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Dependence of Rydberg-state field-ionization thresholds on m,
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The variation of field-ionization thresholds due to the mI quantum number is calculated using a classical
model. Results are compared to the

~
m, ~-dependent field-ionization thresholds of sodium Rydberg states.

An approximate solution and scaling laws are presented.

There has been much recent interest in the field
ionization of Rydberg states because of new laser
techniques developed to produce them and because
the Stark fields necessary to ionize them may be
easily produced in the laboratory. The simplest
model of ionization is the classical model which
predicts ionization when the the field is large
enough to reduce the potential barrier below the
electron's energy. This model predicts a thresh-
old ionizing field of

F,„=—,'(W*)' = 1/(2n, )s (a.u.),
where W*= 1/2na'is the energy of the electron in
the Stark field F,~ and n, is defined to be the effec-
tive quantum number. ' Attempts to treat the
problem of field ionization of hydrogen quan-
tum mechanically by calculating the tunneling
probability of the electron through the potential
barrier'4 or by using a variational procedure to
determine bound states' have met with success for
lower n states. In particular, calculations predict
that those states which are Stark shifted to greater
binding energies (red shifted) will ionize at lower
fields than those which are shifted to )ower binding
energies (blue shifted). For states near n=5,
this behavior and the threshold field values agree
with experiment. ' However, experiments in Na
excited in a Stark field have now demonstrated
that the effects of other manifold states can add
considerable further complied lions. Some states,
in the n =15 manifold, were found to have ioniza-
tion rates which did not monotonically. increase
with electric field, but rather exhibited local
maxima. ' In these cases, even the concept of a
threshold field may become nebulous.

In contrast to this complexity, other experiments
with Na, using pulsed electric fields to detect
Rydberg states of n ~ 16, have shown well-behaved
ionization thresholds, which can be simply
characterized by the classical model. ' Presum. -
ably, the strong couplings to other me.nifolds
induce the classical behavior (e.g. , blue-shifted
states are found to have lower thresholds than
red-shifted states), while the dynamic detection
technique effectively obscures any subtleties in the

V.„=m'/2ps z/r', -1/~, (2)

where ps=ra —zs, and rt is defined so that (t;) ' is
the electric field. The extrema of the effective po-
tential may be found by setting the derivatives to
zero:

BV ff z 1eff 0
~8

(3a)

BV rn2eff -+ ~ =0. (Sb)
ep p

Using Etl. (3), p and z may be eliminated to obtain
an equation for the value of r at which the extrema
occur. This equation may be set into a dimension-

ionization thresholds. In these studies, the gen-
eral tendencies for nz, =0 states were modeled by
assuming adiabatic passage as the electric field
increased in time (with a slew rate of up to 2 && 10"
V/cm sec). These studies have shown that the
classical ionization threshold field of Etl. (1) is
valid for m, =0 states. States of higher ~m,

~
value

were found to ionize at progressively higher
thresholds, and this was attributed qualitatively to
an energy conservation effect. For an electron
with a nonzero projection of angular momentum

. along the field (z) axis, a portion of its kinetic en-
ergy is used in momentum perpendicular to the
field. This energy is not useful for escape, and
therefore a higher field is necessary to ionize
the atom. In this comment we calculate the shift
in ionization thresholds due to nonzero m„using
this classical model. Although such variation is
implicit in the previously mentioned quantum-
mechanical models, the calculation presented
here results in a simple variation which scales
with the energy of the state and avoids a compli-
cated dependence upon the parabolic quantum num-
bers. Thus, this calculation extends the useful-
ness of the classical model for characterizing
field-ionization detection schemes.

The effective potential energy of an electron, at
position r, including a centrifugal term resulting
from a projection of angular momentum along the
s axis (ml'), can be written in atomic units:
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FEG. 1. Solid line is the difference between m = 0

and (m~=1 ionization threshold fields, as a function of
the, effective quantum number. The dashed line is
the difference between the thresholds for adjacent mani-
fold states for m&=0.
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less form by defining x =x/r„which results in

x (1+x)'(1 —x)'(1 +x')' =m'/f, . (4)

E,„=(1+ 3x') /( 2~, x)=1/(2n', ),
which gives a threshold field

2 24x 2 x
" (1'+3x4)' '" (1+3x')'n' '

(6)

(7)
4

When Eq. (6) is used to eliminate 1/r, from Eq.
(4), the resulting equation for the position of the
saddle point is

For m=0, Eqs. (3a) and (3b) may be easily solved
to find the saddle point of the potential, which
occurs atrp, given by

pp=0 rp zp ' ry . xp +1.
In this case, the electron escapes over the saddle
point at a distance of r,. along the z axis. For
small, but nonzero values of ms/rt, this escape
site splits into a line of saddle points which en-
circle the z axis near the old value x=1, but with
a small nonzero value, of p. To determine the
position of the saddle ring, Eq. (4) may be solved
for the roots near x=1.

For the electron to pass over this ring, its en-
ergy must be greater than or equal to t/'„, at the
escape site, leading to a threshold energy of

6F/F = /4n
s (10)

Figure 1 illustrates the dependence of the two
fractional changes on the effective quantum
number n, . Since the variation due to a change
in m is much greater than the variation from one
manifold state to an adjacent state for large n„
this implies that field ionization will be better
suited for differentiating between m states rather
than l states. This may be of use in resonance ex-
periments at higher n values, for example, where
the detection system could monitor the depolariza-
tion of a prepared ~

m,
~

state, rather than the pop-
ulation increase in a state with only a marginally
different thre. shold.
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state when it ionizes. The x, then determined,
may be used with Eq. (6) to obtain the threshold
fieM for:ionization of a state as a function of the
energy of that state.

A solution of these equations near n, =17 pre-
dicts that the ~m ~= 1 ionization thresholds should
be 3.0% higher than the m =0 states. Gallagher
et al.' report an increase of 3%, in excellent
agreement. For the m =2 states, however, the
agreement is not as good. The model predicts an

'increase of $.3% over the m =0 thresholds, while
an increase of 23% was actually observed. This
discrepancy could be due to the breakdown of the
adiabatic passage approximation, which was al-
ready suggested by the observation of multiple
~m ~=2 thresholds for some d states. A 4% de-
crease in the d,

~

m
~

=2 state energy (relative to
the m =0 state) due to nonadiabatic passage would
explain the difference.

An approximate solution of Eqs. (7) and (8) leads
to an expression for the fractional change of
threshold field from the m = 0 value:

~F/F = m/2n, .
'
This should be compared to the typical difference
between ionization thresholds for rn = 0 state~ of
angular momentum / and l+1, obtained using the
adiabatic model of Ga'lagher et al.'.

(1+x)(1+3x4)' s(1 —x)(1+x')= ~m ~/n, ,

which now determines x from the energy of the
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