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The reduction of density matrices defined. with respect to a finite basis set is considered. A basis set can be
introduced into the vector space of Hermitian matrices acting on functions of the coordinates of p particles
for each value of p. An analogy with the construction of spin eigenfunctions is used to obtain a particular
basis set called the reducing basis. Reduction of one of these basis elements is either one to one or maps into
the origin. Any element in the preimage of a density matrix can thus be resolved into two components, one
uniquely determined by the density matrix and the other arbitrary within a certin subset. A restatement of
the ¹epresentability problem is given, and two sufficient conditions and one necessary condition for N
representability are given in terms of distances and norms.

I. INTRODUCTION

fn the preceding paper' (hereafter referred to as
I), a space whose elements are Hermitian matrices
of a fixed, finite dimension was considered. A
metric and a set of basis elements or coordinate
axes were introduced into the space. It was shown
that the basis can be chosen so that only one of the
basis matrices has nonvanishing trace. Matrices
of unit trace are then readily identified as those
having a fixed value of this one particular com-
ponent. The remaining condition on a density ma-
trix, that it be positive, is not so readily dealt
with, but some of the geometric consequences
were considered in I. In the present paper, we
will consider a sequence of such spaces, corres-
ponding to matrices of operators acting on func-
tions for djfferent numbers of electrons. The
mapping operation corresponding to reduction of a
density matrix will be treated, and it will be
shown that a particular choice of basis elements in
each space greatly simplifies the interpretation of
the consequences of reduction and investigation of
the N-representability problem. Some of the re-
sults developed here are implicit in earlier work
of Kummer. ' The present point of view is some-
what different, however, and will hopefully make
the results more readily accessible to quantum
chemists and physicists. The introduction of the
basis set is novel and has significant consequences.

In Sec. II, basis functions will be introduced and
some well-known, essentially trivial results will
be presented briefly to establish notation and pro-
vide a foundation for further development. In.Sec.
III a new space is introduced. It combines the
spaces for different numbers of electrons and is
related to them as Fock space is related to Hilbert
spaces. ' In fact a second-quantized notation could
be used, but it appears to offer little advantage in
the present context. The total space can be divided

into orthogonal subspaces which remain disjoint
under the reduction operation. A set of operators,
one combination of which corresponds to the re-
duction operation, is introduced and the operators
of the set-are shown to satisfy angular momentum
commutation relations. This suggests that new
basis elements be introduced in each subspace,
corresponding to angular momentum eigenfunc-
tions. It is shown that such a choice of basis
cleanly separates the unique and nonunique parts
of any element in the preimage of any reduced

. density matrix. These results are applied to an
analysis of some aspects of the N-representability
problem in Sec. IV.

Treatment in subsequent papers will include a
more complete analysis of the relationships be-
tween one- and two-electron reduced density ma-
trices and their spin components as considered
from the geometric point of view, the Hamiltonian
and other operators, and energy considerations.

II. PRELIMINARIES

The concept of reduction, which is well known
in connection with density matrices of fermion or
boson systems, can readily be extended to other
operators which are expressible as integral oper. -
ators with kernels that are permutationally sym-
metric or antisymmetric functions of a set of
(particle) coordinates. Let N= (1, 2, . . . , n) be the
(ordered) set of integers from 1 through n, where
each integer refers to the space and spin coordin-
ates of the particle labeled by that integer; let Ã'
= (1', . . . , n') be a similar set in which each coor-
dinate is distinguished by a prime (from the cor-
responding unprimed coordinate) and let N= (P, Q)„
where P= (1, . . . ,p) is the set of the first p in-
tegers, corresponding to, the coordinates of the
first P particles and Q = (P+1, . . . ,P~ q =n) is
similarly defined for any P &n. The symbols

1257



1258 JOHW K. HARRIMAN

we can define a reduced operator E ~ acting on p-
particle functions as

F (&)y(&) (P) — F (&)(P P/) @(&)(P/) dP/ (2a)

where

F'~(P, P') = F "(P,Q;P', Q)dQ (2b)
\

A density operator or density matrix is clearly of
this form. In the present series of papers we are
considering only operators restricted to the space
spanned by a finite orthonormal basis set (Cr).
Such an operator is equivalent to a matrix

f dN' will be used to indicate integration over the
full range of all variables in the set labeled by K',
etc.

Then if E ". is an operator acting on n-particle
functions such that

/

F " 4' "
(N) = F "

(N, N') 4 (N') dN',

~ (j):
[& (j))]r~ = 5rz 5« , -

A (P, P') =@'")(P)4'"*(P')
(5a)

determined by the superscript index on the func-
tion labeled by this set label. We will refer to
sets, and use set-theoretic notation for inclusiori,
union, etc. , but an ordering must be assumed if
the phase of 4E is to be uniquely determined. The
ordering assumed for the set K is ky & k3 & ~ . & kp

unless otherwise specified, and whenever a new
set is formed by union or by addition of an index,
etc., it is assumed that the new- set is immediately
ordered in an appropriate way.

We denote by 8~ the space whose elements are
R~ XR~ Hermitian matrices. As pointed out above,
these matrices may be thought of as corresponding
to operators (Herniitian in this case) restricted to
the space spanned by the (P~r) and expressible as
in E(I. (2). The dimension of g~ is R&, and we in-
troduce a basis for it as in I:

c ~"~'i&"&@&"'dXJX J K

and its effect can be given in integral operator
form with kernel

F'"'(N, N ) = Z F')~.(N) +*.(N')
J,K

~"() ).

