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Density matrices defined with respect to a finite basis set are considered as elements in a vector space. A
basis set is introduced in the space whose elements are Hermitian matrices. By a suitable transformation. of
the basis, one component only will contribute to the trace, so the space of unit trace matrices is. a translated

linear subspace. The positivity constraint is then examined in terms of distance from a multiple of the unit

matrix, which is in the interior of the set of density matrices. The boundary of this set is shown to lie

between two concentric hypersgheres. The set whose elements are N-representable 1 matrices has similar

properties.

I. INTRODUCTION

It is the intent of this paper, and of subsequent
papers in this series, to show that potentially
useful insights into the nature and properties of
density matrices, both statistical and reduced,
can be obtained by considering them to be ele-
ments in a vector space. In particular, distance
relationships are found to be significant. Much
of the previous work on the more formal math-
ematical properties of density matrices has been
expressed in topological terms. ' ' Restriction to
finite dimensionality and introduction of a metric
allow a more pictorial approach and will supple-
ment other methods. The restriction to finite di-
mensionality will have consequences less severe
than might be imagined if the goal is to relate to
practical quantum mechanics, where finite-di-
mensional approximations are normally neces-
sary. It should also be noted that greater gen-
erality than is actually required may unneces-
sarily obscure meaning for all but the experts.

'The ultimate goals of this work involve prim-
arily the elucidation of the theory of reduced den-
sity matrices. 'This paper, however, will be con-
cerned with background and definitions, and with
the characterization of the set of n-particle or
statistical density matrices. Since necessary and
sufficient conditions for the N-representability of
a 1 matrix are known, ' the set of N-representable
one-particle reduced density matrices will also
be considered. 'The general process of reduction
and relationships involving reduced density ma-
trices will be considered in the next paper.

It seems appropriate to include in Sec. II a re-
view of some of the properties of density ma-
trices. These are all well known, so a brief re-
sume to establish terminology and notation will
suffice. Also included in Sec. II will be the de-
finitions and other preliminaries required to
establish a vector space having Hermitian ma-

trices as elements. The subset of density ma-
trices will be considered in Sec. III, and that of
N-representable 1 matrices in Sec. IV. Conclu-
sions are summarized in Sec. V.

D(N, N') = Q CI,Vg(N)4~(N'),

subject to

0-Cq 1, QCq=1.
*

If C~=5» so D=C,.4,*. , then

(4)

[ (DN, N')]'= D(N, N")D(N", N') dN"

= D(N, N')

II. BACKGROUND AND DEFINITIONS

A density matrix, or density operator, D can
be defined in any -of several equivalent ways. ' '
One is as a positive, Hermitian operator of unit
trace

Dt=D, D& 0, trD = 1 .
We are interested in systems of identical parti-
cles and thus require also that the density op-
erator have appropriate symmetry properties.
In particular

8D8 =D,

where 8 is the antisymmetric projection operator
(for fermions) or the symmetric projection opera-
tor (for bosons). Density matrices may be pos-
sible in the statistical sense for other symmetri-
es, but the reduced density matrices which are
ultimately of primary interest in the present work
would then have no useful role.

Alternatively, if (4„(N)) are a set of orthonor-
mal n-particle wave functions of the appropriate
symmetry, 84~= O~, we can define a density ma-
trix as
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and conversely. Such a density matrix describes
a pure state, while more general D's describe
ensembles.

In the general quantum-mechanical situation,
the number of possible 4'~ and the rank of D can be
infinite. In actual calculations, however, one
deals with finite numbers of functions. In partic-
ular, wave functions for many-electron systems
are approximated without exception as linear
combinations of a finite number of basis func-
tions. We will assume here that a finite set of
orthonormal basis functions has been introduced
and that all operators are truncated or restricted
to the finite-dimensional space spanned by the
basis functions. 'The operators can then be re-
placed by square matrices of finite dimension.
The conditions of Eq. (1) defining a density ma-
trix are then interpreted in the matrix sense.

If a density matrix is defined with respect to
functions for n particles, it, will be referred to
as an n matrix, and will sometimes be indicated
D'"' although, when there is no danger of ambigu-
ity, D will be used. We may be interested in
properties relating to some smaller number of
particles at one time. It will then be useful to in-
troduce a reduced density matrix, """or p ma-
trix, by iritegrating over some of the variables:

trices is again a member' of the set, so 8 is a
real linear space. We then introduce the usual
trace scalar product

(U, V) = tr(UV)

= Z fj»sI'r»= Z U»r I'ar U «& ~

The norm of any element U in 8 is

I lnl I= &&»"= E I&. 1*)'*-o.
Ogl

and the distance between elements U and V is

(8)

We note that

dg. +d.w-d~- ldg. -d"
I

~ (10)

With these definitions b has become a (Euclidean)
vector space of dimension R'.

