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Global phase diagram for a Van der Waals model of a binary mixture
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The Van der %aals model of a binary mixture in which b is constant and a depends quadratically on the

composition possesses a global phase diagram in a space of five thermodynamic fields. The salient features of
this phase diagram are worked out and compared with those found previously in a three-component model.

I. INTRODUCTION

The Van der Waals model' of a binary mixture
has been studied extensively by Scott and Van Kon-
ynenberg. ~4 In this paper we shall examine its
global phase diagram in the particular case where
the 'volume of close packing b is independent of
composition and the Van der Waals parameter a
is a quadratic function of composition. Under
these conditions the Van der Waals model is very
similar to a three-component model which we
studied previously' if one of the three components
is labeled "vacuum, " and the principal purpose
of this paper is to point out the similarities be-
tween the global phase diagrams of the two sys-
tems, as well as some significant differences.

The global phase diagrams are surprisingly
similar and the main differences can be accounted
for by the fact that the Van der Waals model has
a lower symmetry than the three-component model
and possesses a stronger singularity near close
packing. While we give numerical values for some
of the more outstanding singularities (such as
tricritical points) in the global phase diagram of
the Van der Waals model, our main emphasis, just
as in the three-component model, is on the top-
ological properties of the diagram and the dif-
ferent sorts of qualitative behavior possible in
different regions of the parameter space.

Our results are in agreement with those of
Scott and Van Konynenburg' 4 when b is constant
(they also considered situations where b depends
on composition), with two exceptions. We find
that the Van der Waals model possesses a "shield"
region of four-phase coexistence which has not
been pointed out previously. Also there are re-,
gions, so small as to be of little practical impor-
tance, near two of the lines of tricritical points
where the binary system phase diagrams differ.
fro~ those described by Scott and Van Konynen-

burg. These features have been studied indepen-
dently by Scott, ' who has reached conclusions iden-
tical to ours.

Our numerical methods were essentially identi-
cal with those we used for the three-component

model, and the final results rather similar. Hence
we shall omit details of the former and present
a somewhat abbreviated account of the latter,
stressing features in which the three-component
and Van der Waals models are different.

An outline of the paper is as'follows. The Van
der Waals model is introduced in Sec. II together
with certain variables and some notation used
later in the paper. Section III is a discussion of
the global phase diagram. Section III A describes
our method of graphical representation of various
features in the phase diagram, and Sec. III B de-

. scribes the principal entities found in the five-
dimensional space. Qualitative features of vari-
ous system phase diagrams (associated with par-
ticular binary mixtures) are discussed in Sec.
III C. Section IIID contains qualitative information
on various manifolds. Our principal conclusions
are summarized in Sec. IV.

II. MODEL AND NOTATION

The Van. der Waals model of a binary mixture
of N, moles of component 1 and N, moles of com-
ponent 2 is defined by the Helmholtz free energy

A = NRT ln(V —N-b) —aN'/V+RTN(x, 1nx, +x~ lnx, )

+N[x,f, (T) +x,f, (T)], (2.-1)

j

where T V and R are the temperature volume

and gas constant, respectively,

N=N, +N2,

x, = N, /N, x2=N. ,/N= 1-x, ,
(2.2)

and f, and f, are functions which play no role in

phase equilibria. By differentiating (2.1) with

respect to V we obtain the well-known Van der
Waals equation of state

-M. NRT aN'
BV V -Nb V

(2.3)

However, if the mixture a and b are assumed to
depend on the mole fractions and x,. We shall
assume that b is a constant and a has a quadratic
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dependence given by

2 20 = Qllxl+ 2Q1P'1X2+ 02+'2 . (2.4)

BQ x
v = ' = = In — +—+h(z -x)+(c —a)y,RT Bx, , z z

Yo facilitate comparison with the three-compon-
ent model, we rewrite (2.1) in the form

(2.11)

jLL2 BQ
v, = ' = = ln — y —+a(z —y)+(c —5)x.RT B~2 z z

=r, lnr, +r, lnr, —(r, +r,) ln(1 -r, —r, )

