therefore, the coupIed equations simplify to

[—(1/2 p) V'„—h+ E„(R)]E„(R)

~ (nAS
~

V„~n'A'S') E„.„..(R), (4}

The matrix elements in Eqs. (4) and (6) are
independent of the nuclear orientation R since
coupling via V~ is ignored, so that a simple
partial-wave decomposition of the form

Z. (H) =—gu. ,(R}S,(cose„) (7)

is appropriate, where the radial functions corre-
sponding to E„~~ of Eq. (3), for example, satisfy
the N coupled differential equations (N is the total
number of channels),

„,+ k'. — „, ~u. ,(R) =g U...(R)u.,,(R),d
d
~

2

2 ~ 2
~ ~ t

~
~ ~

2

1 I
~ ~

«~
~

~

~

~
~~

~I

~

~I
i~

~?~

~

d

gR2 ai R2
p

Qf l . cad at~g

where in this case cy denotes quantum numbers
ri, A, and S, and where

k' =2@,[S-E (~)],

(8)

U„, (R)=2/, ((Q~ V„~Q')+ [E (R) —E„( )]5 .]. .

(10)

Defining diagonal matrices

(k'), , —= k„6,5„.

where the diagonal matrix elements are simply
the nAS adiabatic molecular energies (including
nuclear repulsion), ignoring the spin-orbit inter-
action; the "coupling" matrix elements are ap-
proximated by retaining only the spin-orbit con-
tribution. At large separations the expansion in
terms of g„~z becomes awkward since the latter
are not the correct eigenfunctions of the Hamil-
tonian for the dissociated system and, consequent-
ly, certain of the coupling matrix elements do not
vanish as R-~. This complication may be avoided
by transforming at some large separation R„ to
the fully adiabatic representation where the basis
functions g„„are the eigenfunctions of H„hi whc
of course includes the spin-orbit interaction. Thus
we write

e(r, H,) =+V„„(H)q„„(r,R),

(L ), , ;=l(l+ 1)5

we rewrite Eq. (8)

r
d LP, +k' —=, u(R) =U(R)u(R),

where the square matrix u(R) contains N linearly
independent vector solutions. In the present treat-
ment we solve the corresponding integral equa-
tions

u(R) =u, (R) + G(R, R') U(R')u (R') dR', (13)
0

in terms of the free-particle Qreen's-function
matrix G(R, R') and the complementary solution
u, (R). These equations may be rewritten

u(R)=G (R) —Gi(R) G2(R')U(R')u(R')dR'
0

and it is assumed that for R ~R0 all nonadiabatic
coupling can be ignored. The P„„satisfy the sim-
ple equations

[-(1/2p) V'„—S+ E„„(R)]6'„„(R)= 0, (6)

where the diagonal matrix elements E„„(R)are
the fully adiabatic electronic energies (including
nuclear repulsion). The actual procedure used
in applying the transformation will be discussed
in Sec. P7.

G'(R) f G'(R')U(R')u(R')dR',
~ ~

where

[G'(R)]...,,.
k Rj,(k R)5 .5», for k'~0

k Rg, (sIk iR)5 ~,N, ,6)for k'&0

(14)

(1Sa)
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[G'(R)] r, r

Rn, (k~ R)5~„.5, r for k~ ~0

Rn, (i~k ~R)5 .5„, for k'(0,
(15b)

with j, and n, the spherical Bessel and Neumann
functions of order l. It is convenient to define the
matrices I' and I2 such that

n(R) = a~12 621~ (14')

,[1„('P,-'P, )],
l odd

o('P -'P )= g hei[0;('Px-'Px)]

+-', o, [1,('P, -'P, )]}

+ g f-,'o, [0„('P,-'P, )]
l. - odd

+ —,'o, [1„('P -'P, )],
where the individual partial cross sections are
defined by

o,[a-a j=(./k. )(2f+1)
~
r„... .~',

and similarly for the inverse cross sections.

