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A self-consistent scheme is discussed for calculating the pair potential of simple classical liquids from a
knowledge of the zeroth and fourth frequency-moment sum rules of the coherent scattering function S(g, ).
The procedure is tested by using molecular-dynamics data on a liquid-argon-like system interacting through a
Lennard-Jones (6-12) potential. A detailed investigation of the propagation of error in the potential due to
uncertainties in the measurement of the data has been made which should serve as a guideline to the

“experimentalist.

There have been several theoretical attempts to
extract some information about the effective pair
potential ¢(») for monatomic liquids from a know-
ledge of the static structure data measured in dif-
fraction experiments. Among these attempts there
are the three well-known approaches correlating
the static structure data and the pair potential—the
hypernetted chain (HNC), the Percus-Yevick (PY)
and the Born-Green (BG) equations. It is found
that the potentials obtained from these equations
have practically no resemblance with the expected
ones.! For simple liquids, close to their triple
point, both PY and HNC theories yield a potential
well which is too shallow by about 40% and whose
position is in error by about 10%. The Born-Green
equation is even more controversial in that the
potentials obtained are not even unique; when g-
space inversion technique is used,? the potential
is highly temperature dependent in contrast with -
the almost temperature-independent result obtain-
ed in the » space by iteration.®

More recently, Ailawadi and Naghlzadeh4 pro-
posed a new method to calculate the pair potential
¢(r) for simple liquids from a knowledge of g(#).
This technique uses the Singwi et al.® theory for
the density response function of an interacting
electron gas. These authors obtained better re-
sults as compared to the three approximate equa-
tions discussed above. There are three more
schemes available for calculating ¢ () from the
known thermodynamic data and the structure fac-
tor. These are the computer simulation method,®
the fully thermodynamically consistent integral
equation’ and perturbation approach,® ®

_The present work is based on the method pro-.
posed by Rahman'® who suggested that a true po-
tential can be obtained provided the zeroth- and
fourth-frequency moments of the dynamical struc-
ture factor S(¢,w) are made available by the neu-
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tron inelastic scattering experiments for the en-
tire range of momentum transfers. In this paper,
we discuss this procedure in more detail and study
it for liqliid argon. We also discuss the limitations
of the method and their possible improvements.

We start with the well-known relation for the
fourth moment of S(q, w),

(w*) =3w§ +w§[Q?(0) - 2%(q)] ' (1)
where
wi=q%kgT /m
and
O 2e) @

The symbols n, kg, T, andm have their usual
meaning. We introduce another quantity

- P(g) =-9%(q) = (w?) wg® - 3wi - Q*(0) , ®3)

which after carrying out angular integrations re-
duces to

P@)==2 (" dr g g7 istar) - Q@) @)

’

with

8mn

Q()—-—— f dVg(r)[i (g7) - COS(qr)]

x (97— ). )

It is found that P(q) is a damped oscillatory func-
tion of ¢ (see Fig. 1) and therefore, can be obtain-
ed if the neutron scattering results for (w? are
available upto its limiting value. An important
point, which is the basis of this calculation, is the
fact that a dominant contribution to P(q) comes
from the first term on the right-hand side of Eq.
(4). This fact allows for an iterative solution of
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this equation. As a zeroth-order approximation
Q(g) can be neglected, then the inverse Fourier
transform of Eq. (4) yields

” o m - .
0"0) = s [P . ©

¢"(r) is further integrated between » and « to cal-

culate ¢’(»). The calculated numbers for ¢”(»)
and ¢’(r) are in turn used for calculating Q(q)
which is added to P(q) to be used for the first-
order approximation. The procedure is repeated
until self-consistency is achieved. Computational
details have been discussed by Rahman!® in his
application of this scheme to liquid rubidium.
. We verify the applicability of this method for
liquid argon by giving known inputs. First, we
calculate P(g) from Eq. (4) by using molecular
dynamics data of Verlet!! for g(») corresponding
to a temperature 86.1°K and density #=0.02153
x10?* atoms/cm?®. It is shown in Fig. 1. Using
these numbers for P(g) and iterative scheme des-
cribed above, we calculate ¢”(r) and ¢'(r). We
found that the results for ¢’(») obtained after sev-
enth iteration were consistent up to four signi-
ficant figures with those of sixth iteration. The
results of ¢'(r) obtained from seventh iteration
are then integrated between » and « in order to
"calculate ¢ (»). The resultant potential is shown
in Fig. 2 as full curve and-is compared with the
Lennard-Jones (L-J) potential shown by squares.
The marvelous agreement obtained confirms the
validity and usefulness of the scheme used.

