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Exact wave-function normalization constants for the Bo tanhz- Ue cosh z

anti Poschl-Teller potentials
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We obtain, in exact closed form, the wave-function normalization constants for the Schrodinger equation
with potential V = Botanhz-Uocosh 'z. These constants are derived in terms of a variety of formulations
and solutions of the equation, We give discussions mf both mathematical aspects and physical motivations of
the problem. The main results are gathered in two appendixes. Wave-function normalization constants for the
related Poschl-Teller potential are given in a third appendix.

I. INTRODUCTION

for the potential

V(x) = Bo tanho. x —Uo cosh 'nx.

This potential has a minimum at

xo= —o.' ' tanh '(B,j2U, )

with value

(1.2)

V(xo) = —(Uo+ Bo/4U, ) (1.4)

and is shown schematically in Fig. 1. Rosen and
Morse were also interested in matching two of
these potentials end to end (one reversed) for use
as a model of one-dimensional double-well po-
tentials. Such potentials were appropriate to
certain polyatomic molecules along given axes.
(Of course, during the first decade of quantu)n
mechanics, as well as later, many studies were
done on exactly solvable and approximately solv-
able potential prob)ems. See, for example, Refs.
1-10.)

When the potential of Eq. (1.2) is specialized to
the symmetric case (B,=O)

In 1932 Rosen and Morse' (RM) found the exact
energy eigenvalues and unnormalized eigenfunctions
of the Schrodinger equation

V(x)
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cussions we have mentioned have the wave-function
normalization constants been given in closed form. '
A reason is that in terms of the standard. solutions,
the normalization constants turn out to be double
sums of products of 11gamma functions with changing
signs.

It is the purpose of thi. s paper to give these
normalization constants in exact closed form. In
addition to the desirability, in itself, of having
these constants for the number states, with
these constants one could in principle go on to
investigate the coherent states for this system.
We will return to this point in Sec. V.

In Sec. II we.begin by deriving the normaliza-
tion constants for the symmetric case (1.5), using
the discussion of Landau and Lifshitz" (LL).
The advantage of their notation is that the prob-
lem splits up into two calculations, for the even
and odd states. This is especially useful when
one continues to the three-dimensional case, since
there only the odd states survive. We will find.

V=-U, cosh' Otx, (1.5)

there are additional reasons for interest in it.
Equation (1.5) is a potential which occurs in the
study of solitons. " Also (see Sec. IIIA below), the
three-dimensional radia. l form of Eq. (1.5) (x-r)
is exactly solvable for the L = 0 case, and thus is
also a useful model potential.

Although the potentials of Eqs. (1.2) and (1.5) are
important enough to be found as standard quan-
tum-mechanics examples in, for example, Refs.
12 and 13, respectively, in none of the dis-

FIG. 1. Solid line shows the complete potential of
Eq. (1.2) plotted with x in units of 1/n and for Bp =4 Up.
The dashed line shows the Bp =0 symmetric potential
of Eq. (1.5). For Up=99 0, h /yg, the five horizontal
dashed lines are the bound-state energy levels for the
symmetric potential and the three horizontal solid lines
are the bound-state energy levels for the complete po-
tential.
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that the normalization constants can be obtained
by transforming the standard hypergeometric func-
tion solutions into Jacobi polynomials and thus using
certain changes of variables and known integrals.

In Sec. III we proceed to the entire. potential of
Eq. (1.2) in terms of the original Rosen and Morse
discussion. ' The calculation of the normalization
constants is similar to but slightly more compli-
cated than that of Sec. II. In the limit as Bp 0
these normalizations are consistent with those ob-
tained in Sec. II. We also give the transformation
to the Morse and Feshbach" (MF) notation.

Section IV contains a mathematical. discussion.
We first describe the modification which allows
one to write the above normalization constants for
wave functions in terms of Jacobi polynomials.
Next, we observe that, for the symmetric po-
tential of Eq. (1.5), the normalized wave func-
tions can also be given. first in terms of Gegen-
bauer polynomials and finally in terms of as-
sociated Legendre functions. In particular, we
observe that the normalized wave functions for
the complete potential (in terms of Jacobi polyno-
mials) and for the symmetric potential (in terms
of associated I egendre functions) are particularly
simple. As Simmons has observed, the basis for
this is that the original Schrodinger equation can
be transformed into Riemann's equation, which
then directly has the mentioned simple solutions.

We then point out the connection of our explicit
RM normalized wave functions for the complete
potential (1.2) to the implicit normalized wave
functions for that potential which can be generated
by the factorization method as described by Infeld
and Hull. "

Finally, in Sec. V, we discuss the possible ap-
plication of our results to finding the coherent
states of this system, either by analytic or group-
theory means. These coherent states could pos-
sibly be of use for the forced-oscillator problem.