We next consider a simple basis set or coordi-
nate system for 8." The basis elements are
themselves Hermitian matrices and are defined
by

A~:A~ =5~,5,

a»: a/=(I/vZ )(6„6, +6,„6„), j&I2

D'"(P P')= D'"'(P, Q;P', Q) dQ, (6) C»: C j»„=(i/V2 )(5~,5» —6~ 5„), j & k.
P being the coordinates of particles 1, . . . ,p; Q
being the coordinates of particles p+ 1, . . . , p+ q;
and N=P, Q being the coordinates of all p+q=n
par tic les.

It is readily shown that a reduced density ma-
trix is a density matrix, i.e. , it satisfies the con-
ditions (1). However, not every density matrix
on p-particle space can be obtained from a D'"'
by Eq. (6). If this is possible, D'»' is said to be
(ensemble} N representable. ' If at least one D'"'
leading to D'»' by Eq. (6) is such that [D'"']'=D'"'
then D'~' -is pure-state N representable and can
be associated with an n-particle wave function of

. the appropriate symmetry.
The criteria which must be imposed on a p-par-

ticle density matrix to assure that it be N repre-
sentable remain unknown for p) 1. It is known,
however, that necessary and sufficient conditions
that D'" be ensemble N representable are that its
eigenvalues X»"' be not greater than 1/n. ' Other
aspects of the N-representability problem will be
considered in subsequent papers.

Since we are considering here a function space
spanned by a finite basis set, we will turn our
attention next to finite-dimensional square ma-
trices. Let 8 be the set of R x R Hermitian ma-
trices. Any real linear combination of such ma-

There are clearly R distinct A' s, (g) distinct 8's,
and (,"}distinct C's. If the.C's are eliminated from
the basis, the result is the [2R(R+1)]-dimensional
space of real, symmetric R xR matrices.

These basis elements can also be expressed in
the "density kernel" form of Eq. (3) in terms of
the underlying basis set of functions. The in-
troduction of R x R matrices assumes a set of
orthonormal basis functions. Let these functions
be {4»(N)}. Then corresponding to the basis ma-
trices defined above we have

A'(N,¹)= 4,(N)4»*(¹),

II»(N N')

=(I/M2)[4&(N)4f(N')+C'„(N)4$(N')], j &0

CJ(N, N )

= (i/V 2 )[4~(N)4» (N') —4'„(N)4((N')], j & & ~

We note that the A's are explicitly pure states
while the B.'s and C's are such that

(~»)2 L(AJ+ A») (C»)2

We now return to the matrix form of the basis
elements and note that

trA~ = 1, trB~~ = trC~" = 0 .
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Products of basis elements are simply expressi-
ble in terms of the basis elements. From these
expressions and the traces, we find that the bas-
is elements are orthonormal.

X.
We turn now to an investigation of positivity,

the remaining condition characterizing a density
matrix. We initially define a set of matrices

III. DENSITY MATRICES T(t)=t-'Q(t), t=1, 2, . . . ,R (22)

A'= (1/MR) g A . (15)

In addition to being Hermitian, a density matrix
must be positive and of unit trace. We have seen
that earth of the A's is of trace 1, while the B's
and C's are of trace 0. Now consider an ortho-
gonal transformation of the A basis elements
among themselves such that one new basis ele-
ment is

where Q(t) is an idempotent matrix having t eigen-
values equal to 1 and the remaining R —t eigen-
values equal to 0. Since tr[T(t)]=1 and T(t) has
no negative eigenvalues, it is a density matrix.
We note that T(R) =X and will use the special sym-
bol P for T(1), since T(1)=Q(1) is a pure-state
density matrix.