[a '(p)]„=(l/W2)(5, ()„+5„5,),
& '(P, P') = (I/~2) [@(E"(P)@'"*(P')

~ C,() )(P) @(J/)//(P/)]

K&L

(5b)

Any operator restricted to the finite-dimensional
space can be so expressed. .

In the notation thus far used, N, P, Q, etc. ,
refer to sets of integers, and implicitly to sets of
particle coordinates; indices J,K,I, label func-
tions of the basis set and will correspond to sets
of integers labeling spin orbitals; E'" is.an oper-
tor acting on n-particle functions, - E' "- is the cor-
responding matrix, and F(")(N, N') the correspond-
ing integral operator kernel.

The simplest way to introduce a consistent set of
basis functions into each of a series of spaces re-
ferring to different numbers of identical particles
is to begin with a one-particle basis set and con-
struct appropriately symmetriz ed 'products. Only
fermions will be considered here, and they will be
referred to as "electrons, " although the results
would apply equally well to other fermion systems.

Let (Q/, , k= 1, 2, . . . , r] be a set of orthonormal
spin orbitals. The basis set of P-electron func-
tions is then taken. to be

(~(:)(P)=~, ~,,(I)e,,(2) ~;(jk"
where A~ is the normalizing p-particle antisym-
metrizer and K= (k„k„.. . , k~) is an ordered set
of indices. There are R~= (~) orthonormal func-
tions C~. The number of indices in the set K is

C K1 (P) ~

[C (p)lsz = (z/v 2 )(5zrc5sr, 5rrg «) /

C"(P, P') = (f/~2) [C "'(P)4'"*(P')
c,(&)(p) c/(&)8( p/)]

K&I. .

(5c)

The superscript labels on the basis matrices
A, g., C are associated with functions, as in paper
I. In addition to the oidering of indices within each
set, we must define an order ing, of the set indices
J,K, L, . . . . We can, for example, associate with
K a binary number of x digits, where the jth digit
is one if index j is included in K and zero other-
wise, and order sets containing the same number
of indices so that the corresponding binary num-
bers will be in increasing order. The notation K
&L means that the set K comes before the set I
in the standard ordering. In the basis elements
8 ~ and C it is assumed that K&L in this. sense.
[Cf. E(I. (11) of I]. Subscript labels [ ],z identify
matrix elements, so they are also. associated with
functions. The Kronecker deltas are defined in the
usual way, but in this case the indices I, J, K,

i

and L are associated with sets of spin oribtal in-
dices, so that 5«= 1 if the set (j„.. . ,j~) is the
same as the set (k„.. . , k~) and is zero otherwise.
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Thus, for example, A (p) is a diagonal matrix
[of dimension ( ~)']'with a 1 in row and column K
and zero's elsewhere. As was noted in I, the basis
defined in Eqs. (5) is orthonormal and complete
for S~. It will be convenient to include as special
cases the one-dimensional. spaces So with single
basis element-A(0) =1, and 8„, with basis element
A(r) given by Eq. (5a) where C'"' is the antisym-
metrized product of all the spin orbitals.

The reduction operation defined in Eqs. (1)-(4)
provides a mapping of 8„onto g~. Since the basis
set in each space is complete, the effect of reduc-
tion on any element of B„will be determined if we
specify the effect of reduction on each basis ele-
ment of 5„ in terms of basis elements of g~. A
notation for the reduction operation is introduced
by'

P (a) Li P'(P)P-
for any q, not necessarily n-P, with 0&q &P.
Then

(6)

LpA'(P)=('. ) ' Z A'(q) (h)
KCE

Here K is a subset of q indices (again ordered
k, & ~ ~ &k, ) chosen from among the p indices in K.
There are (~) such subsets and thus (~) terms in
the sum. This result is well-known and is trivial
except possibly for the constant factor. A factor
of (p —q)! is associated with different orderings
of the indices labeling those coordinates with re-
spect to which integration has been carried out,
and the other parts of the binomial coefficient con-
vert one antisymmetrizer into the other. Note that
either A (p) or A (q) has associated with it two

functions, C, and thus two antisymmetrizers con-
tribute constarit factors.

Before we consider the reduction of B's and C's,
it will be convenient to introduce some additional
notation associated with pairs of P-particle in-
dices. A pair of such indices K, L will have some
indices in common, which we denote by corn(K, L)
and some indices which differ. We will use K/L
to denote the set of indices in K which do not occur
in I, and L/K to denote the set of indices in I,
which do not occur in K. The numbers of indices
in the set K/I. or I,/K will be called the Chfference
of the pair K, L and will be denoted by d. As ini-
tially defined, K and L are ordered sets. We can
define a new ordering, called the pair ordering,
in which K/I. , L/K and corn(K, L) are each or
dered within themselves, but in. K all the indices
in K/I, come before those in corn(K, L) and sim-
ilarly the indices in L/K come first in L. The in-
dex-set pair, with this pair ordering, will be de-
noted by [KL]. Since reordering indices in K or
L, may change the signs of CK, C. ~, it is clear that

Il'""(j)= Il"(~) (8)

III. THE REDUCING BASIS

As the fi.rst step in obtaining a more appropriate
basis for each g~, we combine all the g~ into a

and similarly for C. The plus sign is appropriate
if the permutations required to convert K and L
from fully ordered to pair ordered have the same
parity, and the minus sign is appropriate when

these parities are different. We now use the pair-
ordered sets to define basis elements; the effect
will be to change the signs of some components in
the expansion of any element in $~, but this occurs
in a known way.

