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The sine-Gordon chain: Equilibrium statistical mechanics
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The equilibrium statistical mechanics of the sine-Gordon chain is studied using transfer-integral techniques.
Implementation of formally exact expressions for the free energy, equilibrium averages, etc., rests upon
solution of the transfer-integral (TI) problem. Away from the continuum limit the solution to the TI problem
contains features that must be examined with some care. Several approximate schemes for solving the TI
problem are described and subjected to numerical verification. The appropriate thermodynamic variables for
describing the sine-Gordon chain are found to be temperature and phase; the mechanical variable conjugate
to phase is torque. Examination of the Helmholtz free energy, torque, equilibrium averages, etc., shows that
as T~O+ the chain with nonzero phase is described by a gas of noninteracting solitons. At T = O'K the
chain with nonzero phase corresponds to a kink lattice. At, T = 0+ this lattice "melts" although the phase
evolution continues to occur locally on the chain as solitons.

I. INTRODUCTION

In their pioneering work on the Q' system Krum-
hans1 and Schrieffer' (KS)suggested that the low-
temperature statistical mechanics of systems that
admit the possibility of solitary waves (or solitons)
might be descr ibed by the superposition of two es-
sentially independent kinds of modes of motion; the
conventional small os ci llation modes (or phon ons)
and the solitary wave modes or solitons (KS made an
explicit demonstration of this suggestion for Q'). This
suggestion has proved very fruitful in a phenomeno-
logic description of many aspects of displacive
transitions, ' in the discussion of possible current
carrying modes in one-dimensional conductors, '
etc. Independent of the existence of specific phy-
sical manifestations, the idea that nonlinear sys-
tems, i.e.-, systems that admit solitary waves or
solitons, possess intrinsically nonlinear modes
that participate in the behavior of the system like
a single-particle mode is very appealing and of
great interest. Fogel et al. have studied the mo-
tion of a sine-Qordon soliton at 7 = O'K in the
presence of an external field with damping and have
found that the soliton exhibits single-particle pro-
perties; Gupta and Sutherland' (GS) and Currie
e~ al. ' have studied the equilibrium statistical
mechanics of the sine-Qordon system. Currie
et a$.'argue that they find properties in reasonable
agreement with the suggestion of Krumhansl and
Schrieff er.

The purpose of this paper is to describe a num-
ber of results from the study of the, equilibrium
statistical mechanics of the sine-Qordon system.
%e do this with two purposes in mind. Firstly, to
describe those particular features of the method
of calculation and results that are important to
understanding and using the solution to the equi-
librium statistical mechanics. (In a paper to

appear, referred to as II, we discuss a method
of the solution to the nonequilibrium statistical
mechanics that rests heavily on the results we
obtain here. ) Secondly, to call attention to a num-
ber of important differences between the calcula-
tional details and results obtained in this work and
by QS and Currie et al.

In Sec. II we set up the problem of a system of
physical pendula in Earth's gravitational field that
are coupled by torsion springs and that are sep-
arately driven by an external torque. Here we set
this external torque equal to zero. The equation
of motion for a single pendulum, in the continuum
li.mit, is the sine-Gordon equation. We formulate
the calculation of the partition function, the free
energy, and various statistical averages for this
system in terms of a transfer-integral (TI) prob-
lem.

In Sec. III we discuss details of the solution of
the TI problem. Particular attention is paid to
methods of solution that are valid away from the
continuum limit (in the continuum limit the TI
problem reduces to the Mathieu equation) as it is
this circumstance that governs most physical ap-
plications of the statistical mechanics. The TI
problem inv()ives a nonsymmetric kernel and the
use of a nonsymmetric completeness relation.
We describe methods of solution of the TI problem
valid in various limits and make numerical tests
of the convergence of an approximate solution.

Section 97 is devoted to displaying and discussing
the results of calculations of the thermodynamic
properties of the sine-Qordon system. We pay
particular attention to identifying the appropriate
physical variables that describe the system.
Qupta and Sutherland have discussed the equili-
brium statistical mechanics in terms of a pressure
(this physical system has no capacity to exert a
pressure) and the chemical potential. We find that
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the appropriate mechanical variable is the torque
required to hold the system at a particular total
phase. (It is the torque which is called the chemi-
cal potential by QS; these authors also inappro-
priately identify the Qi;bbs free energy with the
pressure. ) We examine the displacement fluctua-
tions and show the system to behave like a gas of
noninteracting particles. In the appendixes we
work out various details that support the argu-
ments and calculations in the main body of the
paper.

Ep

II. THERMODYNAMIC AND STATISTICAL MECHANICAL

RELATIONS

In this section we describe the formal thermo-
dynamic and statistical mechanical relations that
are employed in discussing the sine-Qordon sys-
tem. For the purpose of giving this description
definiteness and to aid in developing intuition we
employ a particular realization of the sine-Qordon
system. Consider M+1 physical pendula in Earth' s
gravitational field and coupled to one another by
torsion springs. ' The Hamiltonian of this system
ls

H = T + V(1, . . . ,M+1)
kI+

[—', IuP, E, cose;—+-,' E,(8;„—8;)'],
,

= I

where 8; is the displacement of the ith pendulum
from equilibrium, E, =mgA, and E, measures the
strength of the torsion spring that couples the i
and i+1 pendula (see Fig. 1). An external field of
constant torque can be applied to each pendulum
(by wrapping a string, with mass M, around each
axle; see Fig. 1) in which case the Hamiltonian
contai. ns the added term

H, = — Eo8] .
i= 1

It is this external torque which generates the
phase evolution of the individual pendulum and the
phase current that is the subject of paper II. For
the discussion in this paper Ep =0.