Since X is a multiple of the unit matrix, its pro-
duct with any element of 8is

XV= VX=R 'V. (23)
The other new basis elements are given by

Using these results, we find the distance between
T(t) and X to be

and the only restriction we need impose at this
point on the transformation is that the new set
(A', A"] be orthonormal. Then

trA = (1/)(R )R = )(R,

d~» =(tr[(X —. T)»]]~~2

=(tr[(1/R)X —(2/R)T+ (t-'Q)»] J).('2

(24)

trA" = C„~, (18)

but, by assumption,

0=(A', A')=g Q c.,(A', A')
»~a »=a )( R

g C„»= trA" . (19)
R

R »=i
"' R

The set of elements A', A", m=1, . . . ,R —1, to-
gether with the B's and C 's, provides a complete,
orthonormal basis or coordinate system for S.
Of these basis elements, only A' has nonzero
trace.

Let X be the space spanned by the R' —1 basis
elements of S other than A'. Any element in 8
may be thought of as a multiple of 2' combined
with an element of X. In pa, rticular, any unit-
trace element of 8 can be expressed as

V'= V+X,

where V has A' component 0 and corresponds
uniquely to an element of X, while

(20)

X=R-'~2AO=R-' (21)

The special element X is a multiple of the unit
matrix in 8 and corresponds to the origin of X.
We can think of density matrices, along with other
unit-trace Hermitian matrices, as elements of
8 or in terms of the corresponding elements of

In particular, when t = 1 we find that any pure-
state density matrix is at a distance of [(R —1)/
R]'t' from X or, equivalently, any element of 5f
ccn responding to a pure-state density matrix lies
on a hyPersPhere of radius [(R —1)/R J'~' about
the oui gin.

Traces, and therefore distances in S or X, are
independent of any unitary transformation of all
the matrices involved. We canthink of parametri-
zing an element in S.not by the R' real numbers
that are its components in the coordinate system
of 8, but by R eigenvalues and R(R —1) other real
numbers which determine the transformation dia-
gonalizing that particular matrix. (These para-
meters may not all be independent if some of the
eigenvalues are degenerate. ) The element X is
invariant under unitary transformations. In com-
puting the distance of some other element V from
X we can choose the basis in which V is diagonal,
and we find that

(25)

where the ~z are the eigenvalues of V.
Suppose that D is a density matrix having more

than one nonzero eigenvalue (an ensemble density
matrix). Since no eigenvalue can be negative and
they must sum to 1, each must be less than 1.
This means that

&&~~a
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for those eigenvalues which are nonzero, and ceeding iteratively as follows: If each x&"' is either
0or1/k, theno'"'=1/kandtheiterative cycle is
finished. If, however, there are x',"' inthe open in-
terval (0, 1/k), let x',"'be the smallest and x,'"' the
largest of this subset. Now let ~ = min(x', "', (1/k)
—x~("&), and define a new set with

(27)

Any ensemble density matrix lies inside the hy-
Pevsphexe on zvhich the pure-state density nsa-
txices lie." We note further that if D is a den-
sity matrix lying on the hypersphere

Xg + ~j

(28}

This can occur for nonegative X,- only if one of
them is 1 and the rest are 0, i.e. , D is a pure
state. Any density matrix on the hypersphexe is
a pm'e-state densi ty matrix. Not all elements on
the hype rsphere are density matrices, however.
Counterexamples are readily found, except in the
special case R = 2.

We now seek to further characterize the sub-
space of X whose elements correspond to density
matrices. We begin by proving a theorem which
will also be useful in the next section. "

Theorem. Let (x„i=1,. . . , m)be a set of real
numbers subject to the sum constraint Z, ,x(=1,
and let () =g, , x', Then (a) o ~ 1/m, with equality
if-and only if x, =1/m, alii. If the x, are further
subject to the constraint 1 &x, &1/k, where k is
an integer &m. , then (b) () &1/k, with equality if
and only if k of the x, are equal to 1/k and the m

remaining x, are zero.
The proof of (a) is straightforward. Consider

(29)

Then

l.

p( . 1)' 1
(30)

with equality only if each term in the sum is zero.
To prove (b) we suppose that (x,.) is any set sat-

isfying the sum and range conditions. A sequence
of sets (xI")) each having its associated o'"', are
.then defined beginning with x',"= x„all i, and pro-

x,'.""= x'"'+ ~ if i = b,b

x,'. "' if i~a, b.