(20)

IV. COMPUTATIONAL PROCEDURES

A. Scattering-state representations

In order to better illuminate the various mech-
anisms which lead to transitions between the

The equations are solved using a noniterative
procedure, ~' as described in Sec. IV. From the
asymptotic form of the u(R), the usual K, and
hence S and T matrices are obtained. Transfor-
mation to the adiabatic vA representation, for
example, allows us to determine the, elements of
the scattering matrix for transitions between
pairs of molecular electronic states 0. —n'. The
atomic inelastic cross sections are expressed in
terms of these by taking yroper account of the
symmetries and statistical weights. The expres-
sions are

o(SP,- P,)= Q o, [0-,('P, -'P, )]
l even

+ g o, [0-„('P,-'P,)], (16)
l odd

(z('P, -'P, ) =- Q o,[1,('P,-'P,}]=2
l even

+—Q o,[1„('P,-'P, )],
l odd

o('P -SP ) =—g o [1 ('P -SP }]
2

l even

atomic. states and to facilitate the computational
effort, we have represented the atom-atom col-
lision equations in terms of three distinct bases
of target functions. Each basis is related to any
other by a unitary transformation and is usually
applied only over a limited range of the radial
variable R. Thus, the collision calculation is
performed by outwardly propagating a solution
in a particular representation to a given radius,
transforming by the unitary transformation to
another reyresentation, and continuing the outward
propagation of the solution in this new represen-
tation. %'e will review the definitions of the vari-
ous bases and comment on their applicability in
parti. cular regimes.

1. AS basis

The pS basis used in Eq. (3) diagonalizes the
electronic Hamiltonian svithout spin-orbit inter-
actions. Coupling between the AS channels is
provided by the off-diagonal elements of the spin-
orbit matrix [see Eq. (4)]. Since the atomic spin-
orbit interaction is used, the spin-orbit matrix
elements in this representation are independent
of R. The potential matrix elements in the AS
basis as a function of R are displayed in Fig. 3(a}
for the 1„symmetry.

The AS basis has certain advantages in the short-
range region of the potential curves and particular
drawbacks in the long-range or asymptotic region.
%e have previously argued that the spin-orbit
terms should provide the dominant coupling in the
short-range region. The choice of the AS basis
serves to explicitly segregate the syin-orbit ef-
fects from those arising from the spin-free elec-
tronic Hamiltonian, thus allowing a more syste-
matic comparison of the various processes gen-
erated by the complete Hamiltonian. The coupling
matrix elements are much smaller than the dia-
gonal elements in the short-range region (R 64a,
for the present problem). Such a weak coupling
case is generally easier to treat numerically than
one in which the coupling elements are compara-
ble to or larger than the diagonal terms. The AS
basis in the region of close approach thus pro-
vides (a) a means of systematically identifying the
various components of the collision process, and
(b} a set of weakly coupled equations which can be
efficiently solved. However, in the asymptotic
region, this basis is fraught with problems. For
one, the potential curves do not dissociate to the
proper atomic limits. Also, as a result of ihe
constant spin-orbit terms, the channels are
strongly coupled even at very large distances.
The latter feature greatly complicates the calcu-
lation not only through the problems which arise
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Fyo. 3. potential matrix elements in (a) the A$ representation, (b) the transition representation (defined in the text),
and (c) the 0 representation.

from strongly coupled solutions, but also from
the peculiar asymptotic behavior of the scattering
wave functions. Since the coupling terms do not
go to zero asymptotically, the solutions do not go

-to the standard phase-shifted spherical plane
waves for which the integral-equation codes and
Green's- function routines are formulated. In
order to circumvent these problems, we transform
to an intermediate basis called the transition"
basis.

2. Transition basis

The transition basis is defined such that the po-
tential energy curves dissociate to the proper

, atomic limits ("P„). This basis is related to the
AS basis by a constant, unitary transformation C.
The constant transformation is chosen so that the
following matrix equation is satisfied:

g&[E (~)+ V. (~)]g =R „(~),
where (E»),= E (~)5, , n =-NAS, and (V„)
= (n

~
V,g n') In other. words, the transformation

is simply that which rotates the atomic I.S basis
into the atomic JM~ basis. This constant trans-
formation is then applied to the AS basis at all
values of R. The resulting potential matrix ele-
ments in the transition basis for the 1„symmetry
are displayed in Fig. 3(b).

Unlike the AS basis, the transition basis has
distinct advantages in the intermediate to long-
range region and weaknesses in the short-range
region. As the separation between the atoms de-
creases, the coupling matrix elements in the
transition basis grow rapidly. In fact, at small
radii the coupling terms become comparable to
or even larger than the diagonal elements. As
pointed out before, such conditions of very strong-
ly coupled channels are sometimes difficult to

treat numerically. However, at larger values of
R, the coupled equations become more manage-
able since the coupling matrix elements in this
region rapidly decrease with increasing radius,
tending to zero asymptotically. The solutions
tend to the proper asymptotic forms of phase-
shifted spherical plane waves, and the diagonal
matrix elements tend to the proper atomic limits.
Thus, one can use the AS basis to determine the
solutions in the short-range region, transform to
the transition basis at some intermediate radius,
and continue outward propagation of the solution
in this basis. However, the coupling terms do
not go to zero at large R as rapidly in this basis
as they do in the basis next discussed.