In Appendixes A and B we gather some special-
case solutions and all our general results, re-

spectivelyy;

In Appendix C,
'

we give the nOrmaiized wave
function results for the related Poschl- Teller
potentxal

ff'aa f~(~ —1) ~(~,1)
2m k sin'ax cos'ax

8 U0
' 2m sx' cosh'ax (2.1)

II SYMMETRIC POTENTIAL 80 0

A. One-dimensional case

For the symmetric case of Eq. (1.5) we find it
most illuminating to use the notation of Landau and
Lifshitz. "One starts from the Schrodinger equation

end rewrites the wave function in the form

By next defining

q=sinh'ax, z=(—2mE)' ') 0, (2.3)

one obtains from the above an equation for co. From
Eq. (15.5.1) of Abramowitz and Stegun" (AS), the
solution is a hypergeometric function. Specifical-
ly, in our case one has energy levels E„
(n = 0, 1, 2, . . . ) determined by

n=s- &(n),
or

s —e =n(2s-n), (2.4)

8mUE„=— —(1+2n) + 1+
8m n'.@' (2 5)

The solutions. w~ and up for even and odd n are
[see Eqs. (15.5.3) and (15.5.4) of AS"]

1 1 1 ~ 2
ms = F(- & n, & n —s; » —sinh ax), n = 0, 2, 4, ... ,

(2.6)

no= sinhaxF(-~(n —1), 2 (n —1)—s+ 1; 2, -sinh ax),
n=1, 3, 5, , . . . (2.7)

Note that Eqs. (2.2), (2.4), and (2.5) imply that
there is always at least one bound state (n = 0) 'for
any Up~0, nO matter hOW Small.

We now proceed to find the normalization cons-
tants N(n). When the first label in a hypergeo-
metric function is a negative integer, then the
hypergeometric function'can be given by a finite
power series. By using Eq. (15.4.1) of AS" one can
write [see Eq. (15.5.3) of AS"] the even solutions
as

Ps(n= 0, 2, 4, . . . ) = s, &us(n),
Ns(n)

cosh ~x ' (2.8)

(2.9a)

(2.9b)

po(n = 1,3, 5, . . . ) = o ~,(n),
No(n)

coshax ' (2.10)

k(~-&)

mo(n) = sinhax g C(j,n, s) (sinha x)'~,
jap

I ( —,
'

(n —1)+ 1) I'(s ——,'(n —1))
F(&(n 1) —j + 1) I'(s ——' (n —1)—j )

F (a ) (-1)'
I'(—+j) F(j +1)

(2.11a)

(2.11b)

n/2

ws(n) = g A(j, n, s)(sinhax)",
j=p -I

F (~ n + 1) I'(s 'n +1)—
I'(-,' n —j + 1) I'(s —2 n -' j + 1)

„ I'(~2) (-1)'
F(-'+j) (j+ )

and the odd solutions as [see Eq. (15.5.4) of AS"]
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The.above mean. that the even and odd normalization
constants, obtained from integrating &d'(coshnx) ",
are given by

n/2

A(j,n, s)A(k, n, s)1
Q

N=-.'n, o=s n, p= —,',
s

in Eq. (25.5.45) of AS" and then changing variables
from z to y yields

1 1 1+( —2n, —2n S; —, ;-Si&lil Z)

aa
x B(j+I&+2,S-j —/2) ~ (2.12)

( I) n/2-P&s -n, -&/.2& (2 I)
I'(-,'n+ 2 )

(n "1)/2

C(j,n, s)C(u, n, s)
g

~p'

xB(j +/2+2, s j—k —1), (2.13)

Now a further change of variables,

t=2$ —1,

(2.18)

(2.19)

whereB(a, f&} isthebetafunctionB(a, 7&) = I"(a)I'(f&)/
I"(a+/&). Thebetafunctionsin(2. 12) and (2.13)arise
from integrals of the form

sinh~x 1 g+1 &- p.
. dx= —B

cosh x 2 2 .
' 2

yields

o&Ns (n

df (] t)s n &(] +t) &/2[P&s n &/2&(t)J2
1

[Re»- 1, Be(p, —v) & 0] (2.14)

r &-', )r&-,'n+1&

)

*

I'( —,
' n+ -'

(2.20)

's —',
n) (2.15)

nNo'= —,
' B(—'„s——,

' (n+1)}B(—,', —,
' (n+1)}

s- & n+1
(2.16)

given in (3.512.2) of Gradshteyn and Ryzhik'"&2
(GR).

The normalization constants (2.12) and (2.13) are,
in addition to other numerical factors, double sums
of productsof11gammafunctionsof j andk, with
changing signs. However, they can be evaluated
as we show below. First we state the results,
which are also listed in Appendix B.