. The effect of reduction on B~ ~ can then be ex-
pressed as

L;a""(p)= 0 if d & q,
L~gi+~j(P) = (~) &/+~~ +~ if .d —q

L'~'""(P)=(')-'Z, II"" «q
p

where M C corn(K, L) and

I = (K/L) UM, J= (L/K) UM.

In the last case, M is a set of q -d indices sel-
ected from among the p -d indices common to K
and L, , so there are (, „) terms in the sum. ln
connection with the convention on ordering of the
sets identified by superscripts on B, it must be
further stipulated that the definitions of I and J
are interchanged if necessary so that I & J. As
indicated previously for pair ordering, [IJ] ident-
ifies a pair of index sets I = (h„. . . , i~) and J
=(j„.. ,j~), wit. h h, & ~ ~ &i, identical with the in-
dices in the set K/I. and h, „=m, & ~ ~ ~ &h~ = m~,
being the elements of a particular M, and similar-
ly for J. The order in which the sets are consid-
ered to occur does not change if the indices within
the sets are reordered. Expressions analogous to
those of Eq. (9) could, but will not, be written for
the reduction of a C

We see from these results that the image under
reduction of a basis element iri g~ is in general a
linear combination of basis elements in g„and
that the preimage in g~ of a basis element in g,
would involve a number of the basis elements of
8~ in a rather complicated way. The simple basis
set is thus not convenient if we are to consider re-
duction. We note also that in I we found it neces-
sary to make a change within the 4 basis elements
in order to treat the trace condition on a density
matrix in a simple way. It will be shown in Sec.
III that a particular choice of basis, which includes
the A' of paper I as one of its elements, will greatly
simplify our description of the reduction process.
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single, larger space

h=Z~h, . (10)

(A, U, V)=(U, A V) all U, V in 8. (13)

The operator A, will be obtained by postulating an
operator through giving its effect on any element
of g and then showing that this operator, as A„
satisfies Eq. (13).

Before doing this, however, we pause to decom-
pose g into a different set of orthogonal sub-
spaces. For each positive integer p ~~, we choose
another integer d such that 0 ~ d ~ min(p, r -p).
For each d, then, we can identify a subspace of S.
Corresponding to d = 0 we define 8~(0), which is
just the subspace of 8p spanned by the basis ele-
ments A. (P) for all (~) choices of K. The dimen-
sion of S~(0) is this (~). For each d &0 we define
two families of subspaces, $~(d, KL) and b& (d, KL),

An element in g can thus have components in any
or all of the - 8p. Explicit representations can only
be constructed as indicated sums, since the addi-
tion of matrices having different dimensions is not
defined. In practice we will actually have need
only for elements entirely within one $p but the
formal extension is useful. It will present no prob-
lems provided we can define a scalar product be-
tween elements in different gp. We do this by re-
quiring that

(U, v) =o, U&b„v~b, , , P ~P.
Such a definition will lead to no difficulties: the
result is that the Sp are orthogonal subspaces of
g. We will see later that in fact this extension of
the scalar product and the orthogonality of the dif-
ferent 8p are entirely appropriate.

We can now consider the process of reduction to
correspond to a linear operator acting on any ele-
ment of 8 to produce another element of 8 (pos-
sibly 0). Rather than considering the general re-.
duction operation Lp, let us consider an operation
proportional to the operation of reducing p by 1:

(P )LP-1 PLP-1 (12)

It is understood that the P is appropriate to what-
ever element or component of an element of 8 A

is acting on. More precisely, A could be written
as a sum of terms of the form given, each multi-
plied by a projector onto the corresponding 5p.
The space 8 is spanned by the totality of the basis
elements for the various gp, and the results of
Sec. II give the effect of reduction on any such ba-
sis element. The effect of A on any element in 8
is thus determined. Since A is a well-defined
linear operator it will have an adjoint A, —= A such
that

24

8'(d, KL) = g ~ $,'(d, KL).
P=d

These are subspaces of g, and

S=h(0)eg ge[g (d, KL)~g-(d, KL)].

(14a)

(14b)

The sum over d now extends from 1 to zr, if r is
even, or 2 (x —1), if x is odd, and the sum over
KL ranges over all choices of these disjoint sets.

Any element of h~(0) can, by definition, be ex-
pressed as a linear combination of A (P)'s. The
reduction operator is linear, and we have seen
[cf. Eq. (7)] that the result of applying L~ to any
A (P) is a linear combination of the A (q)'s. It
follows that reduction of an element of 8(0) will
yield an element of S(0). A similar result holds

.for each h "(d, KL): Eqs. (9) and the associated
discussion show that the result of the application
of L~ to an element of 8~ (d, KL) will either be a
nonzero element of b, (d, KI.) or the zero element
which is common to all subspaces of g.