3. Qbasis

The 0 basis, used in E|I. (5), is chosen to dia-
gonalize the electronic Hamiltonian including spin-
orbit interactions. The states are coupled only by
the terms arising from the nuclear motion [see
Eq. (2)]. Since the spin-orbit effects are expected
to provide the dominant coupling and since the
nuclear coupling ter, ms are less convenient to cal-

/

culate, the Q basis is employed only in the near-
asymptotic region where these terms are negligi. —

ble. The potential matrix elements in the Q basis
for the 1„symmetry are displayed in Fig. 3(c).
The Q basis is related to the transition basis by
an R-dependent unitary transformation D(R), such
that D(R) -1 as R -~. The set of coupled equa-
tions, which ensues from transforming the tran-
sition-basis equations to the 0 basis, have cou-
pling terms which depend on the first and second
derivatives of the unitary transformation with re-
spect to R. However, at very large radii the
terms in the Q-basis equations depending on the
transformation can be neglected. The resulting
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set of collision equations is complete'ly uncoupled.
The advantage of this form is that each channel
solution can be outwardly integrated from the
trarisformation radius independently of the solu-
tione in the other channels, thus greatly reducing
the computation time.

Vle shaD briefly. summarize the procedure em-
ployed for integrating the coupled integral equa-
tions. The set of coupled equations is initially
referred to the AS basis and propagated to a
radius at which the coupling is co~parable to that
in the transition basis. A constant unitary trans-
forMation 18 then performed on the' Avave fun'etlons,
taking them from the AS to the transition ba,sis.
The- propagation of the coupled equations:in-the
transition basis is continued until a radius is
reached at which the coupling in the Q basis be-
comes negligible, where a transformation to the
0 basi. s is made and subsequently each decoupled
channel is prop'agated independently to the region
where the full solution ean be matched to the
asymptotic for'm of phase-shifted plane waves.
Transfori ation between representations was
carried out by first using the quadrature formula
to relate I~ and I': in. Eq. (1.4') at two neighboring
points. The resulting pair of liriear equations was
theri solved for I' and I' at the transformation
point. The two transformation radii are not unique
quantities, and+he cross sections must be shown
to be insensitive to their respective choices.

In order to verify that the coupling in the 0
basis is effectively smaller than the coupling in
the transition basis at la.rge R, we can approxi-
mate the radial momentum classically and esti-
mate the ratio A. of the former to the latter, "

E

where. V'.is the potential matrix in the transition
representation (tne states are labeled 1.and 2 for
definiteness) and

2V,', (R)
V' (R) —V' (R)

, (22)

is the parameter of the 2 x 2 unitary transfor-
mation matrix eonnee1ting the different represen-
tations in a two-state approxi. mation, which suf-
fices for this demonstration. By differentiat on
of Eq. , (22), 1't is found tllat

i T i d'VA2-(V„—VAA) dR
—V„dR(V„—V,A) /

j" —V' j'+4 V' )' (23)ll 12 o

In the case of the Ne(ApA)+Ne and Ne('P, )+Me
states of 0„' symmetry, which are coupled by a long-
range potential —0.072/R~. we find (for largC R)

A. = (I/R)(0 9E'"+0.05/R) 1 (24)

B. Solution of the coupled integral equations
I

Whichever of the three bases is employed, the
resulting set of coupled integral equations has the-
general form of Eq. (14). In order to solve Eq.
(14) numerically, we approximate the integrals
by a quadrature scheme,

f(R) dR =Pf(R;)w;, — (25)

where N is the number of points in the quadrature
and so,- is the quadrature weight for the ith point.
The most extensively used quadrature"' for
solving the set of coupled integral equations de-
scribing collision problems is the trapezoidal
rule. By using the simple trapezoidal scheme,
we are generally ga,ining stability at the expense
of accuracy. However, the T-matrix elemerits

where E is assumed in eV and R in a, units. The
static term is negligible at all energies of interest.
Hence, if the coupling in the transition basis be-
comes negligible at R„ the coupling in the 0 basis
becomes negligible at about