The system described by Eq. (1) is a linear array
of M+1 physical pendula coupled by torsion
springs. This system is embedded in a tempera-
ture reservoir at temperature T. The possible
motions of the pendula are motion of the phase,
e.g. , the relative phase of a near-neighbor pair,
8;„—8;, the phase change along a segment of the
chain, etc. The appropriate thermodynamic vari-
ables to describe the mechanical characteristic
of this system are the Phase and to~que which
generates it. The phase is defined by'

R+ j.

c =P (e,.„-e,.) =(e„„—e, ) (3)
S =. &

4

e, 8,
M M+)

8M ~M+ I

FIG. 1. Sine-Gordon chain. A physical system which
is described by the Hamiltonian in Eq. (1) is a linear
chain of torsion-coupled pendula. Each pendulum has
mass m held by a weightless disk at distance R from
the axle and is coupled to the neighboring pendula
through a pair of torsion springs. The gravitational
potential energy is measured from the'height of the
axle; the torsion springs attempt to hold pendula m
and ~ + 1 at relative angular displacement zero. An
cate~« torque is exerted on each pendulum by a mass
hung over a spindle on the axle.

F(T, 4;M+ 1)=E —TS, (4)

where T, the torque is the thermodynamic conju-
gate of the phase,

dE =TdS —~dC,

S = —(BF/eT) q,

(5)

(6)

(I)r = —(sFjeC)r.
we write the free energy occasionally with a re-
minder that M+1 particles are involved. The num-

and measures the total phase evolution along the
eh@in. The phase of the system, total phase evolu-
tion along the chain, is changed by changing the
torque applied across the system, from 1 to M+1;
e.g. , the first pendulum is. held fixed and a torque
is applied to the M+1 pendulum to generate a
change in the phase of the system. The phase is an
extensive variable; it corresponds directly to the' kink number" of QS. To do the Thermodynamics
of the system described by Eq. (1) we employ the
Helmholtz free energy
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ber of particles in the system is a parameter; the
length of the system I, (L =Ma, where a is the
spacing between pendula) is also a parameter and

not a physical variable. Gupta and Sutherland use
I, as a physical variable analogous to the volume
and they define a pressure, -aE/sL. This pres-
sure has no physical meaning since the system
described by Eq. (1) or by GS has no capacity to
exert forces along the length of the chain. (Below
we strow that the "kink pressure" of GS is the
Gibbs free energy. )

To develop the statistical mechanics of the sys-
tem described by Eq. (1}we employ the canonical
ensemble

e(T; e) = fed, ~ d~„„fdd, '''dd .,
XH-BH(1. .

' H+1). (6)

Z(1,2) = (-A.,cose, }+2 %2 (82 —8,)',
where A., =pE, and A2=pE2. Equation (14) canbe
rewritten in the form

(16)

Z =g e. (4')e„(0)

(1)H-K(1, 2)e- K(1~ 2)

&( e-K(H, H+1)
y (M+ 1)

so that repeated use of Eq. (15R) leads to

(17)

Z» =g (I)„(4))i)„(0)e HH')' dip„(l)(j), (1). (18)
pv

The Q and P of Eq. (15) are chosen to be ortho-
normal so that Z~ reduces to

z, =Q y„(c)((„(0)e""". (19)

F(T, 4) = —k Tlnz(T, 4). (9)

Equations (4)-(9) give a complete prescription for
the equilibrium statistical mechanics.

We calculate Z(T, C) subject to the constraints

0, =0 and Og+, =4 = 2&q (10)

Z„= d 1 ~ .dM+ 1 5(8,)5(8„+,—4)e s»('- ~ ~ H+') .

(12)

here we use the shorthand 1 for 8I 81 for d8y,
etc. To evaluate Z~ we employ the complete set
of states $„(8)with completeness relation

()(8- e') =g y„(e)y„(e')

to write

for all time. For g an integer we use N, the "kink
number" of GS. From Eq. (6) we have

Z(T, e) =((2vaHT/I) 'j" "Z, -

where the first term comes from M- 1 v integrals
and

The transfer-integral problem defined by Eqs.
(15) and (16) is a homogeneous Fredholm equation
of the second kind with a polar kernel'; i.e., it is
not symmetric in 1 and 2; a properly symmetric
kernel can be constructed from which all of the
standard orthogonality, completeness, etc. , re-
lations can be established. These relations can
then be transformed back to the unsymmetric
form; e.g. , Eq. -(13). We employ the unsymmetric
form of the TI kernel, which arises naturally in
calculations of the type we do here, because wave
functions, eigenvalues, etc. , are simpler to cal-
culate in this form. It is only in doing formal
manipulations to show orthogonality, complete-
ness, etc., that the symmetric kernel is useful.

employing methods similar to those employed
above we can derive formal expressions for single
particle, pair, . . . averages, ' ' e.g. ,

&F(8.„)&

Q (t), (@)(„(0)&„,e " "' '"e " '" (20)
p'

IJ,
'v

Z =g fd) . ~ ddd+(d„(e)d„(0)e„(d, )

8»(1' ' 'H+1)
y (8 ) (14)

de y, (e)F(e)y. (e);

&&(e.„)G(8.„))

(21)

We choose (()„and (j), to be the right- and left-hand
eigenfunctions of a convenient transfer integral;
l.e.) x e (fl m)gc v~ mg E'

pe (22)

Z (r1.H')y„(0)F„.'G. .e '" ""
V' pvv '

(15R)

(151.)

Equations (19) and (20) reduce the calculation of
the equilibrium properties of the system des-
cribed by Eq. (1}to the solution of the transfer-
integral problem given by Eqs. (15). In Sec. III
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we take up the discussion of the solution to Eqs.
(15).