Within each 8(d, KL), the indices contained in
KL are common, to all basis elements. The family
of spaces h~ (d, KL, ) or g~ (d, KL) for different P
but fixed d and Kt will be isomorphic with a se-
quence of spaces F~(d) independent of KI . Each
F~(d) is spanned by an orthonormal set of basis
elements E (p, d) which are analogous to the A's,
but defined with respect to a set of p —d indices
selected from r —2d possible indices. The dimen-
sion of F~(d) is thus the same as that of h~ (d, KL)
or S~ (d, KL), and a 1:1correspondence between
basis elements can be established in a way which
will be preserved under reduction. One could, for
example, delete the indices contained in KL from
all sets and renumber the remaining indices, in
natural order, from 1 through ~ —2d to go from

for integers p between d and ~ -d and any choice
of KL, where KL denotes a pair of disjoint sets
of d indices each, and the first member of the pair
is taken to be the one which comes first in the
standard ordering of sets. The space S~ (d, KL) is
the subspace of 8p spanned by all the basis ele-
ments Bi ~~(P) for which K and I, are such that
their difference is d and K/L, I /K make up the
specified disjoint pair KL. The space S~ (d, KL)
is similarly defined with -t."~ j as basis elements.
The dimension of $~(d, KL) and that of S~(d, KL)
are each (~ „' ), the number of ways in which the
p -d indices in corn(K, L) can be chosen from
among the x —2d indices not in KL. In the same
way that we formally combined the spaces $p to
form g, we now define
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Sp (d, KL) to Fp(d). This renumbering is reversi-
ble, and the indices within KL can be uniquely re-
inserted in the pair-ordering scheme to establish
the correspondence in the other direction. The
single (set) index J on F corresponds to the set
corn(K, I.). We can treat all the spaces h'(d, KL)
and 8 (d, KI.) at the same time by considering a
space

6:(d) = P S,(d)

for general values of d. The allowed range of P is
d(p &r-d. We can include d=0, with 6:(0)=g(0).

From the previous expressions and the defini-
tions of A,

and (1V) can be treated at once by the use of Kro-
necker deltas. 'We then find

(U(p), A V(P'))

= Z (1-~, , ~) Z (F'(P, d), F '(P' —l, d))
K,I l6 I

= (1 —5p d)5p &,g g ur, vz
L t&L

=Ops) i uL lv
L lEL

We can drop the 6p. „ to obtain the last equality be-
cause P & d so if P' =d, 5p p, =0 for all allowed P.
Similarly,

g F -'(p —l, d),
F z(p d) l) E-IF

)D, P=d
(16)

(A, U(P), V(P')) =Q u v (1 —5, ,)
K, L

x Q (F '(P+1, d), F (p', d))
)j II-:K

where J—k denotes the set of indices other than
k contained in J. We then define = (1 —5p F „)5p+i pI g g ~z vz+p

K j&K

g F"'(p l, d), p
F J'(p d) ((E1

0, P=r-d
5@+y pp

K jgK
KVK+j

uL lVL
where J+l is the set of indices in J and the addi-
tional distinct index l.' Now let general elements
of 8:p(d) be given by

L t&I

=(U(p), A V(p')) (20)

U(p)=+~ F (P d)

V(P) = P v, F'(P, d),

(18)

where the coefficients uK and VL are real num-
bers. The two cases covered in each of Eqs. (16)

Any element of 6'(d) can be resolved into compon-
ents in the various 6'p(d), and the results above
show that Eq. (13) will be satisfied in the general
case, so A, =A~.

We next consider the commutator of A, and A
We begin by examining the action of the products
A, A and A A, on a basis element of 6'p(d):

A, A F*(p,d)=A, (((:5~ ) g. F (( —(, d))
kt':K

(21)

=(1-6 . )p(1d6p . d) g-p--F' "(P,d)
tf ~ K l Q K -tf

= (1 —~o, ) (P —d) F '(P d)+ ~ Z F' "'(P,d)
kGK l QK

The 5~, „,would be nonzero only if P =x -d+ 1, which is not allowed, so it can be dropped. The first
term in the large square brackets comes from the p -d terms in the previous double sum for which k=l,
and the remaining sum in brackets consists of the rest of the terms. In a similar way we find

A A, F (P, d) = A ((1 —dr, ,) g F "
(P + 1, d))tgK

=(1-6,„,)(1-6„,..) Z 2
t CK tf~K+t

"' '(P, d)

=(1-&.. .) (r —pd —(P d)]F ( d)"2P2 F "(P-,d)) .
OeK tSK

(22)



1262 JOHN E. HARRIMAN

The action of the commutator [A„A ] on E (P, d) is thus

(A„A -A A, )F (P, d) = ((P -d) —(r —2d —(P -d)]jE (P, d)+ f5~ ~(P —d) —5~ „~[r—2d —(P -d)])

xE"(P,d) —(6~ ~
—&~,.— ) Q Q F (P d)

AeK 14K

=(2P -~)E'(P, d). (23)

The expression in curly brackets in the second
term is zero because the coefficient of each Kro-
necker delta is zero for the value of p which
makes the delta nonzero, and the term involving
summations is in fact zero because if P =d there
can be no &&K, while if P=x-d there can be no
l (EK. We have seen that [A„A ] acting on any
basis element F (P, d) produces a multiple of that
basis element, and the coefficient is independent
of K, so the same result will hold for any general
element of 6:~(d). More generally, for any U in

6(d),

U=g o, F (Pd), (24)

we have

[A„A ]U=g g (=,'r+P)F (P, d).

