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Extraction of'pair-interactions from neutron inelastic scattering data
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A self-consistent scheme is discussed for calculating the pair potential of simple classical liquids from a
knowledge of the zeroth and fourth frequency-moment sum rules of the coherent scattering function S(q, co).
The procedure is tested by using molecular-dynamics data on a liquid-argon-like system interacting through a
I,ennard-Jones (6-12) potential. A detailed investigation of the propagation of error in the potential due to
uncertainties in the measurement of the data has been made which should serve as a guideline to the
experimentalist.

There have been several theoretical attempts to
extract some information about the effective pair
potential Q(r) for monatomic liquids from a, know-
ledge of the static structure data measured in dif-
fraction experiments. Among these attempts there
are the three well-known approaches correlating
the static structure data and the pair potential —the
hypernetted chain (HNC), the Percus- Yevick (PY)
and the Born-Green (BG) equations. It is found
that the potentials obtained from these equations
have practically no resemblance with the expected
ones. ' For simple liquids, close to their triple
point, both PY and HNC theories yield a potential
well which is too shallow by about 4F/0 and whose
position is in error by about 10)o. The Born-Green
equation is even more controversial in that the
potentials obtained are not even unique; when -q-

space inversion technique is used, ' the potential
is highly temperature dependent in contrast with
the almost temperature-independent result obtain-
ed in the r space by iteration. '

More recently, Ailawadi and Naghizadeh' pro-
posed a new method to calculate the pair potential
Q(r) for simple liquids from a knowledge of g(x).
This technique uses the Singwi et aE.' theory for
the density response function of an interacting
electron gas. These authors obtained better re-
sults as compared to the three approximate equa-
tions discussed above. There are three more
schemes available for calculating Q(n ) from the
known thermodynamic data and the structure fac-
tor. These are the computer simulation method, '
the fully thermodynamically consistent integral
equation' and perturbation approach. ' '

The present work is based on the method pro-,
posed by Rahman" who suggested that a true po-
tential can be obtained provided the zeroth- and
fourth-frequency moments of the dynamical struc-
ture factor S(q, e) are made available by the neu-

Il'(q) = — dr g(r) cos(qx)
Pl e'g(~)

The symbols n, 0» T, and m have their usual
meaning. We introduce another quantity

P(q) = —n'(q) = (~') (u, ' —3&v', —n'(0)

which after carrying out angular integrations re-
duces to

4wg
™

P(q) = — «~' g(—~)e "(~)~.(q~) e(q), (4)—
0

with

dh g(r) tj,(qr}—cos(qx}]

x (g "(r) —
) (5)

It is found that P(q) is a damped oscillatory func-
tion of q (see Fig. 1) and therefore, can be obtain-
ed if the neutron scattering results for (e~) are
available up to its limiting value. An important
point, which is the basis of this calculation, is the
fact that a dominant contribution to P(q) comes
from the first term on the right-hand side of Eq.
(4). This fact allows for an iterative solution of

tron inelastic scattering experiments for the en-
tire range of momentum transfers. ln this paper,
we discuss this procedure in more detail and study
it for liquid argon. We also discuss the limitations
of the method and their- possible improvements.

We start with the well-known relation for the
fourth moment of S(q, co),

(~') = 3~'+~'I &'(o) —fl'(q)l

where

(u,'= q'k~r/m

1978 The American Physical Society



EXTRACTION OF PAIR. INTERACTIONS FROM NEUTRON. . . I157

this equation. As a zeroth-order approximation
Q(q) can be neglected, then the inverse Fourier
transform of Eq. (4) yields

(6)
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FIG. 1. mP(q)/eon vs q with n= 0.02153 X10 atoms/
cm3. a=119.8'K, 0'=3.405 A.

(t) "(r) is further integrated between r and ~ to cal-
culate (Ie)'(r). The calculated numbers for Q "(r)
and Q'(r) are in turn used for calculating Q(q)
which is added to P(q) to be used for the first-
order approximation. The procedure is repeated
until self-consistency is achieved. Computational
details have been discussed by Rahman" in his
application of this scheme to liquid rubidi:um.

We verify the applicability of this method for
liquid argon by giving known inputs. First, we
calculate P(q) from Eq. (4) by using molecular
dynamics data of Verlet" for g(r) corresponding
to a temperature 86.1'K and density n =0.021 53
x 1(P' atoms/cm'. It is shown in Fig. 1. Using
these numbers for P(q) and iterative scheme des-
cribed above, we calculate (t) "(r) and p'(r). We
found that the results for Q'(r) obtained after sev-
enth iteration were consistent up to four signi-
ficant figures with those of sixth iteration. The
results of P'(r) obtained from seventh iteration
are then integrated between x and ~ in order to
calculate &P (r). The resultant potential is shown
in Fig. 2 as full curve and-is compared with the
Lennard-Jones (L-J}potential shown by squares.
The marvelous agreement obtained confirms the
validity and usefulness of the scheme used.

The main drawback of the scheme is that it re-
quires the data for (&u4) for the entire q range
(up to q = 6 A ' for liquid rubidium" and q =10 A '

for liquid argon). We investigate the effect of
truncating P(q) [i.e. , setting P(q)=0] at q=6, 8,
and 10 A '. The resultant potentials P(r)/e are
found to have well depths 1.26, 0.93, and 0.98,

respectively. The effect of cutoff after q =10A"'
is found insignificant in the potentials.

It is well-known that accurate experimental
measurement of ((d4) becomes extremely difficult,
in particular for very-small-momentum and large-
energy transfers. The only attempt to measure
((d4) from neutron scattering data is by Suck."
But his estimates for ( &u4) for liquid Rb are poor
because of the large errors in the wings of S(q, &u).