—c(")+ 2(x(&)+x("))g+ '2) o(&) (32)

This suffices to- establish the result.
It may be noted that case (b), with x,. = X„m

=x, and k = 1 provides an alternative proof of an
earlier result. We now consider the question of
how closely a nondensity matrix can approach to
X. A Hermitian matrix of unit trace which is not
a density matrix must have at least one negative
eigenvalue. Suppose that V is such a matrix, and
that, of its eigenvalues X

& q are negative while

p =R -q are non-negative. I et the sum of the non-
negative eigenvalues be Pn and that of the nega-
tive eigenvalues be qP, and define x, =~, /Pn when.
A. , o 0 or y, = &((/qP when X(&0. Then Zx(=By(
= 1 and

1= (I,o )'Px,'+ (qP)' Z y,' R-
1 1 2 1~ po('+ qp' ——= (1 —2qp+ Rp') ——,

R 8-q R' (33)

where the inequality is obtained by application of
part (a) of the theorem to the set of p x, 's and to
the set of q y,. 's individually. From its definition,
P & 0 so this lower bound will be minimized if the
magnitude of P is made as small as possible.
For any V with q eigenvalues at least slightly 1ess
than zero, then, d~x~ (R —q) ' R'=dx2r('&. The-
closyst approach of such a V to X wi11 occur for
q = 1 and P= 0, in which case V is essentially
T(R —1). We conclude that there is a second hy-
Persjhere centered at the origin in X (or centered
atX in 8), of &'adigs

2 1 -1/2
dxr(&(-)) = (R —1) —— . +—,

= [A(R —1}]' ',

Then either x,' "=0or x~("'"=1/k and the xI"»
satisfy both sum and range constraints, ready for
the next cycle of iteration. Now,

(n+) )
(

(n) ~)a (x(n) ~)2+ g (x(»)2
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zoith the property that any element in % inside
this hypersphere corresponds to a density matrix.

Any density matrix hav'ing one or more zero
eigenvalues must lie on the boundary of the space of
density matrices. In particular, .-if D is a density
matrix with eigenvalue i equal to 0, let V be a
matrix with the same eigenvector but with eigen-
value i equal to -5 and each other eigenvalue 6/
(R —1) greater than the corresponding eigenvalue
of D. Then tr(V)=1, but V is not a density ma-
trix (for 6 & 0) and dD v= [R/(R —1)]'i'6 can be
made as small as desired by taking 5 sufficiently
small.

I.et c be the eigenvector associated with eigen-
value 1 for a-pure-state density matrix P. Then,
in terms of components with respect to the origin-
al orthonormal basis set (C ~],

that the ray o.'Q intersects B(P at the point (1/
Rq )Q [as an element of 8 the point is Q'(1/R, )].
This ray, cannot have another intersection with 8~
because of the convexity of O'. Any ray from the
origin of X can be expressed in this way for some
appropriate choice of Q. Each element in 8(P sat-
isfies the one additional condition determining a,
so 8(P is of dimension R' —2, one less than that
of X. If it can be established that 80'is continuous,
the desired result will have been established.

In order for 80' to be discontinuous, in the sense
that the term continuity is intended here, it would
be necessary thai two rays arbitrarily close to-
gether intersect 8(Pat finitely different distances
from X. It can be shown that this is impossible.
Let Q and S be elements of '2, scaled if necessary
so that

I IQ I I

=
I IS I I

=1 and consider el~me~t~
of 8

Pg, = clc~

and for any positive matrix Q,

(P,Q) = QP~gQg~ = Qcy*Q&q.c~ o- 0.

(35)

(36)

Q'(o, ) =X+ aQ,

S'(P) =X+ PS .
(40)

The positivity condition is thus equivalent to the
requirement that the scalar product of 3. positive
matrix with any pure state is positive (or zero),
If fD"') is a set of density matrices and

V Q ~P(J) (37)

then tr(V) = 1 and

(P, V) = Q aq(P, D'~') . (38)

If the a, are all positive and sum to 1, V will be
positive and of trace 1, thus a density matrix.
This is the well-known convexity property of the
set of density matrices. '

The set whose elements are density matrices
may be thought of as a subset of Shaving the same
dimension, R'-1, as X. We seek to further
characterize the boundary of this subset. Let 0'

be the subset and 86' its boundary. The. next prop-
erty to be shown is that 8(Pis a closed continuous
hypersurface of dimension R' —2. We know that
X, the origin of K, is in O'. Consider now a ray
of elements of X, &Q, with n& 0 and the corres-
ponding set of elements in 8,

q&= (I+ o'. )/R all j4i . (42)

For n ~ 0, only q,. can possibly be negative. It will
be so if

The intersections of Q' (c.) and S'(u) with B(P occur
at distances from X of I/(q+) and I/(s+), res-
pectively, where q is the magnitude of the most
negative eigenvalue of Q and s is the magnitude
of the most negativ'e eigenvalue of S. If these dis-
tances were to be finitely different for rays o'.Q
and PS arbitrarily close together it would be ne-
cessary that matrices with elements differing by
arbitrarily small amounts have finitely different
eigenvalues. This is impossible, " so 8(P is con-
tinuous.