@t/8R3/4

[in the same units as Eq. (24)]. That is, at 8=1
eV, transformation to the adiabatic representa-
tion, at say R=20a„saves more than another
30a, of coupled-equation integration. The inte-
gration then continues in the decoupled represen-
tation until the diagonal phases converge. This
example is typical of a case involving inverse R'
long-range coupling, where a brute-force ap-
proach may require coupled-equation integration
to beyond ~00ao. In the case of the transforma-
tion to the adiabatic representation (0 basis), the
(derivative) coupling in the new representation is
neglected. This neglect normally results in a
very small decrease in the symmetry of the nu-
merical S matrix. The results obtained by trans-
forming at R = 20a, and finishing the integration
in the adiabatic representation were found to be
in excellent agreement with those obtained by inte-
grating in the transition basis all the way.

awhile the AS basis provides a more explicit
representation of the various mechanisms leading
to transitions than does the transition basis, we
find for the present problem that, with the nu-
merical schemes described in Sec. IVB there
appears to be no distinct computational advantage
in employing the AS rather than the transition
basis iri the short-range region. Therefore, in
most cases the calculations were simply started
in the transition basis.
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for the neon-neon collisions, calculated from the
asymptotic form of the channel wave functions
propagated with the trapezoidal quadrature, dis-
played a striking departure from the usual sym-
metry (six to eight significant figures) obtained
with the integral-equations technique. In order
to more explicitly test the applicability of the
quadrature, we devised a simple potential which
closely modeled the principal features of, the neon
collision. The wave function calculated in the
trapezoidal scheme for this model was found to be
in poor agreement with the analytically determined
solution. Even increasing the accuracy by in-
creasing the number of points in the integration
mesh failed to significantly improve the agree-
ment, We thus considered a higher-order quad-
rature scheme.

Higher-order quadrature schemes, while im-
proving the accuracy of the solution, are generally-
less stable than the trapezoidal rule. ' A pro-
cedure recently proposed by Knirk, " in which
two forms of the Simpson's quadrature were com-
bined, showed promise for producing the highly
accurate solutions of the standard two-step Simp-
son's rule while providing a more stable solution
by incorporating a one-step rule. The wave func-
tion produced by this quadrature scheme was in
excellent agreement (eight significant figures) with
the analytical wave function of the model potential.
We also applied the quadratic quadrature method
to a number of other systems, such as electron-
hydrogen-atom elastic collisions and atom-mole-
cule rotational-excitation collisions, for which
the trapezoidal rule was known to give accurate
results. It yielded the same degree of accuracy
using much larger step sizes, thus reducing the
computation times by as much as a factor of 2.
The quadratic scheme. was used in all calculations
of neon cross sections. Unlike the trapezoidal
rule, it produced highly symmetric T matrices.
In addition, the higher-order scheme produced
a more accurate representation of the wave func-
tion and allowed a significant reduction in the
number of mesh points.

Despite the accuracy gained from the higher-
order quadrature scheme, the elements of the
solution matrix in some cases tend to become
linearly dependent as the wave function is out-
wardly propagated. This linear dependence arises
from (i) the highly disparate growth of the individ-
ual channels in the short-range region, where
they experience radically different potentials,
and (ii) the inability (largely due to numerical
round-off error of the computer} of the numerical
algorithm to accurately follow the solutions. We
circumvent the linear-dependence problem by
placing the solution matrix in upper triangular

form. ". "' As the solution is outwardly propagated,
the triangularization procedure -is regular'ly Rp-
plied so as to guarantee the continued linear in-
dependence of the solution. We emphasize that
triangularization can only maintain the integrity
of a linearly independent solutioo and cannot
salvage a solution that has become dependent. .

A triangularization. every three steps in the.
classically, forbidden region and every::six steps
in the classically allowed region was found ta be.
sufficient to guarantee the linear independence Of

the solution.
Since. the. quadrature of the- integral equation. j.n-

volves a large number of mesh points, (a step size
of 0.01a, was used in most, cases), a considerable .

fraction of the computation time is spent in calcu-
lating the Green's functions (the spherical Ricatti-
Bessel functions), particularly if. recurrence re-
lations are used to obtain the functions with, large,
l. A substantial savings was gained by using
Numerov integration to propagate these functions
in regions, where k2 —l(l+ 1)/R'&0, using:a step
size half that used in the integral-equation quadra-
ture. Accuracy was carefully checked and there
was no difference between scattering results ob-
tained using the recurrence or Numerov techni-
ques.