IH. TRANSFER INTEGRAL

The basic transfer integral problem is given by
Eqs. (15R) and (15L), i.e. ,

+ Z, o e, -X~(e~-e,)'/8~ (8 )

= e 8'~ g„(8,) . (23)

By inspection of Eqs. (15) the left-hand eigenfunc-
tion is related to the right-hand eigenfunction by

(24)

Because of the translational invariance of the
single-particle potential under displacements 2~m
we have

where exp(-Pe„}=()(.,/27()' 'exp(-Pe„). If we could
combine the exponentials on the LHS of Eq. (29)
into a single exponential we could reduce this eq-
uation to a Schrodinger equation and finally the
Mathieu equation. " Eigenfunctions and eigenvalues
could then be read out of tables. It is the unac-
ceptability of this procedure that leads to the need
for a careful discussion of the solution to Eq.
(23) or (29). Let us consider several special
cases.

Case 1; E,= 0. This case corresponds to inde-
pendent pendula. In Eq. (23} the 8, integral is un-
constrained so that we have

(!)(8,)~e'"("' ( .
We anticipate the single-particle density to be of
the form p(8) o- (tl (8)g(8) so that this means (see Sec.
IV)

y„(8 + 2 wm) = y„(8)e'"" (25) p(8) o- exp()(., cos 8, ) (31)

Equation (23) can be converted to a differential
equation. Consider the general problem defined
by

as we expect.
Case ~; E& =0. This case corresponds to an

M+1 particle elastic band or a piece of spring '

steel. Equation (29) reduces to

(26)

where W(12) is a function of (8, —8, (. Then (!)„(I)
has symmetry properties determined entirely by
exp[-(6V(1)]. To convert Eq. (26) into a differen-
tial equation we use the translation operator

(2) (6~-ra ( ) D~ (I)

with

Pe„ = v'/2)(

y (8) =e""'/v'2v

1 d'
d8. 0. ( ) = P .!!.( )

2
(32)

(33)

(34)

where D, =d/d8, and the cumulant expansion" to
write

d2 s-8&(za) Jd2 -sw8ha) e(68-8()D(

J d2 -8w~) Pv(I)

C, = d2 exp[ —PW(12)],

C, =(8'„), C, =(8'„)-3(8,',)'
with the averaging procedure

J'd8 -8(((e„)
( ) fd8 - 8 lv(() )'

21

and 8»= 8, —8, . Here we have used (8») =(8', ,)
= ~ ~ ~ =0. For the special case of a harmonic po-
tential only C, is nonzero, C, = 1/)(., and C,
= ln()(.,/2v)'~'. Using these results we can write
Eq. (23) in differential form

'e' '~4 (8) = s "4.(8),

(28)

(29}

= exp[+C, + (I/2! )C~D',

+(1/4! }C,D', +" ]q„(I). (»)
In this equation

1 d~
rr) r(, (rrr)a=sgf„r(r, (g) (35)

even though the TI problem cannot be directly re-
duced to Eq. (35). However, as the solution to Eq.
(35) is employed for X, » 1, in this. limit we must
retain the asymmetry of the Completeness rela-
tion and use

(36)

(Compare this requirement with the continuum ap-
proximation below).

and Q, (8) = $„*(8).
Case 3. ksT-+~. In this case X, -O and )( '-+~.

This case is equivalent to case 2 with c„and (t(„

given by Eqs. (33) and (34).
Case 4. k~T -0 and &,»&,. In this case &,- L'

and X,- L' while the torsion spring is much
stronger than the gravitational potential barrier;
E~&& E,. If one pendulum is twisted through 27t'

then several neighbors will follow. In Appendix D
we show, by one of several approximations that
we have developed for this case, that!!(, (8} and

Pc, are well approximated by the solution of the
Mathieu equation, " i.e.,
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Case g. Continuum approximations. The con-
tinuum approximation cannot be examined with the
TI equation in the form in which we have developed
it. We describe a discretization of a Hamiltonian
density in Appendix A. We find that the continuum
approximation maps onto Eq. (1}with

E,—V,p&x and E2 —I'p/&x,

where b, x is the length of the units over which the
continuum is discretized. Using these expres-
sions for E, and E2 in Eq. (29) leads to

8F(P/xxcos6 AxD2/28rP
~ (g) -88o

~ (g) (37)

Upon defining Pe„, Pe„pb, x=Pe„, we may take
pox-0 and obtain

(38)

the Mathieu equation. In this case the asymmetry
of the completeness relation is of no consequence
as

(39)

(Compare to case 4 above where the asymmetry
must be retained. ) It is important to recognize
that the continuum limit described here is a phy-
sical limit. , For a physical system with density
p= 1/A [e.g., as in the case of a charge-density
wave (CDW)2] at 188T«V, we have (gV, pox-0 only
if we can make sense out of discretization over.
subatomic lengths (in the case of a CDW over Sx
«1 A). Although the continuum limit is possible
in mathematical models it must be used with cau-
tion in mapping those models onto physical sys-
tems.

We find that the basic TI problem we wish to
solve can be reduced to one of several tractable
differential equations under a variety of circum-
stances. See Fig. 2. The most important case. for
careful consideration is case 4 above, the low-
temperature limit. We have solved the differen-
tial equation (35) for a variety of values of X, and

As a test of how the resulting eigenfunctions
and eigenvalues are related to the solution to the
exact TI problem, Eq. (23), we have (a) calcula-
ted the average value of the LHS of Eq; (23) using
the solution to Eq. (35) in order to compare the re-
sulting "energy" expectation value with the eigen-
value obtained from Eq. (35); i.e. , we compare

1 2 0 1 . 0 2 (4())f dg dg (t( (8 )e~~ o28xe 22"2 '(' /2g (8 )

J dg( (I'0(8()$0(8~)

where $„(8) is given by the solution to Eq. (35),
with (gi„ from solution of Eq. (35); and (b) calcula-
ted g(„"(8) from Eq. (23) according to the prescrip-
tion

CASE 5; CONTINUUM L I M. I T

X~~O, X2 ~+

CASE 4; ksT~O,
I X2» I )E2»X(

2 1

8

CASE 2, X,=-O

O ~ CASE 3; kBT~ + (0

X, ~O, X2 0
r I

I.O

FIG. 2. Special cases of the transfer integral. The
location of the five special cases of the transfer integral.
equation described in Sec. IB are shown as a function of

In four of these cases the transfer integral re-
duces to a differential equation and has a symmetric
completeness relation, cases 1, 2, 3, and 5. These
cases are on the boundary of the &&-A.2 parameter space,
i.e., either. A,

&

—0, 12—0 or both. In the fifth case,
case 4, the transfer integral reduces approximately to
a differential equation and has a nonsymmetric complete-
ness relation. This latter case, case 4, is most often
the ease of interest in describing physical systems.