&xN&2 =2 (n+1}B(2,s 2n)B(2, 2n+1)

1

(1 x) -'(1+x)2[P„'""(x)J'dx
a]

2 '21'( +&2n 1+)1"(P+n+ 1)
(n ))nl'(n+ P+n+ 1) (2.21)

to obtain the final answer. Note that the n in the
denominator on the right of (2.21) is where the
factor 1/(s —n) in (2.15) comes from, this factor
yielding the result that a zero-energy eigenvector
is not normalizable.

With one slight modification, the odd normaliza-
tion constants No of Eq. (2.16) are calculated the
same way. The difference is that this time the
identifications (2.17b) are modified to

N=2(n- 1), o&=s —n, P=2, (2.22)-

X+1=-sinh z y = tanh z (2.17a)

We have checked these normalization formulas
explicitly for the special cases up to n=8 by com-
paring with the double-sum formulas (2.12) and
(2.13). (The complete explicit wave functions are
given in Appendix A up to n=8. ) Further note that
if one has a zero-energy solution given by s =n,
the denominators of the last factors in Eqs. (2.15)
and (2.16) show that this solution is not normal-
izable, but rather is part. of the continuum.

Now we shall prove the even case, (2.15). Change
variables in the normalization integral from x
to z =- nx and then change the limits of integration.
from (.-~, ~) to (0, ~). Next one uses one of the
formulas relating a hypergeometric function with
a negative integer first argument to a Jacobi
polynomial. Specifically, using the identifications

so that

E(—2 (n —1), 2 (n —1)—s + 1;2,' —s inh z)
I"(2 (n+1)) I'(2)

( 1)-&.-l&/2r (;n+1)
X p&s n~l/2& (2y 1) (2.23)&f7 1 ) /2

The rest of the calculation proceeds similarly to
that for N&.

B..Three-dimensional case

When one considers the three- dimensional prob-
lem x-r then one can factor out the angular and
radial wave functions in the usual manner, "ob-
taining from

(2.24)



MICHAKI NAB, TI5 NIKTO
r

the equation for g of
4

Uo l(l+ l)K'
2m 9r' cosh'er 2mr' ~~~ =Ef i Xf r .

mB,
0, 1,2, . . .=n s—

Q g

/))„= N„u(n)e" (cosh ""z)

(3 4)

(2.25)

For the S-wave (I =0) case, this equation for g„
is exactly the same as the one-dimensional equa-
tion (2.1). The only complication is that, since
the complete wave function must have continuous
derivatives at the origin, we must rule out the even
solutions, n=0, 2, . . . , which. go to infinity at the
origin, and keep only the odd solutions, n=1, 3, . . . ,
of the form (2.10), which go to zero at the origin. '
A consequence is that there is not always a bound
state in the three-dimensional problem. One needs
to have

xE( n, 2s n+1;s —n+a~i; u), (3.5)

where the quantities involved in Eqs. (3.2)-(3.5)
are defined so as to closely correspond to the no-
tation of Sec. II when Bp 0

s = —,'[-1+ (1+6mU, /o('5')'/'], . (3.6)

a=mU, i[o.'a'(s -n)]. (3.7)

Note that Eq. (3.4) implies that if the potential be-
comes too skew then it is not, possible to have any
bound states.

This time, using the fact that

mU, /o('8' ~ 1 (2.26) E( n, 2s —n+ 1;s —n+ a+ 1;u)

for there to exist a bound state. The normaliza-
tion constants Ns(p, 0) differ from the odd normal-
ization constants (2.16) by a factor of 3/2 be-
cause the radial integral in three dimensions on. ly

goes from zero to infinity. To summarize:

n
I"(n+ 1) I'(s —n+ a+ 1)

I'(n j + 1) I'(2s n+ 1)

1(2s —n+j +1) (-u)'
r(s. n +a+j+1) r(j+1) (3 6)

CV 8mU,E„= —[1+2(2p+1)j + 1+
Bm Q @

(2.27)
N„(P, 0) = 3/2 No(2P+ 1), P=0, 1,2, . . . .

Since for physical problems the rotational excita-
tions are usually small compared to the radial ex-
citations, one can use perturbation theory to dis-
cuss the modifications necessary for / 40."

