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A theoretical stopping-power formula for nuclei and antinuclei is presented. It is estimated to be valid in
the regime specified by l3 & 0.3, y & 50, and

~
Z, /I8~ & 100 at the +3% level of accuracy.

The first-order Born approximation upon which
the Bethe-Bloch formula is based' is inadequate
to the task of accurately describing the energy-
loss rate of highly charged particles. Higher-
order corrections to the distant collisions have
been discussed by Ashley, Ritchie, and Brandt, "
Jackson and McCarthy, and Hill and Merzbacher. '
Jackson and Mccarthy have also considered the
second-Born. Mott-c ross-section correction to the
stopping power and Eby and Morgan'. have used the
exact Mott cross section to numerically evaluate
the stopping power for several values of Z, and
P (Z, e is the effective charge of the heavy particle
and Pc is its velocity). Eby and Morgan, ' Hill and
Merzbacher, ' and Lindhard' have pointed out the
importance of the Bloch correction. ' Most recent-
ly, Lindhard' has discussed the low-velocity pol-
arization corrections in terms of a plasma ab-
sorbing medium. Low-velocity experimental evi-
dence' seems to support Lindhard's approach al-
though data with fully stripped channeled ions"
are inconsistent with any theoretical technique
developed thus fa, r (this is quite possibly due to
channeling effects which one would not experience
with amorphous absorbers). Experimental infor-
mation is lacking in the relativistic regime, but
such information is probably imminent in view of
recent developments of high-energy heavy-ion ac-
celerators (the Lawrence Berkeley Laboratory
Bevalac has recently achieved a 2-GeV/amu "Fe
beam).

It is difficult to overemphasize the practical im-
portance of a closed-form expression for the stop-
ping power, for both the design and analysis of
experiments. Until the present time, the Bethe-
Bloch formula has been the only available expres-
sion, and it is limited to those charges and vel-
ocities for which the first-Born approximation is
valid, namely, for ~Z, n/P~«1, where u is the
fine-structure constant. For a singly charged
particle, this condition begins to fail at velocities
below which inner-shell corrections become im-
portant and, if the particle is positively charged,
at those velocities for which electron-capture and
loss processes predominate. These effects are
difficult to treat theoretically, so it seems that a

closed-form expression is available only in that
regime for which the separation of distant and
close collisions is valid, namely, at large vel-
ocities compared to atomic velocities. At lower
velocities, the absence of a reliable closed-form
expression can be blamed on the onset of shell
corrections, electron-capture and -loss proces-
ses, and failure of the first-Born approximation,
the relative importance of which is difficult to
assess. For a multiply charged particle, ~Zttr/I3~
can approach unity for velocities large enough so
that shell corrections can be ignored. One shouM
be able to separate the shell corrections from the
higher-Born terms. (One still is subject to cap-
ture and loss problems if the particle is a posi-
tively charged nucleus; however, the relative im-
portance of these for a given Z,n/P becomes smal-
ler as Z, increases. ) In this paper'I will pre'sent
a stopping formul a for this high-velocity regime
for which shell corrections can be ignored. In
particular, the results will not apply for velocities
less than those indicated in Fig. 1 as a function of
the atomic weight Z, of the absorbing material. At
these velocities, shell corrections reduce the
stopping power by 1'%%up for protons. Values for Fig.
1 were obtained from Ref. I.

The distant-collision corrections of Refs. 2-5
can be thought of as arising from the classical in-
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FIG. 1. Velocity, in units of the speed of light, for
which shell corrections reduce the stopping power for
protons by 1% as a function of the atomic number Z2
of the absorbing medium.
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FIG. 2. Fractional correction. of Jackson and
McCarthy to the total energy loss per effective charge
Z$ ~

teraction of the gradient of the electric field of
the incident particle with the induced dipole mo-
ment of the atom {the first-order interaction, as
it appears in the first-Born formalism, can be
thought of as the classical interaction of the elec-
tric field with the charge}. Jackson and McCar-
thy4 represent the fractional correction to total
energy loss as the universal function

C, =Z,F(V)/Z" {1)
where V=137P/Z, '~'. Equation (1) is the result
of a nonrelativistic analysis. C,/Z, is plotted as
a function of P for various values of Z, in Fig. 2.