The hypersurface BP must lie between the two
hyperspheres considered previously, and the
points where it intersects the outer hypersphere
are the pure-state density matrices. Let P =X
+P be a pure state and consider Q'(n) =X —nP .
In the basis where P is diagonal, P and Q'(o. )
will also be diagonal. One of the eigenvalues of
P is 1 —1/R and the rest are —1/R. It follows
that Q'(n) has one eigenvalue

q, = 1/R —n(1 —1/R) = (1+ o'. )/R —n (41)

while the rest are

Q &(n) =X+ nQ (39) a & (1+ o.)/R, n & 1/(R —1) . (43)

The relatrix Q must have trace 0, and it cannot
be the zero matrix. It must thus have at least
one negative eigenvalue. Let q be the magnitude
of the most negative eigenvalue of Q. Then if nq
& 1/R, Q '(o.) & 0, but if n & 1/R q, Q '(a ) will have
at least one negative eigenvalue. We conclude

—( R —1) — R —1—
Its distance from X is

(44)

The point at which this eigenvalue is zero lies in
It will be denoted by Q:
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dgx=„, l
P

I I =R,de=„

(45)

The conclusion is that immediately opposite (in
the sense of inversion through the origin or X)
'any point uhere 85' intersects the outer hyper-
sphe~e is a point cohere it iritersects the inne~ hy-
persphere.

Before leaving this topic, we note a few local
properties of 8z. Any two elements of 8 with
the same eigenvalues are either both in the in-
terior of , both outside 6', or both in 8(P. They
are also at the same distance from X. For any
element of 8 other than a multiple of the unit ma-
trix there are other, distinct elements having the
same eigenvalues, including some which are arb-
itrarily close to the original element. It follows
that at any point in the surface 86' there are some
directions in which 8(3'is curved and in fact con-
tains a circle centered at X. This means that 86'

can have no "points".
On the other hand, ed' contains linear subsets.

For example, a linear combination of two diagonal
matrices which have a zero diagonal element in
the same place will also have a zero diagonal ele-
ment (eigenvalue) in that place and, if all other
eigenvalues are non-negative, will be in 96'.

Another characterization of positive matrices

There is of course another way in which the set
of positive Hermitian matrices can be character-
ized: let D= V', where V is an arbitrary element
of S. T'hen D will be positive. The requirement
that tr(D)=1 is equivalent to the requirement that

I I VI
I

= l. A mapping is thus established of the
unit hypersphere in 8 onto O'. ' Unfortunately; it
is nonlinear and many to one. If D has t nonzero
eigenvalues, there wi.ll be 2' distinct V's with
different choices for signs for their eigenvalues,
which all map into D. The many-to-one aspect
would be an irritation but not an insurmountable
obstacle. It is the nonlinearity which makes this
approach of little value for us.

Let us consider not the general case but the
much simpler case of a pure-state density ma-
trix P It will be s. uch that tr(P) = 1 and P'=P.
These two conditions suffice to establish positiv-
ity. The latter is a special case of D = V', with
D= V, and the pure states are seen to lie in the
intersection of the unit sphere in 8 with X, which
is just the outer hypersphere obtained previously.
The equation P'=P provides a set of simultaneous
quadratic equations in the matrix elements, or
the expansion coefficients in the A, B,C basis, of

Conditions for the existence of a solution

of a set of simultaneous quadratic equations
are very difficult, in general. (Were this
not the case, the N-representability problem
would have been solved long ago. ) In the present
situation, however, a straightforward solution is
readily available. P will be such that tr(P) =1
and P'=P if and only if P»=c&c~*, where the c&
are a set of R complex numbers such that Z& I

c&I'
=1. Qf course c is just the eigenvector of P as-
sociated with the eigenvalue 1, so once again we
have fo'und that the wave function provides the best
parametrization of a pure-state density matrix.