Closed channels present yet another problem. in
solving the set of coupled integral equations. For
k' & 0, the G' function in. Etl. (15) has a growing
exponential component which can lead to machine
overflow and: linear. -dependence problems if the
solution must be integrated to large values of A.
To circumvent this problem, we scale the G' com-
ponent of the Green's function for the closed chan-
nels by exp(- ~k ~R) and the G' component by
exp(~k ~A). Since the G' and G' components
appear in the integral equations in product
form evaluated at nearby mesh points, the result-
ing propagation scheme depends only on an expo-
nential function [-exp(~k ~&)f of the step size b, .
The solutions remain finite and well behaved.
Another complication introduced by closed chan-
nels is that the advantage of Numerov integration
of the Green's functions is lost when closed chan-
nels are included. The Ne('P, ) State is closed at
scattering energies below 0.229 eV relative to
Ne('P, ). When the third 1 or l„state (in the tran-
sition basis) was simply left out of the calcula-
tion, the remaining 'P, -'P, cross section changed
significantly, even when the omitted state was
quite inaccessible energetically. This very sur-
prising result was soon discovered to be mis-
leading. When the 3 x 3 potential matrix was block
diagonalized (by performing successive Jacobi
rotations on the 1,3 and 2, 3 elements until they
converged:to zero, so as to induce minimal change
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in the 1,2 element), it was found that the two-state
calculation was in full accord with the three-state
calculation, as expected.

V. RESULTS AND DISCUSSION
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The calculated cross secti.ons" for the exo-
thermic transitions 'P, -'P2, 'P, -'P2, 'P, 'P„
and 'P j

'' P j are illustrated in Fi:gs. 4-7, re-
spectively. Contributions from the different mo-
lecular symmetries are shown as well as the ob-
servable totals. Numerical values for each con-
tribution are listed in Table II. A characteristi|:
featur'e of all of these cross 'sections i.4 a steep
rise in magnitude with increasing energy. This
behavior results from the repulsive nature of the
potential curves at intermediate and large separa-
tions, but still inside the Van der Waals minima
(see Figs. 1 and 2). The 'Z'„and 'Z'„curves, and
conseIjuently the 0„('P,), 0'„('P,)', and 1„('P,)
curves, do possess deep minima around R = 3.5a„
but each curve exhibits a potential "hump" at
larger separati. ons. The magnitudes of these po-—
tential maxi. ma for the'Z'„and jZ'„curves are
0.087 eV (at R = 5.4a,') and 0.084 eV (at R = 5.5a,),
respectively. Corresponding potential maxima
in the 0„('P,), 0'„('P,), and 1„('P,) curves are
0.107 eV (at R = 4.9a,), 0.198 eV (at R = 4.8a,),
and 0.108 'eV. (at R = 4.9a,), respectively. The
0'„('P,) curve hss a shallow minimum and a po-
tential maximum of the order 0.'06 eV.

The relative contributions of different molecular
symmetries to the inelastic cross sections vary
with energy in a way that can be understood mainly
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FIG. 5. Contributions to the cross section for
Ne(BP&)+ Ne{'$)—Ne( P2)+ Ne('$) as a function of colli-
sion energy, The dashed curve is the total cross sec-
tion.

in terms of the adiabatic potential curves of Figs.
2(a) and 2(b). Even though we do not actually com-
pute the cross sections using the adiabatic (vQ}
representation, except in the asymptotic region,
nevertheless it is useful to refer to these curves
in interpreting the results. At low energies, the
coupling is weak, so that the quantum trajectories
of the atoms are largely determined by the adia-
batic (vQ) potential energies.

In the case of the 'P, -'P, transition, for ex-
ample, we see from Fig. 4 that the O„contribution
dominates at low energies, but gives way to 0
above about 0.5 eV. In Fig. 2(a), we see that the
0„('P,) curve rises less rapidly than the 0 ('P, )
curve and remains below it as R is decreased
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FIG. 4. Cross section for Ne(spa)+Ne{$$) Ne(sg2)
+ Ne{~$) . (dashed curve) as a function of collisiori energy.
The contributions from the various molecular sym-.

metries are:also shown (the data points indicate where
close-coupling calculations were actually'performed).
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FIG. V. Contributions to the cross section for Ne(P f)
+Ne( S) Ne(P&)+Ne( g) as a function of collision en-
ergy. The dashed curve is the total cross section.

from say 6.5a, to 5a, . Thus, for incident ener-
gies (c.m. ) of less than 0.3 eV or so, the classical
turning point for the 0„('P,) trajectory will lie well
inside that for the 0 ('P, ) trajectory. Since at

these separations the coupling between the states
is comparable and increases with decreasing R,
the O„contribution to the 'P, -'P, cross section is
understandably larger. As the energy is increased
the steep rise in the O„curve is felt in two ways:
the classical turning points shift outside those
corresponding to the 0 curve, and the energy
separation of the 0„('P,) and 0„('P,) curves be-
come significantly larger than that between the
corresponding 0 curves. Both effects favor a
larger relative 0 contribution at higher energies.
Similar arguments apply to the 'P, - 'P, transi-
tion, where the relevant symmetries are 1~ and
1„.