The main drawback of the scheme is that it re-
quires the data for (w?* for the entire ¢ range
(up to ¢=6 A~! for liquid rubidium?!® and ¢ =10 A™?
for liquid argon). We investigate the effect of
truncating P(q) [i.e., setting P(¢)=0] at ¢=6, 8,
and 10 A™%, . The resultant potentials ¢ (r)/e are
found to have well depths 1.26, 0.93, and 0.98,
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FIG. 1. mP(q)/€on vs q with n=0.02153 x10% atoms/
cm®. €=119.8°K, 0=3.405 &.

respectively. The effect of cutoff after ¢ =10 At
is found insignifigaht in the potentials.

It is well-known that accurate experimental
measurement of {w?* becomes extremely difficult,
in particular for very-small-momentum and large-
energy transfers. The only attempt to measure
(w?% from neutron scattering data is by Suck.!'?

But his estimates for {(w?*) for liquid Rb are poor
because of the large errors in the wings of S(g, w).
Furthermore, the smallest ¢ investigated by him
is 1.0 A", However, Copley and Rowe!® have been’
able to perform measurements for ¢ as small as
0.3 A7, but the measured S(q, w) is not very reli-
able at small g and w.

In the presence of such difficulties, one would
like to have some alternative method for estimat-
ing (w*. It is found that the dominant contribution -
to the fourth-moment integral arises from the
term 72g(»)¢”(r). Physically, this quantity des-
cribes the spatial range of correlation of forces
which is very small and is peaked near the hard-
core radius R,. Hubbard and Beeby' have pro-
posed that a good approximation to {(w* can be ob-
tained by replacing the product »2g(r) ¢”(r) by a
6 function at » =R, with the weight

wy=2 [atge) L2 ~gx(0), )

and neglecting the term proportional to ¢’(»).
This gives

P(g) = - 303(aRo)* [(qRoPsin(qR,) + 2(aRy)cos (4Ry)
~ 2sin(gR,)] . (8)

The only unknown in Eq. (8) is the frequency wg,
which can be recognized as the maximum phonon
frequency in a solid close to its melting point. We
already demand above, Eq. (6), that in order to de-
termine P(q), (w* should be measured up to its
limiting value, then (w? =3(q%kyT /m) +w2.
Furthermore, using the 6-function approximation,
Suck™ fitted his results (w*) for liquid rubidium
and obtained R,=4.8 A and w=0.65X10" sec™?,
On the other hand, if one estimates w g from the
Debye temperature (@, =56°K) for crystalline
rubidium, it comes out to be 0.73x10* sec™!

" which is very close to the value obtained by Suck

(see also Ref. 15).
Even though the approximate Eq. (8) in itself is

not capable of yielding information about ¢(r),

. P(q) obtained from this equation together with
neutron diffraction data for g(») may, in principle,
be used in Egs. (4)-(6) to extract the potential. We
used R,=3.405 A and w;=0.77%x10'® sec™! obtained
by Levesque ef al.'® through the molecular-dy-
namics simulation of a Lennard-Jones system.

We found that Eq. (8) is a very good representation
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FIG. 2. ¢(7)/€ vs v/o. Squares: L-J potential, full
curve: potential obtained with present scheme, tri-
angles: potential obtained with 1% random error in
P(q), circles: potential obtained with 2% random error
in P(q).
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of P(q) for q up to about 0.5 A™! after which it
starts deviating slowly from its exact value. These
deviations increase with increasing g thereby
leading to a failure of the iterative procedufe and
the resulting potential comes out to be very ab-
surd. This is because the large-q value of P(q)
strongly reflects in the small-» behavior of ¢” ()
which in turn spoils Q(g). It is, therefore, recom-
mended that Eq. (8) for P(q) should not be used as
input for all ¢ values., However, one can safely
use Eq. (8) for smaller momentum transfers (g

‘up to about 0.5 A~ in liquid argon) which cannot

be probed with a sufficient accuracy by neutron
scattering experiments. Therefore, if the neutron
scattering experiments are capable of providing an
accurate information about ( w*) for g< 0.5 A™1,

the iterative procedure given by Eqgs. (4)—(6) -
should be successful in determining ¢ (»). .