With this incentive we define

A, = —,'(A, +A ),
A, = ——,'z(A, -A ),

(26)

A, =~ [A„A ] . (27)

It follows immediately from these definitions and
the fact that A, =A~ that these new operators are
self-adjoint and that

[A„A,] =fA, . (28)

From the effect of A, and A, given in Eqs. (16)
and (17), and that of A„corresponding to Eq.
(23), we find that

[A„A+] =A, ,

[A„A ] =-A

so that, since A, = A, + iA„
[A„A,] =iA, ,

[A3, A~] = -iA, .

(29)

(30)

These relationships follow most directly for the
action of the operators on basis elements F "(P,d),
but since they hold for all basis elements (choices
of P and K), they hold for the operators acting on
general elements of the space 6:(d). The operators

Ag, and A, may thus be thought of as the com-
ponents of an angular momentum A. ' Any one
component, in particular A„will commute with

A =A +A +A1 2 3 (31)

The basis elements E (P, d) are eigenvectors of
A, but not of A'. We can define new basis ele-
ments for F~(d), by an orthogonal transformation
of the E (P, d), which will be eigenvectors:of A'.

The easiest way of obtaining such basis elements
for F~(d) will be seen if we note an analogy be-
tween the E (P, d) and simple spin-product func-
tions. A basis element F (P, d) is determined by
specifying a set of P -d indices from among x —2d
possible indices. There is clearly a one-to-one
correspondence between such a selection of indices
and a product of r-2d spin--,' functions a or P,
with the function in position k being a if ACE and

P if 0KK. This function is an eigenfunction of S,
with eigenvalue —,[(P -d) —(~ —2d -P + d)] = =,'r P+.

The number of such product functions with P —d
o, 's is (~ ~~ ) and the total number of spin-product
functions for r -2d spin-& particles is 2" ' .
These are the same as the dimensions of 6'~(d)
and P(d), respectively. This analogy becomes an
isomorphism when we note that the effect of S, on
one of the spin-product functions is the same as
the effect of A, on the corresponding E (P, d).
We can therefore obtain eigenvectors of A' by ap-
plying to the E (P, d) the same orthogonal trans-
formation which converts the spin-product func-
tions into S' eigenfunctions. This transformation
has been extensively studied and can be accomp-
lished in a variety of well-known ways.

A new, complete, orthonormal basis for g is
now definable. The space is first decomposed into
a series of orthogonal subspaces 8(d, KL). In
each- of these subspaces an identification is made
between basis elements of the A type (if d= 0) or
B and C types (for d&0) and spin-product func-
tions for x —2d spin-z particles. The basis ele-
ments are then subjected to the same orthogonal
transformation which, when applied to the spin-
product functions, would result in spin eigenfunc-
tions. The result will be basis elements for
h (0), g'(d, KL), or 8 (d, KL) which are eigen-
vectors of A' and A, . Let the eigenvalues associ-
ated with a particular basis element be denoted by
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A. (A. + 1) and p, respectively. We already know that
p, is related to p by p, = =,'r+P. Unless otherwise
specified, we will now assume that p (0, P & ~r.
This will be the case normally, since the largest
value of p we will be interested in is n, the num-
ber of electrons in a system of interest, and r,
the number of basis spin orbitals is nearly always
at least 2n. We can also relate A to another quan-
tity of more direct interest. As A is applied to
the basis element, the value of p is decreased
until the limiting value of -A. is attained. Further
application of A will then give zero. We can thus
relate A. to the minimum value of p for which this
particular basis element can exist. Let us use m

to denote this minimum value of P. Then
1 1-pr+g = -A, , A, = gr —m. (32)

Since the maximum possible value of X is —,(r -2d),
the minimum value for m is d. This is consistent
with the intended meaning of 7t, since the lowest
value of P for which a basis element can possibly
exist is equal to the d value for that basis ele-
ment. The new basis elements will be denoted by
X, Y, and Z with the following symbolic relation
to the A. ,B,C basis:

(A (P)]-(X.,(p)],
(~"(P)')- (Y.,(p, d, «6, (33)

(C"'(P)]- (Z„(P,d, ZL)].

The additional index g is a "spin degeneracy" in-
dex with the range'

1 & g &f(r —2d, A.) = ("„'„)—("„~,)(l —5, , ,) . (34)

where
(35)

It serves to distinguish basis elements with the
same values of A, or m and p or P, as well as
common d, KL. When d=0, the A basis is in-
volved and can be converted to an X basis. Note
that X and A of I are in fact eigenfunctions of A'
with A. = —,'r and Ao thus corresponds to X„(p) in the
present notation. The spaces spanned by the B's
or the C's are orthogonal subsyaces of each S~
which can be treated separately so that the identi-
ties of Y and Z are preserved. In particular, if
one is dealing with real matrices, C's or Z's can
be omitted.

The new basis has particularly simple behavior
under reduction, and for that reason it wi.ll be
called the reducing basis.