'(

y( (g ) 86 dg X(ooa8 -2 (8 -8 /2y (g )
. (41)

where (0(82) is given by the solution of Eq. (35),
and compared $0"'(8) to (0(8) from Eq. (35). The
first test, a comparison of "eigenvalues" is a
measure of the suitability of the average shape of
the wave function. We have' used the second test to
examine the behavior of the wave function at val-
ues of 8 far from 8= 0, 2((, 4((, . . .. It is $0(8) near
8 =m, 3m, that must be well approximated if the soli-
ton properties of the system are to be correctly
described. Our findings are that the energy eigen-
value for Eq. (23) is given to excellent approxima-
tion by the solution to Eq. (35). Equation (35}
seems to be a good approximation well beyond the
region in X,-X, space where the discussion in Ap-
pendix D would lead us to expect it to be so. We
show the results of test (a) in Fig. 3(b}where we show
P„"'(8) given by Eq. (41) near 8 =(( for comparison
with (0(8) given by Eq. (35). In all cases the error
in $0(8) in this most critical region of space is less
than a factor of 2.
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& 2K)/10.0 ~ i (-0.1742, -0.0002)
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5.0—
1.0—

' (2 45)

(3,3)

1.0 —]
/g

I
/

1.0
I

5.0 9.0 2.51

I i I i I

2.83 3.14 3.46 3.77

8 (RADI ANS)

FIG. 3. Tests of the transfer integral equation. In {a) we show the energy eigenvalue found from solving the

differe-

ntiall equation, Eq. (35), and the energy eigenvalue {40) from the expectation value of the transfer integral, Eq. (23),
as the pair of numbers (pe~, eigenvalue (40)-p& ), for several values of (&~,&&) at q =20 and q =36. The difference
between the energy eigenvalue from Eq. (35) and the energy eigenvalue from Eq. (40) is always less than 2% for A,

2
~A, ~,

e.g., at A, =A =3, p~, =2.5106, Eq. (40) = —2.5490 and the number pair plotted at A. &=3, A. 2=3 is (—2.5106, —0.0384). In
{b) we show the evolution of the wave function near & =m'. The continuous curves are the wave function (normed to 1 at
x) from the solution of Eq. (35) and the wave function from Eq. (41) for three values of A,

&
and A, 2 atq =36. The ratio of

the magnitude of g
' (0) at 0 = ~ from Eq. (40) to g(&) at & =~ from Eq. (35) for three values of A,

&
and A2 at q = 36 is shown

by solid circles. The differential-equation approximation to the transfer-integral approximates the shape of the wave
function near 71 very well as ~~/A, &

L' at fixed q. Similarly the magnitude of g
' (71)/g(m) 1 at A, ~/A& L+. These

tests verify that the differential-equation approximation to the transfer integral does an excellent jbb of preserving the
average shape' of the wave function and the details of the wave function in the barrier at 0 = ~ when A2/A, &» 1.

IV. EQUILIBRIUM PROPERTIES

In this section we work out and discuss the physi-
cal content of the formulas for the free energy,
torque, one- and two-particle correlation func-
tions, etc. , derived above. The basic orientation
of our discussion is to establish the validity of a
simple picture of the equilibrium behavior. We do
this to confirm the conjecture of Krumhansl-Schrid-
ffer and in preparation for a discussion of non-
equilibrium behavior in II.

Case A; X, =O. This case corresponds to case
2 above, the gravitational field is set to zero and
the system reduces to a M+1 particle elastic band
or a piece of spring steel From E. qs. (32)+34)

&/2- & ~ i/2
Z„(T, 0') =

(
—

( exp( ——\ 4') (421

Using Eq. (42) in Eqs. (9) and (ll) yields

F(T, e) =F,(T, 0)+r F(T, @),

where

(43)

hE(T, C ) = 2 (E2/M) 4

From Eq. (7) for the torque we have

r(T, e) = ( Z, /M) O.

(45)

(46)

F,(T, 0) = —(M —1)~he T in[(2v)'/IP'E, ]+ ,

JEST

lnM—
(44)

and

y„*(e)=g„(e)=(1/&2v)e*"'

Pe„=+ v'/2X, .