Furthermore, the smallest q investigated by him
is 1.0 A '. However, Copley and Rowe" have been'
able to perform measurements for q as small as
0.3 A ', but the measured S(q, &u) is not very reli-
able at small q and ~.

In the presence of such difficulties, one would
like to have some alternative method for estimat-
ing ((d ). It is found that the dominant contribution
to the fourth-moment integral arises from the
term r'g(r)p" (r). Physically, this quantity des-
cribes the spatial range of correlation of forces
which is very small and is peaked near the hard-
core ra,dius R,. Hubbard and Beeby' have pro-
posed that a good approximation to ((d4) can be ob-
tained by replacing the product r'g(r) Q "(r) by a
5 function at r =A, with the weight

and neglecting the term proportional to Q'(r)
This gives

P(q) = —3~2~(qR, ) '[(qR,)'sin(qR, )+2(qR, )cos'(qR, )

2s in(qR, )] . (8)

The only unknown in Eq. (8) is the frequency ups,

which can be recognized as the maximum phonon
frequency in a solid close to its melting point. We
already demand above, Eq. (6), that in order to de-
termine P(q), (&o4) should be measured up to its
limiting value, then (v4) = 3(q'keT/m) + &d2z.

Furthermore, using the 5-function approximation,
Suck" fitted his results (&a') for liquid rubidium
and obtained R, =4.8 A and +~=0.65~10" sec"'.
On the other hand, if one estimates (d~ from the
Debye temperature (OD =56'K) for crystalline
rubidium, it comes out to be 0.73 x10I3 sec '
which is very close to the value obtained by Suck
(see also Ref. 15).

Even though the approximate Eq. (8} in itself is
not capable of yielding information about Q(r),
P(q} obtained from this equation together with
neutron diffraction data, for g(r) may, in principle,
be used in Eqs. (4)-(6) to extract the potential. We
used R, =3.405 A and +~=0.77&&10"sec ' obtained
by Levesque et al." through the molecular-dy-
namics simulation of a Lennard-Jones system.
We found that Eq. (8) is a very good representation



1158 BANSAL, BANERJEE, AND AII, AWADI

1.0

0.5"

43

0
0 00

0 00
V

V

I0'oobooooooo 0 0 0

V V V V V V
V V

4l

I

0

-0.5-

(0o

I I ~ I 1

1.2 2.4 3.0

-1.0-

1.8 2.'2 2.6

FIG. 2. Q(r)/& vs r/&. Squares: I.-J potential, full
curve: potential obtained with present scheme, tri-
angles: potential obtained with 1% random error in
P(q), circles: potential obtained with 2% random error
i»(q).

of P(q) for q up to about 0.5 A ' after which it
starts deviating slowly from its exact value. These
deviations increase with increasing q thereby
leading to a failure of the iterative procedure and
the resulting potential comes out to be very ab-
surd. This is because the large-q value of P(q)
strongly reflects in the small-r behavior of Q"(r)
which in turn spoils Q(q). It is, therefore, recom-
inended that Eq. (8) for P(q) should not be used as
input for all q values. However, one can safely
use Eq. (8) for smaller momentum transfers (q
up to about 0.5 A ' in liquid argon) which cannot
be probed with a sufficient accuracy by neutron
scattering experiments. Therefore, if the neutron
scattering experiments are capable of providing an
accurate information about (~') for q~ 0.5 A ',
the iterative procedure given by Eqs. (4)-(8)
should be successful in determining P(r).

An immediate question which an experimentalist
would like to be answered is how accurate shouM
be the data for (&v') and g(r) in order to get a rea-
sonably accurate potential through the present
scheme? In what follows, our main task would be
to answer this question.

In order to decide the accuracy of the (u&') or
P(q) data, we first introduce errors in P(q)
(shown in Fig. 1). We use a random function gen-
erator which yields random numbers between -0.5
and 0.5. We introduce an error'of 1%, i.e., a
particular P(q) value can lie anywhere between

FIG. 3. P(r)/& vs r/0 for various data sets for P(q)
which are all randomly erroneous by 1%. Solid curve
is the result with original data for P(q).

0.995P(q) and 1.005P(q) depending on the random
number. Using this new set of P(q) values and
original data for g(r), we again iterate Eq. (4) to
solve for Q(r). The resultant potential is shown
in Fig. 2 by triangles. We then increase the error
to 2% and repeat the calculation for Q(r) which
is also shown in Fig. 2 by open circles. In the
second case (2% error), the random numbers used
were same as for the first case (1% error}. Re-
'sultant potential with 2% error in P(q) is system-
atically deviated from the first one rwith 1% error
in P('q)]. We can only conclude that the scheme is
sensitive to even small errors in P(q) data

In Fig. 3, we plot the results of P(r) obtained
using various data sets for P(q) which are all
randomly erroneous by 1%. The random numbers
used in each data set are different from each oth-
er. We calculate Q(r) using Nine different data sets
for P(q} including the original data. As stated above
we do not. change g(r) data. The full curve in Fig.
3 represents the result with original data for P(q')
and the points are with eight other data sets. The
purpose of this figure is to show that if an ex-
perimentalist is able to provide the data for P(q)
by repeating his experiment several times for
each q, then the scheme can be used to extract a
reliable potential.

We also investigate the effect of propagation of er-
ror in Q(r}due to uncertainties in g(r) . As in the case
of P(q), we deliberately introduce random errors
in g(r) while keeping P(q) unchanged. In Fig. 4 we
have displayed these results. The solid liries in
the two diagrams represent g(r) and P(r)/e with
no error in g(r) or P(q). The triangles and open
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