2
RM

~2e2a»

cosh" 2"z
(3 9)

yields
n

o(NR2„= —P H(s, n, a,j )H(s, n, a, k)
2

g p

plus the integral (3.512.1) of GR,"one finds that

III. COMPLETE POTENTIAL

A. Normalization constants H(s, n, a,j)
x B(s —n+ a+j + /z, s —n m), (3.10)

For the complete potential of (1.2), we found it
clarifying to use the original formulation of Hosen
and Morse. ' In their discussion. they eventually
obtain a hypergeometric expansion in terms of the
variable

e'u=, , = —,
' (1+ tanhz), z =— o'&,e'+ e

(3.1)

8 n 2mB
tl Sm g ~2@2D2 (3 2)

BmU, "'
Il„= {3+3 )+ ((+ —,,' =3(3 e), (3.3)

instead of the LL expansion in sinhnx of Sec. II.
The discussion of the derivation of the energy
levels and wave functions is similar to that of Sec.
II, and need not be repeated. The reader can sim-

ply verify that the elgenvalues and solu/tlons to the
Schrodinger equation with the complete potential
(1.2) is

2' "I'(n + 1)I'(s —n + a + 1)I'(2s - n +j + 1)
I'(n —j + 1)I'(s —n + a+j + 1)I'(2s - n + 1)

(-1)'
I (j + 1)

' (3.11)

I'(n+ 1)I'(s —n+ a+ 1)
I"(s+ a+ 1)

(3.12)

Hy inserting (3.12) and (3.5) into (3.9) and then
changing variables first to u, then. to t = 1 —2u
= (-tanhz), one ends up with

To obtain the closed-form normaJ. ization con-
stants one considers, as before, the integral (3.9),
but this time with the hypergeometric functions
transformed to Jacobi polynomials by formula
(22.5.42) of AS. One obtains

F(-n, 2s n+ 1;s —n+ a+ 1;u)
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1=-.'[(1+t)+(1 f)], (3.14)

(3.13) can be transformed into the two integrals
(16.4.11) and (16.4.15) of Ref. 22. When this is
done, one is left. with the final answer (also see
Appendix B)

1"(m+ l)I'(s —n+ a+ 1) )'
I'(s+ a+ 1)

1
x dt (1 t)'~" "(1+t)' " ' '

1

x [~(s-neo, s-n-a&(t)]2 (3 13)

The integral in (3.13) contains an integrand of the
form (1 —f) '(1+ t)~ '[P„' '~'(t)]'. By multiplying
this integrand by 1 in the form

~ nNP(n)
n even (3.18a)

n odd. (3.18b)
&C'(2(n —1),n, s)

Putting Eqs. (2.9) and (2.15) into Eq. (3.18a) and

Eqs. (2.11) and (2.16) into Eq. (3.18b) one finds
that both of them agree, as functions of n, with

Eq. (3.17).

C. Morse and Feshbach formulation

takes account of the numerical factors, the co-
efficient reduces to +1.] This all means that one
should have

I'(n+ 1)I'(s —a+ 1)
I'(2s —n+ 1)I'(s+ a+ 1)

I' (s —n+a+ 1)
X

(s —n+ a)(s n a)— (3.15)
& = V, cosh' p, [tanh(nx —p, ) + tanhii] (3.19)

A slightly different formulation of the problem
is contained in Morse and Feshbach" (MF). There
the minimum of the potential is centered at the
origin, so that the potential is given by

I'(2 n+ —,')1 (s n+ a) I'(2 n+ 1)I'(s —n a)
I"(s ——,

' n+ —,') I'(s ——,
' n+ 1)

I'(s —n+ a+ 1) 1'(s —a+ 1)
x(s n) (3 ~ '6

I'(s —n —a+ 1) I'(s+ a+ 1)

We have checked Eq. (3.16) for the special cases
n=0, 1,2 by calculating these special case results
with the double-sum formula (3.10).

Comparing (1.2) with (3.19) one finds with a little
algebra that to go from. the MF problem to the RM
problem one makes the transformation

Bo p, Bo
V(x) = 0 + 0 X=x+ —,tanhii=4VO, A 2UO

B 2

V, =U, 1 — '
~~ (3 20)0 0

or
B. Comparison with the symmetric limit

When one considers the symmetric limit B,= 0,
which means that a= 0, Eq. (3.16) reduces to

~Nay ~, 0=B(&n+ z, s —n)B(q n+ 1,s —n)(s —n) .

Uo Vo cosh p Bp = 2 Vo cosh p. sing p

IV. MATHEMATICAL DISCUSSION .

A. Jacobi and Gegenbauer polynomials,

and associated Legendre functions

(3.21)

(3.17)
The question arises if this single formula agrees
with the separate LL normalization constants (2.15)
and (2.16) for the even and odd states. The answer
is positive.

