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Biaxial order parameters in liquid crystals: Their meaning and determination with nuclear
quadrupole resonance

David W. A11ender and J, William Doane
Department of Physics and Liquid Crysta/ Institute, Kent State University, Kent, Ohio 44242

(Received 4 November 1977)

A simple formulation is presented for the analysis of nuclear quadrupole spectra in biaxial liquid crystals
based on orientational order parameters. The analysis contains no tilt angle or other model-dependent

parameters not directly measured in NMR experiments. The observability and effect of various order
parameters on the asymmetry of the electric field gradient q is discussed. It is shown that q is insensitive to
rotational freeze-out of the variety expected to b'e observed-in some biaxial phases. Nuclear quadrupole
resonance experiments are described which are expected to yield rotational freeze-out parameters.

INTRODUCTION

, Biaxiality in liquid crystals is most commonly
identified opticaQy by. a distortion of the fam&liar
Maltese cross figure seen in the conoscopic obser-
vation of an aligned sample when placed between
crossed polaroids. ' In nuclear quadrupole reso-
nance (NQB) it is observed by an asymmetry of the
nuclear quadrupole spin interaction. A measurable
parameter in this observation is the asymmetry
parameter q = (V„„—V„,)/V„, where the V«are the
principal values of the time-averaged electric field
gradient at the nuclear site. This electric field
gradient is created within the molecule and de-
pends, not only on the molecular structure and the
local bonds, but also on moolecular motion since it
is the time-averaged value which is observed in
liquid crystals. In uniaxial phases g = 0 but in bi-
axial phases the molecular orientational order is
always such that q is finite. The central question
is: what kind of order? Seliger et al.' have dis-
cussed this question in terms of parameters which
were model based. In their calculations, a tilted
smectic-C-type model was assuaged and parame-
ters containing the tilt angle were used in the dis-
cussion. A recent comment on their work used a
similar type of approach. ' There are several prob-
lems with these model-based approaches. First,
they do not allow one to see clearly the sensitivity
of q to the various kinds of biaxial orientational or-
der. Second, NQB is not sensitive to translational
order and the tilt angle is ordinarily not an observ-
able quantity with NMR. ~

In this paper we show a simple but direct calcu-
lation for g which is not model based. The order
parameters are those which describe the preferen-
tial order of the molecular axes in the principal-
axis system of the quadrupole interaction. We then
discuss the sensitivity of q to various kinds of bi-
axial molecular-order and rotational-diffusion pro-
cesses.

NOTIONAL AVERAGING OF THE QUADRUPOLE
INTERACTION

In the principal-axis system the quadrupole Ham-
iltonian takes on the form'
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where I„ I„and I are the usual spin operators. '
The values of the coupling constant e'q gt/h and

the asymmetry parameter p~ are the quantities
measured in an NQB experiment. The x, y, z co-
ordinate frame is that of the principal-axis system.
It is fixed with respect to the liquid-crystal sample.
If we use the director concept for the liquid-crys-
tal phase, the director frame is fixed with respect
to the quadrupole principal axes. The two frames
may or may, not coincide. In an appropriate ex-
periment the quadrupole principal-axis system can
be determined. In a "pure" quadrupole-resonance
experixnent such as that performed by Seliger et al.
the principal-axis system is not known. For the
purpose of our discussion. in this paper, its loca-
tion is not important, but, as will be discussed
later, its location can provide additional and use-
ful order parameters.

While the principal-axis frame is fixed, the mol-
ecule is not. A molecular frame is normally cho-
.sen with the z axis parallel to the long axi.s of the
molecule (a line through the center. of the aromatic
rings) and the x axis is often chosen to be normal
to. the aromatic rings. The y axis completes a
right-handed system. The molecular axes fluctuate
about the principal axes. We therefore transform
to the molecular frame, in which case
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where/, 8, and garethe Euler angles'that taketheP
frame into the M frame. The molecule contains the
spin interaction of interest. If the molecule were in
the solid phase, where the molecular axes do not
fluctuate appreciably, the principal axes of the spin
interaction would not necessarily correspond to the
molecular axes as defined above. We must, there-
fore, make an additional transformation to where
the principal axes of the interaction are known to
be in the "frozen" molecule (local frame) and

where
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where the X, F, Z frame is the principal-axis frame of

the local interaction in the molecule. The Euler
angles n, P, and y take the M frame into the f.
frame. The quantities e'q~Q/k and q~, as well as
the local principal-axis system relative to the mo-
lecular frame, are often known from solid-state
experiments. The quantity q~ is normally small,
~ 0.1, and we shall neglect it in the remaining dis-
cussion. Combining Eqs. (3) and (1), we get

(4)

where
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There are nine terms and consequently nine or-
der parameters in the above expression which can
be considerably simplified by considering apolar
phases in which a molecule may exchange end-for-
end. However, in some models' "this exchange
may only occur about one axis. If we define our
molecular system such that this is the x axis, M„,
such an exchange would give the invariant opera-
tions P-m+P, 8-m —6, and g- -g in which case
Eq. (4) becomes"

q = —,'(sin'P cos 2n [(c os 2P (1+ cos'8) c os 2g& —2 (sin 2P co s8sin2$&]
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+ &sin'8cos2p&(3cos'P —1)H&—,'cos'6 ——,') (3cos'P —l)J '. (6)

It is useful to note two special cases in connection
with the smectic C phase. One is the case where
the molecular long axis is a threefold or' greater
axis of rotation. In fact, some models"~" consider
the molecule to rotate in a nearly unhindered fash-
ion about the long axis in which case all values of

g are equally probable, independent of P and 8, and

Eq. (6) averages to

q = —,'&sin'8cos2&&/& —,'cos'8 ——,') .