-(RT) '[a,,r,'+ 2a„rp', + a,2r',]+r,f,(T)+r,g,(T),
(2.6)

where

Since 6', , and hence the location of coexisting
phases, is obviously unaltered if T and the a„.
are simultaneously multiplied by the same factor,
it is convenient, just as in Ref. 5, to define the
temperature by

r, = bN, /V, r, = bN, /V (2 6)

are dimensionless measures of density, and 6 is
a dimensionless free energy. In addition, let us
define a free energy

RT=(lal+ l~l+ lcl) '

and introduce norm'alized quantities
rh

a=RT~, b=RT~, c =RTc

with

(2.12)

(2.13)

P,= ayz+5xz+ cxy+x lnx+ y lny+ (z —o) lnz

and make the identification

z=, 1 —f —Ã =1-x —g2P ' 1 2

(2.7)
Ial + Ibl + Icl = 1. (2.14)

Note that these are related to Scott and Van Kon-
ynenburg's g and A parameters' through

g = (a —b)/(a+ b), A = c/(a+ b)

(2.8)
a= a„/RT, 5=a„/RT, c =(a„—2a„+a„)/RT.

1

le&1 g j-le&2 g j le Pb/RT
1 &, 2 0

whose- sum is equal to one if we let

(2.9)

g=e '+e '+e (2.10)

Here v, and v, are the dimensionless chemical
potentials of components 1 and 2 given by the for-
mulas

When a = 0, I'0 is identical with the dimensionless
Gibbs potential 6 which was our starting point for
discussing the three component model —see Eq.
(2.3) of Ref. 5. When o = 1, P, is identical with
8 in (2.5) if one makes a suitable choice of f,(T)
and f,(T). (As these functions have' no effect on
phase coexistence, we shall hereafter ignore
them. ) Thus; the only difference between the
three-component model and the Van der Waals mo-
del with b constant and a given by (2.4) is that the
latter possesses an additional term, -lnz, in the
free energy (2.7).

While it is customary to employ "density" vari-
ables' such as x, and N/V in constructing phase
diagrams of binary mixtures, for our purposes it
is satisfactory and a considerable simplification
to employ "field" variables which are always
identical in coexisting phases. In particular, for
drawing phase diagrams we shall employ the nor-
malized "activity" variables (corresponding to
6„, C„and g, of Ref. 1)

in the case where b is constant and a and b are
non-negative (the only case we shall consider).

We shall use the symbol A" to denote n coex-
isting phases, B a critical point, C a tricritical
point, and D a fourth-order critical point. A
critical end point (critical phase coexisting with
a noncritical phase) is indicated by BA, etc.'

III. GLOBAL PHASE DIAGRAM

A. Sections, projections, and symmetries

The global phase diagram of the Van der Waals
model may be thought of as a set of manifolds

'

(curved lines, surfaces, etc. ) of A', B,Q, etc. , in
a five-dimensional space spanned by the field
variables a, 5, c, v„and v, . Graphical repre-
sentation requires the use of projections of this
diagram. onto spaces of lower dimensionality, or
sections of the full diagram holding one or more
field variables fixed.

An example of a possible two-dimensional sec-
tion with a, 5, and c held fixed is shown in Fig.
1. One should thi. nk of this as a particular binary
mixture at a fixed temperature with variable. com-
position and density. Figure 1(a) uses a barycen-
tric representation with weights x, y, and z given
by (2.8). Thus the z vertex corresponds to vacu-
um, the x vertex to pure component 1 at close
packing, the xz edge to pure component 1, etc.
The regions of two-phase coexistence show that
T is below the critical temperature of pure com-
ponent 1 and above that of pure component 2, and
the mixture separates into two fluid phases near
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(o)
FIG. 1. (a) A phase diagram in the composition tri-

angle. (b) The corresponding diagram in the activity
triangle.

close packing. Three phase coexistence and a
critical point occur at intermediate densities.

The same qualitative information is presented,
somewhat more compactly, in the "activity" tri-'
angle of Fig. 1(b), with weights g& defined in (2.9).
The vertices f„.g„and f, correspond to vacuum
and close packing of components 1 and 2, respec-
tively, the &0&, edge 'corresponds to pure compon=
ent 1, etc.