For the matrix elements of E(8), G(8), etc
called for to evaluate (F(8„,~)), we write

E =— de E(8)e"" "'1
2m „ (47)

Equation (19) for Z„(T, C) yields [C =2', $„(C)
=e'" /42m].

etc. , so that the average value of F(8) given by
Eq. (20) is5, i2
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J

dgF(g) j'dl& f d&e+&&v-v)()e-&vee-&&))& n—.&/2))&1&' e n-v /2)(2

(F(e )& =-
f1+1 &

dv 8
- Nv2/2X (48)

or

0"(~„„))= J d~)"(~))'.*,(e), (49)

where

P„„(8)=(&)./v'2v) exp(-2&)&')(8„„-x„e)' (50)

with o.2 = 11D.,/x„(1 -x„) and x„=n/M. Thus the prob. -
ability of finding 8„at 8 is given by a Gaussian cen-
tered at (n/M)4 of width proportional to &M and the
location of n along the chain. For the average
.position of the nth pendumum we have

The behavior of y,(8-2«l) is described in Appendix
C. . The energy eigenvalue appropriate to $„(8)
given by Eq. (59) is

Pe„= —x, + —,'(x,/x, )'/' —P I
I

I
cos2mv. (60)

The quantity I
t

I
in Eq. (60) is the tunneling rate

calculated in the tight-binding approximation; p I
t

I

, is proportional to the number of solitons. '" Using
Eq. (60} in Eq. (19) leads to

x
Z = y, (0}I'expM C, +X, ——

1 2

and

(e„„&=x„c

(e'„.,& (e„„,& =(k,T/Z, }Mx„(1 x„).

( 51)

(52)
or

)( dp g+ +0l 0 I co828'Pe~tPO (61)

(53)

The behavior of the system in this limit is es-
sentially the same as the behavior of a linear
chain of compressional springs for which

2

a=+ ~ +-,'rg(x„, -x,)',
i

with x~= O, x~,~= L and

1/2q
&,= x.(o) I'expM c,+'x,

2 ~' 1~(Melfl)
2

(62)
where C =2))¹ Using Eq. (62) and Eqs. (11) and

(9) we have

F(T, e) =F,(T, O)+ ~F(T, e),

F(T, L) = F(T, 0)+ .'r(L'/M). -
where

F(T, 0) = —(M —1)2 ke Tln, + ,ks T lnM. —(2v)'
mP'

(54)

(55)

where

F(T 0)= —k TM 1
1

(2v)' ksT1 2w

2 IPI&, 2

1 /2

-MEi+Mgk~T

The force required to produce extension to length
L is f= —BF/sL= -(I'/M)L For this s.ystem we
have

I

contains the contribution to the free energy that
dominate as T- O'K and the thermally activated
solitons leave the chain and

(x„„)=xg (56) . ~(T, @')= ks T 1nl/&(&&8
I
f

I
) (65)

(x'„- „) (x„.,&'= (k,T/1 )Mx„(1-x„)., (57)

y'4(g) e ))) co$8$4(g) (58)

We note the correspondence between 4 and L and
v and f.

Case B. & «~, «&,. This case corresponds to
case 4 above; the temperature is small compared
to E, and E, while at the same time the strength
of the torsion spring is large compared to the gra-
vitational potential energy. For the wave function
that solves Eq. (35), we have (see Appendixes C
and D)

contains the contribution to the free energy due to
both thermally excited solitons and the solitons
created on the chain by the external torque. From
Eq. (7) for the torque we have

v =+ ', le„(X(T)),u, r 8
(66)

'

where I/(T) =MP
I
t

I
is the number of thermally ex-

cited solitons. "
We postpone the discussion of Eqs. (63)—(66) and

write out the basic equations for the average value
of 8„, 8„, and 8„8~. Using the tight-binding'wave
functions and eigenfunctions from above in Eqs.
(20) and (21) yields

g„(8)= Q e'"'X,(8 —2vl).
v'2m

(59) ( ( )&
~F(l)I„,(v -u)I, (&&)

Inr(v)
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=E(11}6....
where g, is the left-hand function appropriate to
X„Eq. (C.8). As the tight-binding wave functions
are very compact this is a good approximation
(corrections are of order Pit ). For F(8)= 8, E(l)
= l and use of Eq. (B4) in Eq. (67) yields

(8„.,&
= (x„)N.

For (8',& [E(8)= 8', E(l)= l']

I (v)

(68)

(69)

where v=MPItl u=nP Itl. In achieving Eq. (67)
we have assumed E(ll') to be diagonal, i.e. ,

E(ll'}=— d 8 $0(8 —2&1)E(8ho(8 —2&1')

lnI„(Nz) = ——, In2mN+N ln +N+ 0—1 N(T) 1
2N N (76)

the number of thermally excited solitons is far
fewer than the number of solitons generated by the
torque w and case I3-2, in which the number of
thermally excited solitons is far greater than the
number of solitons generated by the torque. We write

I„(v)=I„(Nz), (75)

where z =MP

ItI�/N
is the ratio of the number of

thermally excited solitons to the number of solitons
generated by the torque. We use N(T) =MP it I

to denote the number of thermally excited solitons
and N to denote the number of solitons generated
by the torque. Thus cases B-1 and B-2 corre.-
spond to z « I and z» 1 respectively.

Case B 1. N(T-)«N, z«1. From 9.7.V"

which upon use of Eq; (B5) yields

«'.& -«:.&'=n (1 —x.)

t'ai

t Id—I~.(v) (VO

d N(T) 1.1—InI))((N(T)) = ln +—+ 0 —,

and
for (8~,8~,& [F(8)= 8, E(l)=l; G(8)= 8, G(l')=l']

(8„.P„.,&= ~g Qll'I„;(v u)I;-, (u —w)I, (w)/I„(v)
g =~oo ge-woo

(71)
which upon use of Eq. (B6) yields

(8,8„„&—(8„„&(8„&=m (1 —x„)P itid—lnI„(v).

d N N(T)
dN(T)

lnI (N(T))=NiT)+ 0

For the free energy we have

4F(T, 4) =N(Eo —k T)-Nkz T»(MP
I t, I

/2N)

+ gkgT ln2N+ 0—1 1
(V9)

(72)
Finally we calculate the one particle density.