Let G„(P,d, KL) be one of X, Y, or Z, with
d = 0 and KL understood to be omitted for an X.
From the way in which these elements were con-
structed and the relationship between the reduction
operation and A,

I
(((i 'i tr)G, ( di, (CL} if ti -m

0 if q&g,

/

[(P -v)(p —1 v) ~ ~ -(q+1 v)]'i'-[(r-v-p+1)(r-v-p+2) ~ ~ (r -v —q)]'i'
&(P, q, v) =

P(P —1) (q+1)

q! (p -v)! (r -m —q)!
p! (q -v)! (r -v —p)(

(36)

It is well known that the spin raising and lowering
operators leave unchanged both the total-spin quan-
tum number S and the spin-degeneracy label.
Since an isomorphism has been established be-
tween that case and the present case, A or L~.
will not change m and g. The coefficient arises
from the conversion of (A )~ ' to L~ and the usual
angular momentum factor corresponding to [&(S
+ 1) —M(M —1)]'~'. We have thus established a one-
to-one correspondence between basis elements in
8~ and 8„ for any p and q &P, except that some
of the basis elements of g~ will may into the zero-
element of' $, . Given any element of 8~ expressed
in the reducing basis, we can immediately deter-
mine what its image in g, will be. Further, given
any element in 8„ its yreimage in 8~ expressed
in the reducing basis will have some components
completely fixed and others (those with v ) q) com-

vi'&= g y" ', (37)

where

(p ~) V '" if q~m
P

0 if q&m.
(38)

pletely arbitrary.
The reduction of 8~ onto g, can also be thought

of as a projection (with scaling) of 8, onto the sub-
space of 8~ spanned by those basis elements with
v &q. Since the coefficient in Eq. (35) depends on
m, the scaling is not the same for all directions.
Each g~ can be divided into orthogonal subspaces
B~„spanned by those basis elements of $~ having
the specified value of z. Correspondingly, any
element V ~ in S~ can be expressed as
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L'X&"~ = X&'&
n

and further

L:v(. ,p) = v(p),

(41)

(42)
'„Lv, ( ~p)=o,

where X ~ + V ~ is the image under reduction of
X'" + V " . We note that the distance of this origin-
al element from X" is just the norm of V" and
further that

II
v'"'ll =

II v(n, p)ll+ II v, (~,p)ll (43)

since the components are in orthogonal subspaces.
For any p &n & &r we can define a new operator

Z
n as&1
P

I'~ V(p) = that element of the subspace g |S 8„
A ~

such that, when L~ is applied to it,

V(p) results. (44)

Equivalently, if V(P) is expressed in terms of the
reducing basis elements, l~ V(p) will have the
same expansion coefficients in terms of those ba-
sis elements of X„having m ~p. It follows that

L, '„ I',"v(P) = v(P) (45)

for any V(P) in X~. It is not true, however, that
I'~L~ V(m) = V(n) for general elements of X„, since
all information about V~(n, P) is lost. While I'~

Coleman has introduced a decomposition, based
on group theory, of a two-electron reduced density
matrix into zero-, one-, and two-electron com-
ponents. ' The present decomposition generalizes
his result and reduces to it when P =2 and V is a
reduced density matrix. The general group-theo-
retic decomposition has also been discussed by
Coleman, "and it seems likely that the group theo-
retic arguments could be extended to show that
each h~„ is invariant with respect to a unitary
transformation of the spin orbital basis.

Consider now some fixed, positive integer n less
than r. Any unit-trace element in 8„can be ex-
pressed as X " + V ", where

X" =(„) ''X, ,(n) (39)

and V" is an element of X„(this space is defined
in I). For each p&n, Vi"~ can be further decom-
posed as

v"'=v(~, p)+v, (n, p), (4o)

where V(n, p) is a linear combination of those re-
ducing basis elements of X„having m &P and

V~(n, p) is a linear combination of those reducing
basis elements of X„having m &p. From the defin-
itions we have

functions as a right inverse of L~, in fact I~ is a
projector and as such cannot have an inverse.

IV. N REPRESENTABILITY

The treatment of Hermitian, unit-trace matrices
as elements in a vector space suggests some ap-
proaches to the N-representability problem. A
necessary and a sufficient condition are readily
obtained. A restatement and possibly a formal so-
lution to the problem also result. It will be useful
to begin this section with a brief discussion of what
really constitutes a "solution" to the N-represent-
ability problem.

The N-representability problem can be stated
as follows: give necessary and sufficient condi-
tions (NASC) on a(Hermitian, unit-trace) operator
D ~ such that it is obtainable by reduction of an n-
particle density matrix

I
as in Eq. (2)]. More

stringently, the n-particle density matrix may be
required to be a pure state, in which case D is
obtainable from a wave function (antisymmetric). "
This is the pure-state N-representability problem.
Various "solutions" to these problems have been
proposed, often involving a construction procedure
which, if N representability is possible, will pro-
duce a wave function or n matrix. "'" Others in-
volve still more complex processes. '"

The following terminology is proposed to cate-
gorize "solutions" to the N-representability prob-
lem:

(i) A restatement of the problem. When obtaining
NASC for N representability is shown to be equiv-
alent to the solution of some other problem, but
where a (finite) algorithm for the solution of that
problem is not available.

(ii) A formal solution of the problem. When a
finite algorithm is presented whereby the N repre-
sentability of a given P matrix can be .tested or the
class of N-representable p matrices can be para-
metrized or defined by constraints, but where the
effort involved in testing or in doing a variational
calculation with the parametrized or constrained
p matrix is comparable to or greater than the ef-
fort required to obtain the lowest eigenvalue and
corresponding eigenvector of a full coniiguration-
interaction (CI), n-electron Hamiltonian matrix.