In the case of the 'P, -'P, transition, the 1„
symmetry again dominates at energies in the
range 0.03 eV&E&0.15 eV. However, a casual
glance at the potential curves suggests that it
should be the other way around. The 1„('P,) curve
rises more steeply than the 1 ('P, ) curve and re-
mains above it at all A. Similarly, the energy
separation of the 1„('P,) and 1„('P,) curves at
small R is much larger than that of the corre-
sponding 1~ curves. In this case it turns out that
the coupling matrix element (in the "transition

TABLE II. Calculated Ne*+ Ne inelastic cross sections (power of ten given in parentheses).

'p -3P
0 2 0 2 i' i.

3p ~3p
2

3p 3p ip 3p
2 1 2 Pg P2

0„ og 0+ og

0.010
0.020
0.030
0.040
0.060
0.080
0.100
0.120
0.150
0.200
0.207
0.237
0.277
0.300
0.400
0.477
0.500
0.600
0.777
0.800
1.000
1.177
1.200
1.500
2.000
2.177
3.000
3.177

2.47( 6)
3.15(-5)
9.82(-5)
2.O1(-4)
4.15(-4)
v.4s(-4)
9.44(-4)

4.85(-3)
7.66(-3)

2.92 (-8)
4.53(-V)
1.42( 6)
3.37 (-6)
1.15(-5)
2.O5(-5)
3.1O( 5)

8.49(-5)
2.s2(-4)

2.13(-e)
1.36(-6)
1.37(-6)
2.S5(-6)
4.59(-5)
1.45( 2)
1.83(-1)
5.16( 1)
1.47 ( 0)
3.13( 0)

3.vo{ v)
2.36( V)

1.42 (-7)
1.11(-7)
2.oe( v)
1.25(-V)
1.55(-V)

4.69(-7)
6.93(-V)

1.16( v)
1.66( v)
4.53(-V)
3.ov(-v)
v.9v (-v)
1.99(-6)
3.22(-6)

8.89 (-6)
9.oo( 6)

1.26(-v)
5.1e( 8)
2.53(-V)
v.26(-8)
2.18(-v)
2.a9(-v)
v.2o(-v)

5.83(-6)
1,17(-4)

3.09(-2) 9.72(-3) 6.02( 0) 1.48 (-6)
2.V2(-6)

3.85 (-5) 6.91(-3)

2.78 (-. 1) 5.26(-1) 1.11(+1)
5.oo(-6)
v.sa(-6) 4.50(-4) 1.06( 0)

3.72(-1) 4.50( 0) 1.52(+ 1)
2.O1(-5) 2.VV(-4)
9.89(-1) 4.03 (-4) 2.38( O)

2.71(-1) 9.77( 0) 1.88(+ 1)

2.50( 0)
3.25( O)

3.84( o) 5.84(-3) 4.46( 0)

6.18(-1) 1.02(+ 1) 2.01(+1) 3.86( 0) 6.75(-2) 4.76( 0)

1.4a(-5)
7.5V(-4)
3.S5(-3)
5.33(-3)
1.55( 2)
2.9O(-2)
4.54 (-2)

7.10(-7)
a.oe(-5)
1.53(-5)
5.91(-5)
v.38(-4)
2.98(-3)
6.24(-3)

1.34( 1) 2.OO(-2)

8.72(-1) 1.37( 0)

1.44( 0) 4.83( 0)

3.08( 0) 8.08( 0)

8.37( 0) 1.16(+1)

1.32 (+ 1) 1.07 (+ 1)

4.26 (-1) 1.04(-1)
5.9O(-1) 1.95(-1)
7.20 (-1) 3.61(-1)

s.o4(-ao)
1.99( -9)
2.99( 8)
5.12( -8)
4.vs( -s)
e.so( -8)
1.22( -7)

1.48 {-1o)
2.O2( -9)
4.97( -9)
4.96( -9)
4.34( -9)
5.29( -9)
2.1v( -8)

1.40( -5) 1.19(- -4)

2.25( -4) 2.4S( 1)

6.93( -4)
1.16( 3) 1.13( 0)

6.1V( -3) 5.5S( -1)

9.91( 3) 1.62( O)

1.13( -6) 1.09( -7)
1.22( -6) 2.30( -6)
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representation, " for example) is simply larger for
the 1„symmetry, resulting in the larger cross
section. At the higher energies, however, the
other efl'ects are more important.