f= exp( V/kT dt exp[Van. cos (t)/kT] . (9)

This leads immediately to

f

For example, if the expected order is a rotation-
al freeze-out, the effective potential felt by each
molecule should have the form V= —Voncos(Q+ $),
where o= &cos(P+ P) &is the order parameter and

V, is a constant. The single-molecule distribution
function is then given by

In another model it is assumed that the long axis of
the molecule is well ordered (i.e. 6 = 0) but that there
is partial rotational freeze-out in which case the first
term dominates and the asym'metry parameter be-
comes

and

d(y+q) cos(y+q) f= '
Io Von kT

13=—&cos2(&+ g)& = d(p+g) cos2(@+4)f
g

(10)

In this last expression we note the absence of the
order parameter &cos(p+g)& which describes rota-
tional freeze-out. The parameter &cos2(P+g)& is,
however, present but its value would be negligibly
small for the meari-field potentials expected for
some models. This is easily verified within the
context of a simple mean-field approach.

I,(Van/k T)
1,(V,n/kT) '

where I„ is the nth modified Bessel function. ' Fig-.
ure 1 illustrates this result over the entire tem-
perature range. " However, near the transition,
V,/kT= 2 and n «1 so the Bessel functions may be
expanded to obtain
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1o2 ficult to resolve the question of the occurrence of
rotational freeze-out from a measurement of g
alone.

Oe8

THE NMR OBSERVATION OF ROTATIONAL

FREEZEAUT
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FIG. 1. The temperature dependence of the order
parameters is depicted over the entire temperature
range under the assumption of a one-body potential pro-
portional to cos(Q+g). The solid line shows 0,'= (cos(Q+P))
while the dashed line shows p= (cos[2(fIt)+ $)j). Transitions
typically occur at a few hundred degrees with the solid
phase occurring tens of degrees lower. Thus only the
region near k T/V()=0. 5 is of interest.

(cos2(p+ g)) = —,'(cos(Q+ 0))' «(cos(4+ g)) . (II)
Thus, the asymmetry parameter g is expected to
be insensitive to (cos(Q+P)) (i.e. the observance of
a very small (cos2($+g)) does not indicate the ab-
sence of rotational freeze-out), making it very dif-,

There are, however, other NMR measurements
which can be made that are sensitive to rotational
freeze-out. One of these is an NMR measurement
which is sensitive to the orientation of the princi-
pal-axis system relative to some other laboratory
fixed frame. One such frame could be that of the
principal-axis system of the diamagnetic suscepti-
bility. A thermotropic liquid crystal will align it-
self in a ma.gnetic field so that the principal z axis
of the susceptibility tensor is parallel to the field
direction. In a biaxial liquid crystal where there
is rotational freeze-out this axis will not in gener-
al coincide with the principal z axis of the quad-
rupole inter action.

In a large magnetic field the quadrupole interac-
tion for the 'D spins or "N spins will be pbserved
as a perturbation on the Zeeman interaction.
For spin-one nuclei such as '4N or 'D the
NMR spectra will appear as a doublet. If we take
the case of the smectic phase where the long mo-
lecular axis is well ordered ((-,cos'8 ——,') = 1) the
splitting of the doublet 6v becomes"

6 vo = 2e'q Q(—,sin'8, sin'Pcos2n [(cos2(P + Q))cos2$, + (sin2(p + g))sin2$, ]

——,
' sin28, sin2P sinn [cos&/&,(sin(P + g)) —sing, (cos (P + g)) ]+P, (cos 8,)P,(cosP)),

where the polar angles 8, and Po describe the ori-
entation of the magnetic field direction in the prin-
cipal-axis system of the quadrupole interaction.
The coefficient of the sin28, term then provides a
measure of (cos(@+/)). An NMH experiinent in
which 8p can be varied is therefore necessary. One
such experiment has been reported where electric
fields have been used to accomplish this. " Other
experiments which make use of spinning. samples
have been used to obtain both the (cos2(P+ g)) and
(cos(Q + g)) parameters. "

Another experimental 5MR oi der parameter sen-
siti0e to rotational freeze-out is finite in an apo-
lar phase, where the molecular s axis M, prefers
an end-for-end exchange about only one axis, M„
or M,. In the Euler angle notation above, this pa-
rameter is (sin28 sing). This parameter shows it-
self in the coupling constant e'q Q/h. In the sense
that the Euler angle P does not appear in this pa-

rameter, it is uniaxial in character. " As such, it
will affect the spectral splittings even when 8, = 0
(i.e., the magnetic field is parallel to the principal
z axis of the quadrupole interaction). " The experi-
mental observation and measurement of this pa-
rameter have recently been made in the compound
4-n-octyl-d»-oxybenzoic acid-d where it has been
observed to be finite in the smectic C phase but
zero in the nematic. "

Finally, it is useful to note the dependence of Eq.
(6) on the angles P and n These are. the spherical co-
ordinates which describe the orientation of the prin-
cipal Z axis of the local quadrupole interaction in the
molecular frame It is seen f.rom Eq. (6) that dif-
ferently oriented Z axes relative to the molecular
frame provide different sensitivities to the various
kinds of order parameters displayed in the equa-
tion. If, for example, we had a situation where the
Z axis (often in the direction of a chemical bond)
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was parallel to 18, then only the order parameter
of Eq. (7) would be observed, since P = 0. Like-
wise, for P =90'only the first term of Eq. (6) would
be present. If one had available a variety of dif-
ferently oriented local interactions in the molecule
it should then, in principle, be possible to measure
all of the parameters in Eq. (6).

Note added in Proof In .Eq. (8) we have assumed
weak biaxiallity, where the principal z axis nearly

coincides with the director.
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