(iii) A Practical solution of the problem. When
an algorithm to test N representability of a para-
metrized or constrained P matrix is presented so
that the reduced density matrix can be obtained
directly with distinctly less effort than would be
involved in the determination of a wave function or
n-matrix for the same system and state.

It is also possible to deal with aPproximate N
representability. Typically, constraints which are
known to be necessary but not sufficient for N
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representability are imposed and one hopes for the
best. Although confidence in the utility of this ap-
proach may be developed on the basis of experi-
ence, ""this will take time and is not entirely
satisfactory. It would be preferable to introduce
some measure of how nearly N representable a P
matrix is, and to develop bounds, in terms of this
measure, on the errors which may result as a
consequence of non-N-representabi. lity." The geo-
metric formulation provides a way to do the form. -
er and may suggest an approach to the latter.

For any density matrix D ~' in 8~ we define a
subset of 5l„, 8„(D(~)) (n &P) which we will call the
preimage of D~~& —X ~ ." It is defined as the set
of all elements V "' in K„such that

P V b) —D()') X (&) (45)n

or, equivalently,

Ln(V (n) +~(n)) D(P)

Using the notation defined at the end of the previous
section, we decompose V "' into

V'"' =V(n, P)+ V, (n, P) (43)

and note that

v(n, p) = f;"D") {49)

is completely determined by D(~) while V~(n, p) is
completely arbitrary. The component V(n, p) will
be referred to as the minimal-norm preimage ele-
mentof D~.

%'ith this background, we now consider the fol-
lowing restatement of the N-representability
problem: A P-electron density maAix D is N-
representable if and only if its Preimage in 3I„
intersects (P ") —X ", i e., 8„(D. )+X" includes
c Positive element. In the present formulation,
Hermiticity and antisymmetry are assured. Use
of the reducing basis greatly simplifies the speci-
fication of the preimage and takes care of the trace
condition. All the difficulty is now associated with
the determination of positivity. If a sufficiently
convenient characterization of 6' " could be given,
a solution to the N-representability problem would
result.

In order to transform this restatement of the
problem into a solution, a means, of testing must
be provi'ded. Any single element in the preimage
can in principle be tested for the positivity of its
sum with X " . Thus, for example, the positivity
of X~" plus the preimage element of minimal norm
can be tested. Such positivity provides a sufficient
condition fox N representability. If it could be
shown that positivity of X" plus any preimage ele-
ment implies positivity of X " plus the minimal
norm preimage element, this condition would also
be necessary. However, simple examples indicate

P

L'„V("'= g L'„V(n, ~). (50)

From E(I. (35), then

IIL'. V(n, ~)ll =e(n, P, ~)ll V(n, ~)ll,

and since components with different values of 7t are
orthogonal,

IIL!V'"'ll = Q a(n, P, ~)ll V(n, ~)ll. (52)

%hen V "~ is given in terms of the simple A. ,B,C
basis and we wish to avoid the necessity of trans-
forming to the reducing basis, each basis element
(and thus V(")) can be decomposed into components
of definite m by the use of a projection operator
analogous to the L'owdin spin-projection operator. "
Norms of these components will be given in terms
of Sanibel coefficients. "" Let

n

V(") = P P g u(t, KL, J)U(n, t, KL, J')
t=-n ~I J

A if t=0 (KL omitted)

U(n, t, KL,J ) = B if t&0
KL =KL UJ,

C if t&0

(53)

that such is not the case.
This result is probably related to Coleman's

formal solution of the N-representability prob-
lem, '" but a complete connection has not yet been
established.

Another sufficient condition and a necessary con-
dition can be stated in terms of the norm of the
minimal-norm preimage element f(D ~)) =

II V(n, P) II,
and the radii of the inner and outer hyperspheres

5I„: Jf f(D'") '."',„=$[('„) — ](")j "tben
is bt representabte. If f(D( )) &dm)~= ([("„)—Ijl
("„)pi', D(~) is not N representable. These condi-
tions could also be stated in terms of the compon-
ents of D ~' directly, by taking into account the
scaling associated with reduction.

In order to apply these results (from I) we need
to be able to relate the norm of an element to the
norm of its image under reduction. Suppose that
an element V " of X„ is given. %e consider now
the determination of the norm of L„V". This is
easily done if V~" is given in terms of the reduc-
ing basis. It can also be done if V " is given in
terms of the A, B,C basis without the need for a
transformation to the reducing basis.