To do this we use Eq, (20) with E(8„„)~ 5(8„„—8).
Then,

t, (8) -=«(8...—8)&

so that

eked AE -NEo
BT T (80)

where we have used Iti = it, ie ~, Pit, i
i ' de-

pendent of T (see Appendix C). For the entropy
we have

=Q $,(8 —2wl)X, (8 —2vl) " '

(73)

4U hF + TM NEq

Using Eq. (79) in Eq. (7) for the torque yields

(81)

By comparison with Eq. (67) or (69) we identify

P (1)=I,( -v)Iu( i)u/I ())()v (74) or

1 BAF ksT N(T) 1 1
2m 8N 2m' 2N 2N N' (82)

with the probability that particle n+ 1 on an M+ 1
particle chain has phase 2~l given that the total
phase evolution along the chain is 4= AN. Then,
from Eq. (73), $,(8- 2n 1)g,(8 —2vl) is the probabil-
ity of finding the particle at 8 near 2@i. (We anti-
cipated this result in the discussion of case 1 in
Sec. III.) Results similar to Eqs. (73) and (74).can
be achieved for the two-particle density using Eq.
(22), etc"

In Eqs. (63)-(66) and Eqs. (68), (70), and (72) we
have expressions for the free energy, the torque,
displacement fluctuation, etc. , that we wish to ex-
amine. We are already at low temperature, X,X,
» 1. We consider 2 limits, case B-1, in which

MPit, i k, T
E~ —k~Tln ~ + ~

From Eq. (70) using Eq (78) we have

(8„'.,& -(8„.,&' =x„(1-x„)N
and similarly from Eq. (72) we have

(8„,8,& -(8„,)(8 „&=x„(1-x„)N.

(83)

(84)

(85)

dN N(T) N(T) )' (86)

Case B 2. N(T)»N; z»1-. From 9.7.7"
1nI~(Nz) = -z ln2N —2 lnz+Nz -N/2z+0(z '),
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and

dN(T) " RN(T) N(T)') '

For the free energy we have

EF(T,4) = —,'ke T ln2N ——,'ke T ln[N(T)/N]

+ ks TN(T) + O(N" /N(T}2).

For the entropy we have

(87}

(88)

M

N

(a)

H I G H TEMPERATURE

{SPRI NG STEEL)

—k, [N(T}——,']PE, (89)

b U=E~N(T). . (90)

Using Eq. (88) in Eq (V) .for the torque yields

1 86Ii k T
2r BN 2t N(T)

Using Eq. (87) in Eq. (VO) we have

I

P) Ey

I.O keT

Ey

(b)

and

(e'„„) (e„„) =x„(1 x„}N(T) (92)
—2m' E2-N

M

(e„„e,)—(e„.,)(e.„)=x„(1 x„)N(T). (93)

lnlo(N(T)) = ~m2e ~o,

1~,(N(T)) =In(m/e) —PE + -'m&e-'~.

and

(94}

(95)

lnl, (N(T))- lnlo(N(T}) =ln2m —PEO —,'m2e 'e~, —(96)

T =—-(1/27r)[bF(T, 1) —b F(T, O))=-(1/217)E . (97)

Torque: In Fig. 4 we show the evolution of
the torque as a function of temperature at fixed N
given by Eqs. (46), (83), and (9V). For fixed E,
and F., as T-L',k~T-E~, the number of solitons
is so great that the chain is completely covered,
N(T)»M. The concept of a soliton loses its mean-
ing, the chain can be twisted without attention to
the subtleties of soliton formation; a .twist goes
on the chain nonlocally or uniformly. Thus the
chain responds like a piece of spring steel —no
amount of temperature can override E, and the
torque is given by

r = —(E2/M) 2mN

A torque similar to this arises if E, 0 at any

k~ T for also in this limit the phase 2' is evolved
uniformly along the chain like a piece of spring

Case E-3: N =0, 1,2, 3, . . . ;N(T)«1. We consid-
er the case in which N(T)-O, N-O to see how the
system behaves as T-0 and to compare these re-
sults with the limits of the results above. We have

I

I

I

I, O
Q I

I kE, T

P Ey Ey

FIG. 4. Behavior of the torque as a function of tem-
perature. The number of thermally activated solitons on
the chain is proportional to exp( —PE~). At T = 0 K the
phase of the chain evolves from 0 to 2&N and is de-
scribed by an N soliton kink lattice. At T = O' K this
lattice melts; at T &O'K thermal solitons join those al-
ready present from the melted kink lattice (the non-
thermal solitons). The torque required to hold the
phase on the chain does not change appreciably from
—E@/2~ until the number of thermal solitons is com-
parable to the number of nonthermal solitons, exp(—PEy)
=N. As the temperature is raised beyond PEy=1 the
number of solitons on the chain becomes comparable toI, solitons lose their meaning, the chain behaves like
a piece of spring steel. In this limit k~»&E&', kz T»
» E2, and kz T» E~; the thermal energy is greater than
any basic energy associated with the system.

steel. For fixedE, andE, as T-O, k~T«E~
and N(T) «N «M, creation of phase 2m occurs
locally on the chain and requires torque E~/2@. -'
In the intermediate regime, ks T «E~ and N(T)
»N, the torque behaves as given by Eq. (83). For
N» M the chain is uniformly twisted at any temp-
erature.

DisPlacement: It is difficult from the ex-
amination of Eqs. (45), (79) and (88) to develop a
picture of what the solitons are doing. Let us ex-
amine Eqs. (52), (84), and (92) for the mean-square
fluctuation of the angle at station n+1 along the
chain. We show the behavior of (e„„)and (e'„„)
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with total phase evolution 4 is given by the kink
lattice with N=4/2w solitons. The result of GS
was derived in the continuum approximation —we
complement it with our result here at T &O'K (also
valid in the continuum approximation) and confirm
the conclusion of GS that the T =O'K kink lattice
is a.nstable to thermal fluctuations. %e do not
mean to say that the solitons disappear from, the
cha, in at T &O'K, but rather that their T =O'K loc-
alization on the chain is destroyed immediately at
T =0"K. This conclusion is demonstrated in the
continuum approximation. Certainly its sources
is one-dimensional thermal fluctuations. Thus it
is plausible that this conclusion also obtains for the
discrete chain although it has not been so demon-
strated.