Recall that in the LL discussion the wave func-
tions are the hypergeometric functions (2.9) and
(2.11) expressed as a power series in sinhz where
for a particular wave function it was always the
lowest power (0 or 1) of sinhz which had the co-
efficient 1 multiplying it. In the RM discussion
for a = 0, the wave function is the hypergeometric
function (3.8) expressed as a power series in u,
multiplied by cosh ""z. When one looks carefully,
one finds that if the RM discussion is reexpressed
as a power series in sinh it is always the sinh"
term which has + 1 as the coefficient multiplying
it. [The simplest way of noting this is that in the
expansions of Eqs. (3.5) and (3.8), when a=0, the

j = 0 term is:the only contributor to e "' cosh 'z,
this being needed for (sinhz)" /(coshz)'. When one

Our results (2.15), (2.16), and (3.15) and (3.16)
for AN~ QN p and QN~~, respectively, are gi-
ven for the wave functions in terms of hypergeo-
metric functions as described in Eqs. (2.6) com-
bined with (2.2), (2.7) combined with (2.2), and
(3.5) combined with (3.8), respectively Howeve. r,

'to obtain the closed-form normalizations, as an in-
termediate step we reexpressed the hypergeomet-
ric functions in terms of Jacobi polynomials in
Eqs. (2.18), (2.23), and (3.12), respectively.
Thus, if one wanted one could write the entire or-
iginal wave functions in terms of these Jacobi poly-
nomial formulas, and then the normalization con-
stant expressions from (2.15), (2.16}, and (3.15)and.
(3.16) for N» „u would be multiplied by the factors

—,'(n+ 1)B(—,'n+ 1, —,'), (—,'n+ 1)B(2(n+ 1), 2),
(4.1)(s+a+ 1)B(n+ l, s —n+a+ 1),

\

respectively. For Sec. IVB we observe that the
RM solution can thus specifically be written
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egZ

= (—1)"N g(n)(1+tanhz)" "'" '(1 —tanhz)" ~" 'P" " ' ' n'"(tanhz),

u(s —n+a)(s —m —a)I'(2s —@+1)I'(m+1))'~'

(s —n) I'(s —a+ 1)I"(s + a + 1)

(4.2)

(4 3)

Of course, given the functional form of (4.2),
NRM~(n) can now be directly verified as was done
with Eqs. (3.13) and (3.14). '

Further, for the B,=0 symmetric case (which
means a =0 for the RM discussion), the Jacobi
polynomials in the wave functions turn out to be
three special cases which reduce to Gegenbauer
polynomials. In particular, from Eqs. (22.5.25)-
(22.5.27) of AS,"one has that

C""" "(tanhz)n

I'(s —n+ 1)I'(2s —n + 1)
I'(n+ 1)I'(2s' —2n+ 1)

n-s
P&"- )(tanhz),

2 cosh@ (4.7)

one finds that gE, Po, and ARM l, , all have the final
normalized solution

P "" '/"(2t~h'z —1)=
I'(s —n+ —,')1(n+I)

I'(s ——,
' n + 2) I'(sn+ 1)2"-

~E, O, RM la=o

~
ER0MI1a = o

(I (s —n) I'(2s —n+ 1) '/'
F(n+ 1)

&& C" ""/"(tanhz), (4.4)
)&P& -')(tanhz), (4.8)

(, „„/,), )
r(S —n+-2')r(n+ I)

I (s —,
'

n.,+ 1)I (-,'n+ -,')2"

&& tanh 'zC" "+'/" (tanhz),

(4.5)

P(s-n, s-n)(] 22() P(s-n, s-n)( tanhz)

( 1)nP(s-n, s-n)(tanhz)

I'(2s —2n + 1)1 (s + 1)
I'(s —n+ 1)I'(2s —n+ 1)

.)&C (s n+ I/2) (tanh }n (4.6)

So N~ and No obtained from wave functions de-
scribed by the Gegenbauer polynomials in (4.4) and
(4.5) would contain the further multiplicative fac-
tors of the quantities in the square brackets of (4.4)
and (4.5), respectively. Similarly, if one wishes
to express the wave functions for the symmetric
case (a = 0) of the RM formulation in terms of the
Gegenbauer polynomials of Eq. (4.6), then the for-
mula (4.3) for NRM~(n) is multiplied by the quantity
in the square brackets of (4.6) and then evaluated
for a = 0 which gives the normalization constant
NR«(, o(n). One now finds all the solutions are
identical up to phases. '~

But in this symmetric case there is one further
transformation which gives the solutions in a par-
ticularly simple form. By observing from Eq.
(22.5.60) of AS" that the Gegenbauer polynomials in
(4.4)-(4.6) can be given as associated Legendre
functions,

where the Q are the unimportant phase factors
(-1) '/' ( 1) ""/' and (-1) "+"' ' Again given
the functional form of the solution (4.8), the nor-
malization constant can be simply verified by using
Eq. (7.122.3) of GR."

The results we have obtained are gathered in Ap-
pendix B.