Figure 2(a) represents a system phase diagram,
a three dimensional secti.on of the global phase
diagram at fixed a, b, and c. It corresponds to
a particular binary mixture in which T, p, and
composition are all allowed to vary. [One can
think of Fig. 1(b) as a section of Fig. 2(a) at a
fixed value of T.] The two-phase coexistence
surfaces Z, and Z, terminate in critical lines
o, and o„respectively, and intersect along a .

triple line 7' which joins cr, at a critical end point.
The system phase diagram can be projected on

a p, T plane, Fig. 2(b}, which is a common way
' of presenting information on phase equilibria

in binary mixtures. ' The lines labeled 1 and 2
are the liquid-vapor coexistence lines of the pure
components and correspond to the edges of the
Z, and Z, surfaces at &,=0 and $, =0, respective-
ly, in Fig. 1(a). The critical line o, originating
at the critical point of pure component 1 goes to
infinite pressure in Fig. 1(b) corresponding to
close packing, 4,=0, in Fig. 1(a}. One can also
project the system phase diagram in Fig. 1(a)

A
a b

onto the base of the prism, as shown in Fig. 1(c)
where only the critical lines are indicated.

Just as in Ref. 5, we shall use an "energy-
space" projection of the global phase diagram
along v, and v, onto the three-dimensional space
spanned bp a, 5, and c. In addition, we shall pro-
ject the energy space along T onto two triangles.
The triangle P corresponds to positive , b, and

c, and these quantities are used Rs barycentric
weights at the three vertices. The triangle Q,
for 5, ~ 0, b ~ 0, and c ~ 0, has barycentric weights
8, b, and -e. 'The triangles are shown, attached
to each other along the hb edge, in Fig. 3. One
can also regard either triangle as the base of a
prism with vertical axis equal to the temperature.

In our discussion of the three-component model
we introduced six additional triangles in which a
and b are allowed to be negative. As these would
correspond to a negative Van der Waals a for a
pure substance, which seems unphysical, we have
omitted them in this paper. The use of triangles
facilitates comparison with the three-component
model, where they are useful in representing the
symmetry, but for the Van der Waals model by
itself the coordinates of Scott and Van Konynen-
burg, (2.15), are equally good and for some pur-
poses preferable.

The normalized free energy (2.5), apart from the
'factors 1 z(T)rz (which are irrelevant for phase
coexistence), is invariant under the simultaneous

(o) ( b} (c)
FIG. 2. (a) A system phase diagram in a triangular

prism. (b) The diagram projected on the P-T plane.
(c) The critical lines in (a) projected onto the base of
the prism.

FIG. 3. 'Projection of the global phase diagram on the
energy triangles.
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interchange of r, with r, and a» with a». In the
notation of (2.7), this corresponds to interchanging
x with y and a with b. 'Thus, the global phase dia-
gram is symmetric under the simultaneous inter-
change of a with 5 and v, with v„and the three-
dimensional section a=5, v, = v, is a symmetri-
cal section. That the symmetry is lower than that
of the three-component model is an immediate
consetluence of a nonzero o in (2.7).

cc
(cA)

B. Principal features of the global phase diagrams

(CA}p
cc

(CA)~

FIG. 4.
enlarged.

I
/

/

/

1~

(CA)y
Center of the upper (P) energy triangle

Figure 3 shows a projection of some of the prin-
cipal features of the global phase diagram of the
Van der Waals model on the two energy triangles
of physical interest. The "shield" region near the
center of the upper (P} triangle is shown on an
expanded scale in Fig. 4. The corresponding dia-
grams for the three-component model are shown,
for comparison, in Fig. 5.

The solid lines in Figs. 3 and 4 which are not
edges of triangles are projections of lines of tri-
critical points C. 'Three of these lines meet at
the fourth-order critical point D„but elsewhere
the C lines do not intersect. each other in the
global diagram, though they appear to do so in the
projection. 'The C lines are smooth curves in the

'
full five-dimensional space, and the bends in C
and CB in passing from the P to the Q triangle
are consequences of the projection.