The 'Py Py cross section is dominated by the
0'„contribution at all energies and exhibits a rapid
rise between 0.05 and 0.10 eV. An avoided cross-
ing between the 0„'('P,) and 0"„('P,) curves, which
becomes accessible at incident energies near 0.07
eV, plays an important role here. This feature is
evident as a curve crossing between the '&'„('P)
and 'II„('P) curves in the nAS representation; the
crossing is removed by the spin-orbit interaction.
The qualitative features of the 0'„contributiori to
the 'P, -'P, cross section are evident in a Landau-
Zener (LZ) cross section, calculated in the transi-
tion representation, which only allows transitions
at the curve crossing. " The LZ and close-cou-
pling results are compared in Fig. 8(a) for the 0'„

states. 'The G~ states contribute essentially nothing
to the P

y P y crloss section at collision energies
below 1 eV, but at higher energies a crossing in
this pair of curves becomes accessible. The LZ
contribution resulting from this crossing is shown
in Fig. 8(b). The LZ approximation is not too bad
for these curve crossing cases at the highest col-
lision energies evaluated by close couplirig and
hence might reasonably be used to extrapolate to
somewhat higher energies, e.g. , to determine the
energy at which the cross section is maximum.
In Figs. 9(a)-9(c) the individual partial-wave dis-
tributions corresponding to the 0'„close-coupling
calculations are compared with the LZ results at
.the three incident energies E='0.1, 0.3, and 1.0
eV. In the LZ calculation, - no attempt was made
to recover the oscillations resulting from the
difference in the phases of the initial and final
trajectories; only the envelope is presented. Re-
turning to the integrated cross-section calcula-
tions, we note that 1„ is by far the least important
of the remaining contributions, presumably owing
to the steep, repulsive nature of the 1„('P,) po-
tential curve. The rapid onset of the 0, contribu-
tion results from surmounting, the hump in. the
0~('P, ) curve and reaching the avoided crossing
between the pair of 0' curves at about 1 eV. This
is better illustrated by the change in partial-wave
distribution as the energy is increased to exceed
the barrier height. In Figs. 10(a) and 10(b) the
partial-wave distributions are shown for the 0'
cross section at the two energies E= 0.3 and 1.0
eV (relative to the 'P, state). The shift, as the
energy is pushed over the 0~ barrier, from a situ-
ation where one obtains very small contributions
over a large range of / to. that where the main
contributions arise from a small number of par-
tial waves wi.th /& 50 is evident.
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FIG. 8. Comparison of the Landau- Zener cross sec-

tions (with parameters corresponding to the matrix
elements in the transition. representation) to the close-
coupling results for the Ne( P~)+ Ne( 8) Ne( Pg)+ Ne( S)
collision with (a) 0'„and (b) 0~ symmetry. The LE
thresholds are 0.068 and 0.99 e'7, respectively.

The experimental determination of these cross
sections is difficult and only a few measurements
have been made. These are swarm experiments
and only the rate coefficients for a particular ve-
locity distribution are obtained. In order to com-
pare with the experimental data, we have pre-
sented, in Table III, deexcitation rate constants
X=(vo), where the average is taken over a Max-
well-Boltzmann velocity distribution for a variety
of temperatures. 'The average cross section o is
defined by

o =IC/V, (27)

where V is the ~can speed.
In Fig. 11 the theoretical rates for the 'P, 'P,

transition are compared with several existing
measurements. "" The agreement at the higher
temperatures is encouraging. One possible ex-
planation of the deviation, at temperatures below
300'K is that the theoretical 1„('P,) potential en-
ergy curve may be slightly too repulsive at, large
separations. 'The low-energy cross sections are,
indeed, very sensitive to small changes in the po-
tential curve corresponding to the initial state.
An accurate theoretical determination of the cross
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The Landau-Zener envelope (i.e., not multiplied by a
phase factor which is always less than or equal to unity)
is shown as a dashed curve.

TABLE Irt:. Rate constants for Ne*+ Ne inelastic col-
lisions. '

E (cm3/sec) b

(o K) 3P ~3P ip ~3p 3P ~3P
1 2

ent model, are significant here and indeed might
even dominate the room-temperature rates. We
predict a strong temperature dependence for this
transition with the theoretical rate and average
cross section increasing by an order of magnitude
as the temperature is increased from 300 to 600

sections at this end may require a more accurate
potential curve. Another possible explanation is
discussed below.