By adding a zero point energy + Uo to the system,
and then taking the limits +-0, s-~, but such
that (22s =m(d/f), one can show, with the aid of
the standard formula relating the limit of Gegen-
bauer polynomials to Hermite polynomials, that
the normalized wave functions (817) for this sym-
metric case go over exactly to the normalized
wave functions for the simple harmonic oscillator,
as do the energy levels and potential.

2m
(I/&)&o)e)= @2 2 (Boy Uo~-E} ~ (4.10)

B. Connection to Riemann's equation

Given the especially simple solutions of Eqs.
(4.2) and (4.8) one might expect that one could be
able to obtain them directly, instead of via a series
of transformations on the standard LL and RM so-
lutions. Indeed, as Simmons has kindly pointed out
to me, this is indeed the case. By changing vari-
ables in Eqs. (1.1) and (1.2} to g= tanh&2x, one ob-
ta.ins

(
92(1-Z')' .—2g(1-Z')—

Bg Bg

—v s+0 (1'—s ) —f)( =0, (4 ~ 9)
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Equation (4.9}is of the form of Riemann's P eq-
uation. (See Sec. 15.6 of AS.") It has singular-
ities atg=(-1, 1,~) and exponents. , in the standard
notation (n, n'; 6, P', y, y'), of

-n' = n = 2'(t-—.v, )' '} -O' = S = 2(6 —v})'

1 —y' = y= 1+s. (4.11)

(The reader should not confuse the exponents with
the other notation we have used. } For the solutions
which vanish at g = —1 the Riemann I' symbol can
be reduced to a hypergeometric function which is
a Jacobi polynomial in —2'(g+ 1) with the factors (g
+1) (g —1)2 extracted. This is the functional form
of the complete solution (4.2).

For the symmetric case, things are even more
direct. For v, =0 in (4.9), the Riemann equation is
the Legendre equation. The solution which van.—

ishes at g = + 1 is the Legendre function P,'" "(g),
which is the functional form of the solution (4.8).

a '= [i/(2mh&o)' '](p — im(ox) (4.12)

Infeld and Hull applied their method to the RM
problem with the complete potential of Eq. (1.2).
Their results, in our notation of Sec. III, were that
the- normalized wave functions could be generated,
one by one, by the procedure"

(4.13)

21 2(is 2}}nIs(P 2n) 1/2
4 }"(s s —s}}(s —sss})

&& (cosh ""nx)e' ",
t -1/2

6}„= n(ns 2—n) '1—
s

x so. tanhax- na(s —n) s
s Bx

(4.14)

(4.15)

where s and a(n) remain as defined in Eqs. (3.6)
and (3.7). We have verified for the first two cases
(n = 0 and n = 1) that Eqs. (4.13)—(4.15) agree ex-
actly with the wave function (3.5) when F is given
by the power series (3.8) and N„„ is as we obtained

C. Relation to the factorization method

In their classic paper on Schrodinger's" factor-
ization method, Infeld and Hull" described how ex-
actly solvable second-order potential problems
with boundary conditions can be factorized into two
first-order differential equations from which the
eigenvalues and normalized eigenfunctions can be
generated. Intuitively one can see that this method
is describing an equation as a product of a raising
and a lowering operator, since these first-order
differential equations are combinations of a deriv-
ative and a function of x, as in the harmonic oscil-
lator'4 [a'=(a )t]

in Eqs. (3.15}and (3.16}.
Note, however, that the Infeld-Hull factorization

of this problem is important as a matter of prin-
ciple rather than of practicality for molecular pro-
blems. This is because if one takes typical mol-
ecular characteristics, the number of bound states
N is (for the symmetric problem)

N=1+n =1+[s],
2] 9 g&i'2'& i 2g

(4.16)

(4.17)

where 8 is Uo in eV, RE is the reduced mass m in
a.m.u. , and 8 is 1/n in A. Thus, there will be
many tens of bound states in a typical molecular-
model problem. This is far too many. states to
generate all N of the 4„by using N different 8„,
each to be applied n times to the N separate 4„.
The closed-form expressions (4.2) and (4.8) for ar-
bitrary n are clearly preferable to the above pro-
cedure. '4

a
/
n) = n

/
n),

)
n) = exp(-

/
n /') Q, ,~, /n) .