IV. N-REPRESENTABLE j. MATRICES

It is clearly necessary that R ~ n, and we note
that X is in»P„"'. Part (b) of the theorem proved
earlier then immediately gives, for any N-rep-
resentable 1 matrix V,

R

dvx= ~» -R ~ 1/n —1/R=(R -n)/Rn.
=1

(4 I)

Equality occurs when V= T(n). Such a matrix is,
of course, the. pure-state reduced density matrix
for a Hartree-Pock function (i.e., a single Slater
determinant). We have shown that these Slater
1 matrices lie on a hypersphere of radius [(R -n)/
Rn]'t ' about X„and that any other N-representa-
ble 1 matrix, ensemble, or non-Slater pure state,
will be inside this hypersphere. It is also readily
seen that any N-representable 1 matrix on the
hypersphere will be a Slater 1 matrix. "

A Hermitian matrix of unit trace can fail to be
an N-representable 1 matrix by having one or
more eigenvalues which are negative or greater

. than 1/n. No assumption about an, upper limit on
the size of an eigenvalue was made in the analysis
associated with Eq. (45), so it still applies. If we
define new parameters p, by setting

X,.= 1/n —»»», : (48)

then A» will be greater than 1/n if p.»
is negative.

It is found that for V with eigenvalues A,„

We turn to the case in which the underlying func-
tions 4~ and C„are one-electron functions, or
spin orbitals. Let 6""be the set of density ma-
trices in this case and let +„'"be the subset of
»p'" whose elements are (ensemble) N-represen-
table reduced density matrices. A Hermitian. ma-
trix will be in +~" if and only if its eigenvalues
are such that

0&a, -l/n, q=l, . . . ,R
(46)
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(R n—)' » 1,= Z &&
— P~ +qIi

(R -n)'
R —1 R R(R —1) n

(50)

An inner hypersphere can be defined in this case
with radius

[R(R —1)] ' ' if n ~ —,R
dmin I

[(R —n)/n] [R (R —1)]
' '

.if n & 2 R .
(51)

Any unit-trace element of 8 inside a hypersphere
of radius d „about X (corresponding to an ele-
ment of X within a hypersphere of radius d „
about the origin of X) will be an N-representable
1 matrix. 'The boundary &&~" of 6'~ ' will lie be-
tween this inner hypersphere and the outer .hyper-
sphere of radius [(R —n)/Rn]'~'.

The remarks in the previous section about curv-
ature and linear subsets within the surface apply
to 80"„"as well. The discussion of continuity can
also readily be extended to apply in this case, but
it is not true that opposite a point where 8+'„" in-
tersects the outer hypersphere is a place where
it intersects the inner hypersphere.

V. CONCLUSIONS

It has been shown in this paper that density ma-
trices defined with respect to a finite basis set
can be thought of as elements in a vector space.
Not all elements in this space, the space of Herm-
itian operators of trace 1, are density matrices

= [1/(R —q)](h' —2q&P+RP') (1—/R)5', (49)

where now p, q are the numbers of p, ,-'s which are
non-negative or negative and n, P are their ave-
rages, respectively, and f=(R —n)/n. As in the
case of negative eigenvalues, the closest approach
toX occurs when P=0, and q=1, and is

because not all of them are positive. There are
two concentric hyperspheres in the space with the
property that the bounding hypersurface of the
subset whose elements are density matrices lies
between them. An element in the intersection of
the boundary with the outer hypersphere is a
pure-state density matrix, and vice versa. Im-
mediately opposite the point where the surface
intersects the outer hypersphere is a point where
it intersects the inner hypersphere. The bound-
ary contains linear subsets, but at any point on
the boundary there are some directions in which
it is curved.

All of these results serve to give a somewhat
better picture of the set of density matrices. Un-
fortunately, they do not provide a complete char-
acterization of this set. The characterization in
terms of a nonlinear mapping is straightforward,
but not really very convenient. It will be shown
in the following paper that a sufficiently conven-.
ient characterization of the" set of density ma-
trices would provide a solution to the N-represen-
tability problem.

Since the ensemble N-representability problem
for the 1 matrix has been solved, the set whose
elements are N-representable density matrices
can also be investigated. It is, of course, con-
tained within the set of density matrices. Its
boundary also lies between two hyperspheres, in-
tersecting the outer one in 1 matrices correspond-
ing to Slater determinants. The inner hypersphere
coincides with the inner hypersphere for the den-
sity matrices if n is less than or equal to half
the number of basis functions, and is inside that
hypersphere for larger n. 'The relationship be-
tween this set for one-particle density matrices
and the set of n-particle density matrices will be
considered in the following paper.
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