The dashed line in Fig. 3 is the projection of an
A' region bounded by lines of B' and BA' in a
manner qualitatively identical to that found in the
three-component model (see Fig. 8 of Ref. 5). In
Fig. 4 the dashed curves are lines of BA' which
bound a two-dimensional surface of A' in a man-

5( /

(cw)„

(o) (b).
FIG. 5. (a) Projects. on of the global phase diagram of

the three-component model on the energy triangles.
(4) The center. of the upper energy triangle enlarged.

ner which is qualitatively the same as in the
three-component model. Note, however, that the
shield region in the Van der Waals model, Fig. 4,
has a twofold symmetry, reflection abopt the C,
line, in contrast to the threefold symmetry of the
three-component model, Fig. 5(b). Also note that
the BA' curves do not (in the full five-dimensional
space) intersect the C curves except at the tricr-
itical end points CA.

The most important qualitative difference be-
tween the three-component and Van der Waals mo-
dels is the absence in the latter of the point D, in
Fig. 5 and the joining of the two tricritical curves
C, and C, in Fig. 5 to form a single curve Cz in
Fig. 3. (By symmetry, a similar change occurs
at the left side of the diagram, where D, disap-
pears in the Van der Waals model. ) Also, the A'
region (dashed line) and C~ curve in Fig. 5 are
completely absent in the Van der Waals model.

To -understand these ¹~fferences it is helpful to
imagine the continuous changes which take place
in the global diagram as o in (2.7) changes from
0 ('Fig. 5) to 1 (Fig. 3). As soon as o is nonzero
the threefold symmetry of the three-component
model disappears and with it the point Db. The
line C, - and the A' region near the b vertex in
Fig. 5 persist for very small positive values of
0, but rapidly disappear at zero temperature as
o increases, leaving a diagram which is qualita-
tively the same as Fig. 3. The sensitivity of the
Cb points to variation of 0 arises from the fact
that they occur at small values of z (i.e. , near
close packing), and the equations for a tricritical
point involve fifth derivatives of (2.7), hence a
term a/z. '
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By contrast, the. shield region of Fig. 5(b) re-
mains virtually unchanged, aside from a change
in symmetry, as o increases from 0 to 1. In-
deed, we employed this fact to locate features
of interest in the shield region of the Van der
Waals model. Starting with the known locqtion of
(CA)~ in the three-component model, o= 0, o was
increased in small steps. For each new value of
o the location of (CA}~ was determined by a num-
erical perturbation procedure starting with its -

'

position at the previous step.
The lines drawn in Figs. 3 and 4 divide the P

and Q triangles into a set of two-dimensional re-
gions which are labeled with subscripts (Q„,etc.)
in a manner corresponding to that used for the
three-component model. ' The relationship to
Scott; and Van Konynenburg's notation, see in par-
ticular Fig. 1 of Ref. 2, is as follows. If we ignore
the distinctions due to azeotropy (thus use I to de-
note both I and I -A), their regions I, II (apart
from what we call the shield region), and V cor-
respond to Q„, P„, and Q,„, respectively, whereas
regions III and IV together make up PB. [Note
that positive g, (2.15), and hence Fig. 1 of Ref.
2, corresponds to the left half of Fig. 3. We
shall, however, use the notation I, II, etc. to de-
note the corresponding regions on either side of
the symmetry axis. ] One finds qualitatively dif-
ferent types of system phase diagrams in the dif-
ferent regions, as discussed below.

Quantitative values for various features are given
in Table I.

C. Generic system phase diagrams

Associated with each point in the projection in
Fig. 3 is a corresponding system phase diagram.
Figure 6 shows a number of system phase dia-
grams associated with different points indicated
(by square, etc.) in part (a) of the figure. All of
these system diagrams, as well as those in Figs.
8 and 10, are schematic, drawn so as to indicate
the topological structure rather than numerical
magnitudes. All the diagrams in Fig. 6 are quali-
tatively the same ap the corresponding diagrams
in the three-component model. 'The greek letters
labeling the critical end points in Figs. 6(b)-6(d}
follow the same convention as Ref. 5. The labels
in Figs. 6(e), 6(g), and 6(h) are different for rea-
sons discussed below.

The system diagrams for points near the c ver-
tex of the P triangle are qualitatively the same
as in the three-component model. For this rea-
son, and also because c&& corresponds to a neg-
ative, and hence, presumably, and unphysical
value for a» in (2.4), we shall not discuss them.