(5.1)
These coherent states of the harmonic oscillator

are extremely useful calculational tools. For ex-
ample, if one considers the forced harmonic oscil-
lator with the external forcing function F(t),
arbitrary, one can solve the transition prob-
abilities exactly. However, if one does this calcu-
lation entirely with number states the calculation
is quite involved. "~" On the other hand, with the
use of coherent states the calculation is surpris-
ingly simple. '4

It is important to consider our potential in the
light of the above. The RM potential is a useful
model of molecules. With our results one now has
the number-state wave functions complete with
normalizations. One can therefore ask what the
coherent states of this system are. In principle
they exist and can be found by function or group
theory techniques. They should also be able to be
expressed in terms of continuum states and the
normed number states we now have. Finally, with
the coherent states of this system in hand, one

V. DISCUSSION

Much work has been done on the connection of the
special functions of mathematical physics to group
theory. " Indeed, as we alluded to in Sec. IV, the
factorization method, with its raising and lowering
operator structure, is a classic study of this type.
The most familiar example is the harmonic oscil-
lator. Its eigenfunctions are Hermite polynomials
and its group structure is SU(1, 1). Also, the im
portant coherent states of the harmonic oscillator
are eigenfunctions of the destruction operator of
Eq. (4.12):
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could discuss the forced-oscillator problem. Per-
haps with the coherent states of this system the
forced-oscillator problem would be more tractable
to analytic techniques, as is the case with the
forced harmonic oscillator. Such a discussion
could serve as an analytic model calculation of the
excitation and dissociation of molecules by laser
light '

The coherent states for this sytem will be. dis-
cussed elsewhere. "
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APPENDIX A: SYMMETRIC-CASE WAVE FUNCTIONS UP TO n = 8
I

Given that the symmetric-case wave functions are

y(n) = „, , z =nx,N(n) (o(n)
cosh' ' (A1)

we explicitly write below the even- and odd-wave-function quantities N(n)(3)(n) up to n =8. First the even
quantities:

j./2
N (0)tz (0) =(

n (s -2)
N (2)tz (2)=(, (1 —2(s —1)sinhz],

24

N (4)tz (4)=(, — (1 —4(s —2)sinhzz —, (s —2)(s —3)sinhz],
22

n 5 (s —1)(s -2)(s -6)

x [1—6(s —3) sinh'z +4(s —3)(s - 4) sinh4z ——,', (s —3)(s —4)(s —5) sinh'z],

5 7 (s —1)(s —2)(s —3)(s —8)
(B(~,s) 4 2 (2s —1)(2s —3)(2s —5)(2s -7)
x [1—8(s —4) sinh'z +8(s —4)(s —5) sinh4z ——,', (s —4)(s —5) (s —6) sinh'z

+ (16j7!!)(s-4)(s —5)(s -6)(s —7) sinh'z].

(A2)

(AB)

(A4)

(A5)

(A6)

Next the odd quantities:

sinhz (A7)

N (5)tzs (5) =(

is(7) nh (7) -( (, , )2t

3(s —3)
(2s -1) sinhz[1- —', (s -2) sinh'z]

(3)(5) (s —2)(s —5)

1) 2 3)
sinhz[ 1 -—, (s —3) sinh'z + —„(s —3)(s —4) sinh z],

(5)(7) (s —2)(s —3)(s —7)
2 (2s —1)(2s —3)(2s -5)

(A8)

(A9)

x sinhz[1 —2(s —4) sinh2z+ —, (s —4)(s —5) sinh~z —(8/7!!)(s —4)(s —5)(s —6) sinh'z]. (A10)
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We collect the normalized wave function results, in places leaving off unimportant phase factors. The
notation is as in the text.

Complete potential

First for the complete potential, one has in the RM' formulation

(1)RM =NRM(n) e"(cosh ""z)F(-n, 2s n+-1;s -n+a +1;u), (Bl)

(n) P(s-n+a, s-n-a)
( tauhz)

8
cosh' "g

( 1)nN (n)(1 +tauhZ)(s-n+a)/2(1 tauhZ)(s n a)-/2-P(s n a,-s--nIa) (tauhz)

(B2)

(B3)

cl r(s ——,'n +-,') I'(s ——,'n +1) I'(s —n —a +1)1"(s+g +1)
(s -n) I (,'n+--,') I'(s -n+a) I'(-,'n+I) I'(s -n-a) I'(s -n+a+I) I"(s -a+I) (B4)

a (s —n+a)(s —n —a) B(2s —n+1)I'(a+a s1)) I

I (s -n+a +1)2' " (s -n) I"(n+1) I"(s -a +1) (B5)

a(s —a+a)(s -n -a) I'(Is -a+I) I'(n+ I) )'I
(s n) I'(s ——a + 1) F(s +a + 1)

The above can be transformed to the MF" formulation with the formulas (3.19)-(3.21).