It is appropriate to comment briefly on the re-
lationship of the calculation of GS to those pre-
sented here. Gupta and Sutherland constructed the
Helmholtz free energy Z(T, 4) according to the
same prescription as that used above. They then
go to a.torque (pressure) ensemble. by using

l23
FIG. 5. Average value of 0, 02. At X=0 K the phase

on the chain is in the form of a kink lattice. At T = O' K
the lattice melts and (~„) lies on the dashed line from
0 to 4. The fluctuations in the displacement of the nth
pendulum is proportional. to the number of nonthermal
solitons on the chain, (~„)~+. As &

~
increases (0„)—

continues to lie on the dashed line, the fluctuations be-
come greater; (0„)~N(T) for+(T) &N and (0„)ac~
at the highest temperatures.

in Fig. 5. From this figure we see that the be-
havior of the n+1 pendulum is analogous to a con-
strained random walk. If there are nonthermal
solitons on the chain and T =0"K the average
position of the n+ 1 pendulum on the chain is at
(n/m)N and the pendulum fluctuates from this av-
erage position by ~, ~T7, or ~ depending on
the number of solitons or the temperature. The
number of phase kinks —therefore the number of
steps in the randon walk is given by the number of
solitons (for ks T «Eo); thus &8„~vPand vK(T).
For T»E~, the concept of soliton is without mean-
ing and the number of effective phase kinks is
M, 58„cc~. These results for 58'„provide rather
convincing evidence that the solitons on a chain
behave to very good approximation like a system. of
noninteracting particles that are free to move from
one end of the chain to the other. This picture of
soliton behavior persists even as T O'K from
above. On the other hand we. have the result of
GS that the T = 0 K equilibrium state for a chain

gTCZ T

The resulting thermodynamic potential is the
Gibbs free energy"

Gupta and Sutherland then write G(T, 7') = PPL,
where I, is the length of the system, and define
the pressure

P= (I/L)G(T, 7).

The discussion by GS of the chemical potential-
pressure relationship is a discussion of the rela-
tionship of torque (called p) to the Gibbs free ener-
gy (called pressure).

Currie et al. have argued, by comparison of the
torque (presumed by them to be the chemical po-
tential) at T-O'K and N»N(T) with the chemical
potential of an ideal gas, that at T 40'K the soli-
toris behave 1.ike a noninteraeting gas of particles.
This conclusion is justified at low temperature by
making the correspondence; phase is generated by
a torque reservoir "kinks" are generated by a
"chemical potential" reservoir. It is explicitly
demonstrated by the calculations of (8'„).

If the soli. tons behave l.ike a noninteracting gas
of particles one might hope to derive an ideal gas
law for them, e.g. , v'4 ~ k~ T. Such a result is
complicated by two essential features of the phy-
sics. (i) The torque r does two jobs. It creates
the particles of the ideal gas, the kinks, and it

. sustains the total phase, evolution along the chain
against collisions of the kinks at the end of the
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chain that try to unravel it. (ii) The particles on
the chain may be of two types, kinks and antikinks,
so that the collisions at the end of the chain twist
it both clockwise and counterclockwise.

E = 8gt/' I"p.

The length of a static soliton is.
(A3)

and d' = I"/V, ). The energy of the system with a,

single static soliton present is

V. CONCLUSION
d = 4X'/V, . (A4)

We have studied the equilibrium statistical
mechanics of the sine-Gordon system. We have
employed transfer-integral techniques to work out
the free energy, torque, average value of 8'„,»
etc. Formally exact expressions for these quan-
tities can be implemented once the solution to the
appropriate transfer-integral problem is in hand.
We discuss a number of subtleties associated with
the TI problem. Approximate solutions to the TI
problem in various limits are discussed and nu-
merical and other evidence for the validity of these
approximations is presented.

The equilibrium statistical mechanics in the
canonical ensemble, depends upon the identifica-
tion of the Helmholtz- free energy and physically
meaningful thermodynamic variables. We argue
that the appropriate thermodynamic variables
for the sine-Gordon chain are temperature and
phase, that phase is generated by a torque reser-
voir, etc. Our use of these variables is to be
contrasted to the thermodynamics of Gupta and
Sutherland which employs a chemical potential
(equivalent to o'ur torque) and pressure (which
does not exist).

We examine a variety of thermodynamic func-
tions and statistical mechanical averages at both
high and low temperature. By studying the aver-
age of 6)„„we find compelling evidence that the
solitons behave at low temperature like a gas of
noninteracting particle
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To discretize the continuum field we divide the
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Then we have

and

p dx V(p) -g pI)x V(y, )
j 1

. 2

p dx —((t)')'- pn, xl
2 &x

Comparison with Eq. (1) leads to

P' pQg ~E
and

rp/~x -E,.

(A5)

(A6)

In this appendix we list the collection of iden-
tities and several asymptotic expansions for the
modified Bessel functions that are useful in the
evaluation of various averages. From Abramo-
witz and Stegun we have (9.6.26)

and

1„,(z) —1„„(z)= 2(t /z)1„(z) (B1)

In terms of the variables of Eq. (1) the soliton en-
ergy is F-, = 8',E, and the length of the soliton,
measured in units nx, is d/n, x = QE /E, .