While Eq. (1) is sufficient to explain the devia, —

tion from quadratic charge scaling for low-energy
He data, it does not fit that for low-energy Li
data. ' However, by including close-collision
polarization effects along with the Bloch correc-
tion, ' the agreement between theory and experi-
ment is reasonable for both He and Li.' Experi-
mental data involving differences between the
stopping power of positive and negative pions is
also better accounted for by the I indhard theory. '
Lindhard finds that the close-collision polariza-
tion correction is comparable to C„so that the
total polarization correction is 2C,. Lindhard'
also gives the Bloeh correction

Qf
2

C2=-1.202Z 2 Lo, (2)

where L, = ln2mv'/I, a= 1/137, m is the electron
mass, v =Pc, and I is the logarithmic-mean ioni-
zation potential of the medium.
- It can scarcely be claimed that the low-energy
Z, ' corrections are thoroughly understood. The
measurements which support the conclusion that
2C, +C, gives the appropriate correction to the
stopping-power formula were done at velocities
well below those for which shell corrections be-
come important. It is generally assumed that the

shell corrections are charge independent, but this
may be interpreted as a definition of the shell
corrections. In any case, the value 2C, will be
used to gauge the importance of the polarization
phenomenon (the Bloch correction is something
different and will be considered separately). As
an example, it is seen that, for an aluminum ab-
sorber, 2[C, ( is less than 1% for )Z, (& 100 as
long as p&0.45. For these values, ~z, (/p=222
and the absence of a closed-form expression for
the close-collision energy loss is the dominant
factor in the problem, as will be seen below.

In an attempt to establish the connection between
Bohr's" classical stopping-power formula and
Bethe's" quantum-mechanical version, Bloch'
calculated the stopping power by taking into ac-
count the finite lateral spread of the close-col-
lision electron "beam. " The connection is found
to be described by the digamma function'3 II and
the Bohr-Bethe-Bloch formula can be written

dF. 4mNZ e
dx mv'

2mv
I

—p'+ p(1) —Ref(l +iz,n/p), (3)

where & is the electron density and y = 1/(1 —p')' '.
As Z,n/p-0, the usual Bethe-Bloch formula ob-
tains and, as ~Z, In/p becomes much larger than
1, Bohr's formula obtains. The digamma function
is the logarithmic derivative of the gamma func-
tion and can be expressed as an alternating ser-
ies"
Ref(1+iy) =1+/(1)-1/(1+y')

~(n) =QU -" .
A=. y

(5)

The error .of the rnth partial sum of the above al-
ternating series is given by [&(2m+3) -1]y' +'.
For jy ~

& 1, this error is less than &(2m+3) —l.
Since g(5) —1 =0.0369. . . , and since the logarith-
mic term is generally of order 10, we will be in
error by less than 1/c for total dZ/dx for

~ Z, ~
a/P

& 1 if we keep only the first term of the series.
Hence, we can write

g(1) —Re/(1 + t'Z, n /P) = —1 —0.202(Z,n /P)'

+1/[1+ {Z,a/P}'] . (6)

Lindhard's expression, Eq. '(2), is obtained in the
limit ( Z, ( n /p «1.

Even when Eq. (3} is corrected by Eq. (1) it is in

+P (-1)""[f(2n+1)-1]y'", (y ~& 2 (4)
tl =g

where g(1) = - 0, 577 21. . . is the negative of Euler's
constant and g(n) is the Riemann zeta function
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error due to omission of the density-effect cor-
rection" and due to failure of the first-Born Mott
cross' section to adequately describe the close
collisions. ' ' These close-collision corrections
tend to become more important at large velocities.
It is difficult to evaluate the magnitude of their
effect due to the slowly converging Legendre ex-
pansions which are necessary for an evaluation of
the exact Mott cross section. These expansions
have been summed numerically by Doggett and
Spencer, "among others (see Ref. 15 for refer-
ences to previous work on the subject). However,
the tabulated cross sections are not easily in-
corporated into the close-collision energy-loss

. formula since an integration over c.m. scattering an-
gles is required (refer to the work of Eby and
Morgan, ' who have performed such numerical cal-
culations for several cases). To compound this
practical hindrance is the more fundamental prob-
lem of extremely slow convergence for very small
c.m. scattering angles, where the cross section
is largest (the tabulations of Ref. 15 extend from 180'
to 15'). For these reasons 1 have adopted the Z, '
expansion derived by Curr" for the Mott cross
section which is valid for c.m. angles above 30
and the expression from Bartlett and Watson" "
for the small c.m. -angle cross section. By per-
forming the appropriate integration over angles it
is found that

dE 4&NZ, 'e
h

2mv & P2 —1 —0.202 Z,n '
dx- rnv' I

+
( / }a

—+ —', G(Z„P) ——', 5(P)

x [1+2Z,F(v)/z, '"],
where values of I can be found in Refs. 14 and 18,
and a general expression for 5(P), the density-ef-
fect cor rection, is given by Sternheim er and
Peierls. ' G is the close-collision .correction which
is given by