The P, -'P, rate has also been measured at
300'K, but the temperature dependence has not
yet been experimentally determined. " The ex-
perimental value is of the order 5x 10 "cm'/sec
at 300'K. Our theoretical value given in Table
III is 1.3 x 10 "cm'/sec. Again, this may suggest
that the 0„('P,) potential energy curve is slightly
too repulsive at large separations. However,
since the low-temperature rate and average cross
section are so small, we cannot rule out the pos-
sibility that the nonadiabatic "rotational" (or
"Coriolis") coupling terms, ignored in the pres-

100 5.8 x 10-~~

200 3.9x10-«
300 1.3x 10 ~5

400 3.3 x 10-~5

600 1.6x 10 ~4

800 5.8x 10 ~4

1000 1.6x 10 ~3

1500 9.4x 10 ~3

2PPP 2.6x 10-
2500 5.4x 10-i2

3000 9.8x 10 ~2

4.3x 10 it
9.2 x 10-~~

7.6x 10 i4

2.4x10-"
9.4x 10 ~3

2.0x10 ~2

3.5x10 ~2

x
1.3x 10-"
1.9x 10 ~~

2.4x 10-~~

]..2 x10-"
9.6xlp ~~

3.5 x10-'4
8.9x10 i4

3.3x 10 ~3

7.5x10 ~3

1.3 x 10-~2

3.3x10 ~2

0-12

1.2x 10 ~~

1.7x10 ~~

9.5x 10 2~

4.9 x 10
3.6 x 10-~9

5.7 x 10-~8

3.4x10 i6

3.8x 10-"
1.7x 10 i4

1.2x10 ~3

4.2x 10 i3

1.1x 10-&2

] 5 x 10-12

For a Maxwellian distribution.
"The inverse rate constants can be obtained as fol-

lows; K( P2 Pp) = 0 2 eXp( 1118/T)K( Pp P2),
K( Pg Pg)= exp(-2057/T)K( Pg Pg), K( P2 P
= 0.6 exp(-601/T)E(BPi~P2), E(SP2 ~P&)= 0.6
xexp(-2657/T}X( Pg P2).
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K. Measurements at temperatures higher than
300'K would be helpful in checking these pre-
dictions.

The 'P, - 'P, cross section is identically zero
in the present theoretical model. The vA molecu-
lar states arising from 'P, are O„and 0~, and these
do not couple (via the spin-orbit interaction) with
the 0'„, 0', 1„, and 1 states which correlate to the
'P, atomic state. We are not suggesting that the
cross section is actually zero, only that it is
small. A proper treatment of the rotational cou-
pling would couple 0„('P,) with 1„('P,) and 0 ('Po)
with 1~('P,) resulting in a nonzero cross section.
Phelps" reports an experimental value of the
average cross section for this transition of
6 x 10 "cm', the same as for the 'P,- 'P, tran-
sition. Such a near equality might be expected if
rotational coupling dominates the cross section,
since the 0=1 curves from the two states contain

TEMPERATURE, K

FIG. 11. Comparison of theoretical and experimental
rate constants for Ne(GP~)+ Ne( $)—Ne( P2)+ Ne( $).
Theoretical: i present results; experimental: 0 Phelps
(Ref. 36);0 Grant and Krumbein (Ref. 34); ~ Leichner
et al. (Ref. 37).

about equal parts of 'Z and 'll character which
can be coupled to the 'Il and 'Z parts, respective-
ly, of the 0 curves. If this explanation is correct
we would predict a. somewhat larger difference in
these two cross sections for the heavier rare
gases (Ar, Kr, and Xe) where there is consider-
ably more singlet character mixed into the 1~ „('P,)
states. In any event, we expect the spin-orbit
coupling to dominate rotational coupling at higher
scattering energies (&0.2 eV). Work on the rota-
tional coupling contributions will continue.

The 'P, - 'P, deexcitation rate has been mea-
sured by Leichner et al."who obtain the value
5.5x 10' sec '/T orr (1.V x 10 "cm'/sec) at 300'K;
this corresponds roughly to an average cross sec-
tion of 2x 10 "cm'. This is over an order of
magnitude larger than our theoretical value and,
in fact, is in agreement with our result at about
750'K. It is probably true that our cross section
and corresponding rate are too small at low ener-
gies for essentially the same reasons as given
previously, in connection with the 'P, - 'P, cross
sections. However, based in part on the good
agreement with Phelps for the latter transition
above 400'K, this discrepancy is somewhat lar-
ger than we would have expected.
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