(B6)

Symmetric potential

For the symmetric potential one has in the LL" formulation

$LL= (cosll z)x s(n)F(- & n, & n —s; s; —sinh z), n = 0, 2, 4, . . .

o(n) sinhzF(-2(n —1), —,
'

(n —1)—s+ 1; 2;—sinh'z), n = 1,3, 5, . . . , (Ba)

2 (s —n) 1

(n+1)(s —&n) B(z, s —2n)B(z, &n+1)
(B9)

2(s- n) 1
n = c('/'

s — (s+I) B(—', s —'(n+1))B( —,', —'(n+I))) (B10)

One also can write the symmetric case iu terms of the solutions for the complete potential (Bl) (B6) by
setting a = 0. Note that then the normalizations (B4)—(B6) simplify to the forms

I (2s —n+ \. )
RMla 0 I'(s n+1)2s n ( ) 1(n+]) (B

I

n"'
NRMzl, = ),„[(s- n)I'(2s —n+ 1)I'(n+ 1)I ' '.

1 s+12'"
The separate even and odd solutions of LL, when put in terms of Jacobi polynomials, become

(812)

Nz~(n)P„'/s, "' '/" (2 tanh z 1), n=0, 2, 4, . . .
gLL j' cosh ""z x ~

~ ~ ~N«(n) (tanhz)P'('„", '&//", (2 tash'z —1), n = 1,3, 5, . . . ,

(B13)

(B14)

n(s n)I'( —'n+ 1) I'(s —'n+ s )
I'(-'n+ k) r(s ,' n+1)— (B15)

a(s —n)I'(-,'n+-,') I'(s —,
' n+ I) )'I*No~n =

I'(—' n+1) I'(s —z n+ &)
(B16)
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c( (s —n) I'(n+ 1)=2 I (S —n+ ) r(2

x cosh" 'z C" "" '(tanhz),

n(s n) I'(2s —n + 1)
r (n+1)

(B17)

(B18)

When the symmetric- case normalization cons-
tants are written in terms of Gegenbauer polynom-
ials or Legendre functions, both the RM and LL
formulations collapse into the same formulas,
specifically

APPENDIX C: NORMALIZATION CONSTANTS
FOR THE POSCHL-TELLER POTENTIAL

I 'c(' (((/( —1) X(l( —1)
2m sin'nx cos'o.'x (cl)

whose Schrodinger equation eigenvalues are

QE = (((+X+2n)', n=0, 1, 2, . . . .
2m (c2)

A potential which is mathemat&cally related to
the cosh ' potential is the Poschl-Teller poten-
tial sa-3&

Three-dimensional case

L

For the l =0 S-wave case, the problem is solv-
able in three dimensions as indicated in Sec. IIB.
Only the odd solutions of the one-dimensional case
remain and one has

(r) = v 2 r 'tP»o(z = nx —nr, n = 2p+ 1) (4m) '/',
I

p = 0, 1,2, . . . . (B19)

This potential is periodic. However, each period
is separated from the next by an infinite potential
barrier so it can be studied within one period,
say 0 ~z —= &x ~ &m. The potenti. al is asymmetric
about z = —,(( (unless ((=A), and the minimum of
the well is located atz „~&m as ~~A, . By the
same techniques as used in the main part of this
paper, one has that the exact, normalized wave
functions can be given as (we ignore phase factors
below)

f =[2m(((+ A. + 2n)I'(n+ 1)r(((+ X+n) r(((+n+ —')/r(~+n+!)] ' '
x [I (K+ )I (l(+ )] (slnz) (cosz) F(-n, K+ X+n; K+ z', sin z)

2n (((+ X+ 2n) I'(n + 1)I (((+ &+n) ~ ~

(cs)

(c4)

For the symmetric case (((=X) one further has
that

2r(21) o'. (&+n)I'(n+1)
r{~+-,') r(2~+n)

n(~+n)r(2X+n) '/',

x+((/2 x ) (sinz) (c8)

&& C„'~'(I —2 sin'z)

4a(X+n)r(2'(+n) '/' . „/,
( 1)

slM cosz)

)& P ((/a-x& '

(1 ~p i(„a~ )n+ X -X/o (c8)

In this: ymn)ietx':. .-. case 1t actually is preferable
to make' a, change to the variable z = nx = 2&x —&m,

which means that the potential and energy levels
are given by (-&7( =z ~ &w)

h'n' A. A. 1 2 2

V(x) = —,, E„= (X+n)' (C7)
QFB coS 8 202

and the normalized wave functions are

It is interesting to observe that for (C7) and
(C8) as X- 1, the potential, energy levels, and
normalized wave functions become exactly those
for the infinite square well potential with barriers
at x=+((/2((—=aa, in terms of the number N=n+1.
Also, by first subtracting the zero point energy
X(l( —1)5'n'/2m and then taking the limits l(- ~,
c(-0, but such that n'X=m&u/ff, one can show that
the potential, energy levels, and normalized wave
functions become those for the simple harmonic
oscillator. This can be done in the same manner
as mentioned at the end of Sec. IVA for the simi-
lar limits of the cosh potential.
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