An immediate question which an experimentalist
would like to be answered is how accurate should
be the data for (w*) and g(») in order to get a rea-
sonably accurate potential through the present
scheme? In what follows, our main task would be
to answer this question.

In order to decide the accuracy of the {(w*) or
P(q) data, we first introduce errors in P(q)
(shown in Fig. 1). We use a random function gen-
erator which yields random numbers between —-0.5
and 0.5. We introduce an error of 1%, i.e., a
particular P(g) value can lie anywhere between
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FIG. 3. ¢(7)/€ vs 7/o for various data sets for P(q)
which are all randomly erroneous by 1%. Solid curve
is the result with original data for P(qg).

0.995 P(¢g) and 1.005 P(q) depending on the random
number. - Using this new set of P(q) values and
original data for g(r), we again iterate Eq. (4) to
solve for ¢(»). The resultant potential is shown
in Fig. 2 by triangles. We then increase the error
to 2% and repeat the calculation for ¢(r) which

is also shown in Fig. 2 by open circles. In the
second case (2% error), the random numbers used
were same as for the first case (1% error). Re-
sultant potential with 2% error in P(q) is system-
atically deviated from the first one [with 1% error
in P(g)]. We can only conclude that the scheme is
sensitive to even small errors in P(q) data.

In Fig. 3, we plot the results of ¢ (») obtained
using various data sets for P(q) which are all
randomly erroneous by 1%. The random numbers
used in each data set are different from each oth-
er. We calculate ¢ () using nine different data sets
for P(g) including the original data. As stated above
we do not change g(7) data. The full curve in Fig.
3 represents the result with original data for P(q)
and the points are with eight other data sets. The
purpose of this figure is to-show that if an ex-
perimentalist is able to provide the data for P(q)
by repeating his experiment several times for
each ¢, then the scheme can be used to extract a
reliable potential.

We also investigate the effect of propagation of er-
ror in ¢(7) due touncertainties in g(»). Asinthe case
of P(q), we deliberately introduce random errors
in g(#) while keeping P(q) unchanged. In Fig. 4 we
have displayed these results. The solid lines in
the two diagrams represent g(») and ¢ (r)/e with
no error in g(r) or P(q). The triangles and open
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FIG. 4. g(7) vs v/0 and ¢(7)/€ vs r/o. Solid curve:
g(7) and ¢(7)/€ with no error in g(¥), triangles and
circles are results correspondong to 10% and 20% error
introduced randomly in g(7).

circles are the results of 10% and 20% error in-
troduced in g(r) randomly while P(q) was left un-
changed. As can be seen from this diagram there
is no significant difference in the resulting poten-
tials. .

These results are not controversial because in
our scheme we use the values of g(») from mole-
cular dynamics data in Eq. (4) to obtain P(g) and
once P(q) is computed we keep that unchanged in
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the successive iterations to calculate the potential.
Thus when errors are introduced in g(+), this
changed g(7) used in Eq. (6) affects ¢”(r) and con-
sequently ¢’(») which are further used in Eq. (5)
to calculate Q(g). Note that this effect of g(») in
¢"(r) exactly cancels out in @(g). Since ¢’(r) contains
an integrated effect of g(r), it doesnotcancel out in
Q(g). Butthis latter effect isknownto be very small
as compared to that of ¢ ”(r). Thus itis not surprising
that even large errors in g(r) (in this calculation)
do not affect the potential significantly.

We conclude from the present as well as Rah-
man’s analysis that the self-consistent scheme
described here can be directly applied to extract
reliable pair potentials from neutron scattering
data for both the rare-gas liquids and liquid metals
containing coherent and incoherent contributions.

Since the method described here is solely de-
pendent on the availability of accurate data for
(w*) and g(r), our analysis shows that in order to
extract a correct potential it may be necessary to
have several data sets with known accuracy (Fig.
3). If however only one set of data is available,
{w*) should be as accurate as 1% if at all a reli-
able potential is to be extracted from the present

. scheme. We find that the approximate expression

(8)is agood representation of actual P(q)for q up to
0.5 A~!—a comparatively inaccessiﬁle region to be
probed by the neutron scattering experiments.
Therefore, efforts should only be directed towards
obtaining accurate data for (w*) for g between

0.5 and 10 A-!,
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