If V" is given in terms of the reducing basis we
can immediately make the decomposition as in Eq.
(37),

v(") = g v(n, ~)
7l 1.

and note that
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where KI. represents a, set of 2ItI indices, the
first ItI in K/L, and the second ItI in I./K, J rep-
resents a set of n —ItI indices chosen from the r
—2ItI indices not in KL, and u is an expansion co-
efficient. Since L» U(n, t, KI. , J ) is orthogonal to
L» U(n, t', KL ', J') unless t' = t and KL ' = KL,

II L'„v &") II' = g g x (t, KL),
K7.

where

(54)

x (t, KL) = g u(t, KL, J )u(t, KL, J')6 (J,J'),

6 (J,J') = (I „U(n, t, KL, J ), L„U(n, t, KL, J') ) .
(&5)

(L~G, P(J) Vo, L„8,P(J') Uo)

= [g(n, P, )))] (8 P(J)Uo, 8 P(J')Uo)

P )]'([P(J')] 'P(J) U., 8.U.) . (56)

The second equality is a consequence of the fact
that the projection operator 8 is Hermitian and
idempotent, and commutes with P(J), while P(J')
is unitary. These properties are well known in the
analogous spin projection case, and could readily

Now introduce projection operators 8„, projecting
elements of 8 with the given values of d = ItI onto
the subspace of A' eigenfunctions with eigenvalue

Since the sum of 6„over all allowed
values of m provides a resolution of the identity
and projected functions with different values of m

will be orthogonal,

E(Z, Z')=(L, Zs l/(n, tKL, Z), ,

L„Z 8„U(., t, KL,J )
»

p

(L'„8,P (J ) U„L'„8,P(J ) v, ) .
7 = m~(~, i)

(56)
%e have introduced here the particular element
U, (an 4 if t=0, B if t&0, or C if t&0) in which
the indices included in the J group are the first
n -d from the set of r -2d available for the given
KL„and P(J) is an operator such that

'

V(n, t, KI. , J)=P(J) V, . (57)

In the analogous spin-function case, Uo becomes
[o" Ip" "] and P(J ) isapermutation operator. "
The sum over w values can be truncated because
components with m ?p will not survive reduction
and no element of g can have a component with m

=0
: We use the relationship between L» and (A )" »

implied by Eq. (12) and the properties of angular
momentum operators to obtain, as in Eq. (35),

be proved here. Now, define [U]„as the sum of
all elements U(n, t, KI,J) for which the index set
J contains 4 of the last ~ -d -n of the available
indices. (It is analogous to the sum of spin-pro-
duct functions [n" P In'P" " ].)

From the theory .of 'spin projections we know
that~4»»

Pf -tf

8, V, =Q C„(-.'r ~, ,'r —n, ',-r --d)[V]„
4=0

(59)

where C, is the Sanibel coefficient. (Since the
usual spin-projection result assumes M~ ~ 0, the
sign of ILc has been changed and the roles of u and

P interchanged to obtain this result. ) The single
scalar product in Eq. (57) will be replaced by a
sum over k, and in each term the scalar product will
be zero unless [P(J')] 'P(J) U, is included in
[U]„. This will happen for one and only one value
of k~ so

(L'„8,P(J) V„L'„8,P(J') V,)
= [g(n, P, v)]'C&(r»—v, 2r -n, —,'r —d), (60)

where j is the number of indices from the last x
—d -n available included in [P(J')] 'P(J) U, . It
is equal to the number of indices differing in the
sets J and J'. Finally, then

n

IIL»&'"'ll' =.Q Q Q u(t, «, J)u(t, «, J')
KL J,J'

x g [g(n, p, )))]'
mgx(4» 1)

x C, (-,r 7), ,r -n, —,'r -- d)—, (61)

where j =j (J,J') and d = ItI.
As a special case, we consider II L„'A (n) -~~"&II,

i.e., u=6„,5«. There is then no sum over EI.,
the sum over m includes only one term, m = 1, and

Thus~

= [g (n, 1, 1)]'Co(,'r —1, »r-n, »r)-
(1!)' (n —1)!(r —2) I (r -n)!n!'

».
' '

(r —1)(n!)' 0!(r -n —1)! 1!r!

rn (62)

This is of course just the result obtained in I for a
Slater 1 matrix.

The geometric formulation leads to a natural
measure 'of approximate X representability. The
symbol P„will be used for this quantity, ' which is
defined for any P-electron density matrix D by

& (D'") =d(@.(D'"),6'"' —&'"') (62)

i.e., the distance between the preimage set of D
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-X and the set of D" -X" . This is defined
in the usual way as

d(8„(D ), (P" -'X" ) =mindv~,

all V in Jf„such that 1.„(V+ X ~
) =D ~&,

all 8' in X„such that ~+ X .
" ~ 0,

(64)

where d~~ is the distance defined in I. The possi-
bility of relating $„ to error bounds on properties
calculated using D ~ will be considered in a later
paper.

Another measure could be introduced in terms of
the distance of D ~ from the set 6'~"~ of N-repre-
sentable P matrices. It is less satisfactory than

g„, however, because (P~~"~ is not fully character-
ized while 8„(D~~~) and (P~"~ are, at least in princi-
ple.

In this paper, we have seen that a geometric
formulation together with an analogy to the theory
of spin eigenfunctions provides a new way of look-
ing at the N-representability problem. A restate-
ment of the problem results, and some conditions
for N representability and a measure of approxi-

mate N-representability have been obtained in
terms of distances.

The transformation to the reducing basis in each
8„ is straightforward in principle. Analogous
problems have been extensively studied. In prac-
tice a calculation of very substantial magnitude
would be required, but it need be done only once
for a given x and n, , independent of the particular
system being considered. If a sufficiently conven-
ient characterization of t" could be found, a
practical solution of the N-representability prob-
lem would result.

The results obtained here also suggest a means
of exploring the relationship between the matrix
of the reduced Hamiltonian and the full CI Hamil-
tonian matrix. This relationship will be more fully
explored in a later paper, where the important as-
pects associated with the true spin symmetry of
the system are considered.
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