APPENDIX B: MODIFIED BESSELFUNCTION IDENTITIES
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APPENDIX A: THE CONTINUUM APPROXIMATION

The total energy is given by the Hamiltonian
density

1,(z)+I„.,(z) = 2 —1„(z).
d

The Bessel function addition theorem (9.1.75),

J'„(v) = Q J„,(v —u)J, (u)
g - ~ eo

and the identity (9.6.'3),

(B2)

z(m, () j[',I~'+-',=( '))'+(( ) )p (x), -d

0
(A1) I„(z)= (-i)"Z„(iz), -z & argz ~ —,'w

where p is a suitably defined density. The equation of
motion for Q has a solution asymptotic to +z at x -+~
of the form [V((()))= —V, cosQ] .

1„(v)= Q I,(v - u)I, (u),
l=-~

(B3)

(A2)

for real u and v. We may combine (B1) and (B2)
to obtain

which describe the sine-Gordon solitons (c'= I'/I g lI, , (v —u)I, (u) = uvI„(v)/v,
l

(B4)
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= —
2 v'I„(v)+u 1 —— ', (B5)

u', u dI, (v)
v v o, v

g ll'I, , (v —u}Ir'-&(u w }Ir(tv)
st'

Ku v"I,(v) +av 1 —— " . (B6)
u dI„(v)
v c1v

——X, cos 8 $,(8) = P e,g, (8).
1 d'

2
(Cl)

In the limit A., »1, A2»1, we may solve this equa-
tion in the tight-binding approximation:

q, (8) = Q e""}t,(8 —2ml)
l

with J v[~(n/2P) [n is an integer, ]n)~P and g„(8)
is assumed to be periodic over 2mPjj and energy
eigenvalue

(c2)

p&„= -~, +-'(&,/~, )'I —pl tl cos2nv' (c3)

APPENDIX C: SOLUTION TO THE TRANSFER-INTEGRAL
EQUATION IN THE TIGHT-BINDING APPROXIMATION

The TI equation can be reduced to the Schro-
dinger equation in the form, Eq. (35) (see Fig.
6)

W~KB

Fig. 6. The. differential equation. Equation (35) or
(C1) describes a particle of mass ~2 in a periodic
potential of amplitude 2&f. As &-O'K, A f-L' and the differential equation becomes the Schro-
dinger equation for a heavy particle in a deep well. The
particle is localized near ~, 27', 471, ... and well approxi-
mated (for the purpose of discussing the energy) by a
Gaussian. The bandwidth of the particles is related to
the rate of tunneling from 2~ to 27t (n+1). To calculate
this rate accurately, the wave function and its deriva-,
tive must be known at the barrier. The analytic results
for the Mathieu equation may be used or the WKB wave
function may be used to calculate the tunneling rate.
The ground-state wave function cep(0} is well approxi-
mated by the k 0 superposition of Gaussians (with suit-
ably doctored WKB tails) centered at 0, 27t, 4x, . . . .

In Eq. (C3) [ t~ is related to the rate of tunneling
from l.ocalization near 2am to localization near
2m(m +1): q = 4K~%2) (C10}

p ~
t

~

= 4(x,/A, ,)' I)}t,(0) j
' exp(-8A, ,A.,). (c4)

pEe 8vA~A2——

and a measure of its size

(c5)

d = ~A.~/A2. (c6)

The parameters for the sine-Gordon soliton are
its energy

and

a =.8Z,pe, . (Cl 1)

Thus we may take over many of the known results
for the Mathieu equation to check numerical work
on Eq. (Cl) and to obtain various analyti. c limits.
The Mathieu equation is parametrized in terms
of q and we use this variable in our discussion of
the numerical work (Sec, III) and Fig. 3.

For the left-hand eigenfunction appropriate to the
solution of Eq. (23} we have

(C7)

where [cf. Eq. (C2)]

(c8)

Equation (Cl) can be converted to the Mathieu
equation (20.1.1), upon making the change of vari-
able:

APPENDIX D: THE TRANSFER INTEGRAL AT LOÃ
TEMPERATURE

As T-O'K both A., and A, in Eq. (23) are large
compared to 1. We take the solution to Eq. (29) in
the form

y„(8) = Q e'"'}t,(e —2n l)
211

with }t,(8 —2rl) solving Eq. (23) approximately
near 8 —2wl. We assume }t,(8) to be given approx-
imately by a Gaussian centered at 2ml:

2y+w=8, (c9) X,(e) =A exp(--,'a')(8- 2w l)'. (D2)



THE SINE-GORDON CHAIN: EQ VILIBRIVM STATISTICAL. . . 1217

Substituting into Eq. (23) and integrating on 8,
leads to

Pe, = —X, ——,ln —ln —+ 2v'', ,/', ,2' 27l

2 2

+ —,'x, /x, + o(x,/x, )'~' (D3)

sians, etc. , is tractable.
A far more elegant demonstration of the reduc-

tion of the exact integral equation [or Eq. (29}]to
the Mathieu equation in the limit A;, » 1, A» 1 is
possible using a second cumulant expansion. We
write Eq. (29} in the form

and

n' = A.,', [1 +-,'A. ,Z, +O(~,/', )]. (D4)

Comparison with Appendix C shows that as A,,/A,
—0 these values approach the values obtained from
solution of the Mathieu equation. Thus the exact
integral equation is solved to excellent approxima-
tion by the Mathieu equation for A.,» 1, X2»1, and

This result is verified in the numerical
work discussed in Sec. III.

S ince Eq. (23) admits a variational principle a
solution in terms of the superposition of Qaus-

1 2

exp ~ g,(8)=e a'"e &"* g„(8).
2

Multiply by $„(8) from the left [or P„(8)] and inte-
grate on 0. On the LHS this amounts to an aver-
age of exp[(1/2A. ,}(d'/d8')], on the RHS this is the
same average of exp(-A. , cos8). We exponentiate
the average by using a cumulant expansion on the
right and the left. Equating the leadi. ng cumulants
on the right and left leads to the Mathieu equation
The higher-order cumulants go to zero as (X,/
A.,)"~', etc.
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