G(Z„p) = (Z,np)[1.725 +0.52' cosy —2(s,/s„)' 'wcosy]

+ (Z,n)'(3. 246 —0.451P')

+ (Z,n)'(1.522p + 0.987/p)

+ (Z,n )'.(4.569 —0.494P' —2.696/P')

+ (Z,n)'(1.254P+ 0.222P —1.17o/P'), (8)

where e„=2mv y, Me, =Q,f, %hap; is the mean-
square-root ionization potential (approximate val-
ues for the oscillator strengths f, and the ioniza-
tion potentials S~; can be found in Sternheimer's
work, ""and cosx is defined in Ref. 15. Values
of cosy as a function of IZ, ln/P are given in Table

TABLE I. values of cosy as a function of Iz&ln/p.

Iztn/Pl COSY

0
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.00
1.20
1.50
2.00

1.000
0.9905
0.9631
0.9208
0.8680
0.7478
0.6303
0.5290
0.4471
0.3323
0.2610
0.2145
0.1696
0.1261

I. For ordinary nuclei with Z, protons, Z, is
taken to be

Z, = Z, [1—exp(-130P/Z, ' ')] . (9)

4.606X+C+a(X, -X)", X~&X&X,' '
(1o)

0, x&x, ,

where, for aluminum, C.=-4.19 X0=0 37, X,
= 3.0, m =3.0, a = 0.137, and X= log py. ep was
calculated using the ionization potentials listed in
Ref. 19; e, =176 eV (if e, is in error by 10(P/p, the
error in dE/dx is much less than 1% for most
cases; in fact, e, can be set equal to 0 with negli-
gible error for all but the heaviest absorbers}.

The error of Eq. (7) is estimated to be less than
1% due to incorrect connection of the Bartlett-
Watson cross section to the Curr cross section in
the 10 -30' c.m. angular interval. Based on Curr's
estimates for the accuracy of his expression, I
expect Eq. (7} to have a fractional error of (Z,n)'/
6P' due to deviation from the true Mott cross sec-
tion. For

I Z, I/p &100 this error will be less than
1%. At extreme relativistic energies, Eq. (7) will
fail for a number of reasons, such as (a) the ef-
fect of the spin and- internal structure of the nu-
cleus, (b) emission of bremsstrahlung radiation
by the nucleus, (c) the onset of radiative .correc-
tions to the close-collision cross section, (d}
kinematical complications. For heavy nuclei-, the
most severe restriction is the point-charge ap-
proximation. Form-factor effects can become
important for y as small as 10 for very heavy
nuclei.

The size of the various corrections to the Bethe-
Bloch formula are indicated in Fig. 3 for the case
of an aluminum absorber. The density-effect cor-
rection was taken from Ref. 14:
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The polarization correction for Z, = 26 is illu-
strated and is seen to become insignificant at P
=0.5. This correction is negligible for the range
of velocities considered for the larger charges.

The Mott corrections from Eby and Morgan' are
shown as the large solid circles. The difference
between these exact values and those obtained
from Eq. (3) are always small enough so that the
value of dE/dx calculated using Eq. (7) is in error
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by less than 1%.
if Eq. (7) is to used for negatively charged par-

ticles, then Z, =Q/e, where Q is the charge of the
particle (so Z, is then negative). The Bloch cor-

FIG. 3. Corrections to the Bethe-Bloch stopping-
ppwer formula for an aluminum absorber as a function
of the atomic numbe r Zo (from which the effective
charge 2& was derived) and velocity. See text for a
discussion of these corrections.

The valise used for I, namely, 163eV, was taken
from Ref. 14.

The corrections were calculated for. Zp 26 52,
80, and 92. The low-velocity limits correspond
to Z, /P =100. It is seen that for most velocities
of interest to cosmic-ray workers and Bevalac
users the Bloch and Mott corrections dominate.
Shell corrections are much less than 1% of f.,
where I. is the term from the Bethe-Bloch equa-
tion:

rection only depends on the magnitude of Z, but the
low-velocity polarization corrections and the Mott
corrections. depend on the polarity as well as the
magnitude.

For ~Z, I/P&100, Eq. (7) is probably accurate
to better than +3% in an absolute sense. Much
better accuracy can be expected for describing
relative behavior for charged-particle energy loss.
This equation should prove quite useful to cosmic-
ray and relativistic-heavy-ion researchers by ex-
tending the regime of applicability of the Bethe-
Bloch formula, which is limited to IZ, Io. /P«1.
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