On the other hand, the system diagrams for
points in the P triangle near the C trieritical

h-C

(a}
0
(b) (c)

0
(e)

X

(&)

'o

FIG. 6. System phase diagrams corresponding to the
energy points shown in (a) are drawn schematically in
(b)- (h).

line (and, by symmetry, those near C ) differ
from the corresponding three-component dia-
grams in some important respects. These can
best be understood in termS of the behavior of the
critical-end-point (BA) manifolds near the C~
line. Figure 7 shows three cuts or sections
through the energy-space projection of the global
phase diagram, regarded as a prism with a verti-
cal T axis .above a triangular base, indicated by
C„C„and C, in Fig. 7(a).

The section C, is shown in Fig. 7(b), with n and
P the corresponding BA manifolds. Because the
cusp at the tricritical point is vertical or parallel
to the T axis, a consequence of the symmetry Of
the global diagram, a given system phase diagram
occurring at a fixed value of b (as well as a and c)
contains at most one critical end point, either one
of type n or type P.

However, in the section C, shown in Fig. 7(c),
there is not (in contrast to the three-component
model} a corresponding symmetry, and the cusp
is not vertical, but tilts slightly to the right, in
the direction of the arrow in Fig. 7(a). The tilt
is relatively small, but persists all the way from
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RT

0.090

C

0.080

RT

0. IOO—

0.095

0.090

RT

0.0995—

46 O. I 7250

0.070
I I

'
I I I I 'I I I

0;255 0.295 0.335

RT

0.07.'5

'T( bmox)

0.070

0.065

A

b

I I I I I I I I I I I I I I I I I I I I I I I I I

O. I 60 O. I 70 0.I 80
0.060 —.. . , , , (, ,

0.700 0.7IO
A

bmox
b

FIG. 7. For the three cuts labeled Co, C&, and C2 in (a) the locations of the critical-end-point manifolds are shown in
(b), (c), and (d), respectively. Cut Co is at &=0.39957, && is at b=0.568090931, and && is at &=0.080040875. Note
that in (b), (c), and (d), increasing values of the abscissa correspond to the directions indicated by the arrowheads in
(a).

the point (CA)~ in Fig. 4 to the place where C~ in-
tersects the geometrical mean cur've

(8 l)

(the inscribed circle in Fig. 9), where the cusp is
vertical. ' Still closer to the ab edge of the P tri-
angle, the tilt is in the opposite direction, as
shown by the section C, in Fig. V(d).

The consequences of this tilting for system phase
diagrams can be inferred from Fig. 7(d), which is
similar to Fig. 3 of Ref. 2. For a fixed 8 corres-

ponding to the section C, and for large values of
b, say the C, arrowhead in Fig. V(a), there is only
a single critical end point of n type, as in Fig.
6(b). This behavior persists as b decreases until
it reaches the va, lue 5 in Fig. 7(d), where two
new y-type BA points appear, as shown in Fig.
8(b). After a further small decrease of 5, one of

—:E

{a}
FIG. 8. Schematic system phase diagrams for systems

having three critical end points, corresponding to ap-
propriate portions of the cuts C& arid C2 in Fig. 7(a), are
shown in (a) and (b), respectively.

FIG. 9. Shaded region indicates, approximately,
the extent of type-IV behavior as determined by Scott and
Van Konynenburg. The additional, very narrow, regions
where three critical end points arise are indicated sch-
ematically by the dots next to the C~ and CB tricritical
lines.

/
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h = 2(1+ I/M2) (3.2)

(or f= —1jM2 in the notation of Ref. 2).
By a completely analogous argument based on

Fig. 7(c), one can see that just to the left of the
C~ curv8 inside the inscribed circle in Fig. 9 there
will be another small region, indicated schemati-
cally by dots, where system phase diagrams pos-
sess three critical end points: two of a type and
one of y, as in Fig. 8(a). The extent of this re
gion is extremely small, as is evident from the
scale on the inset in Fig. 7(c), and thus it is not
surprising that it was overlooked by Scott and
Van Konynenburg (though later found by Scott6).

The system phase diagrams for points in the
shield region, Fig. 4, are identical with those in
the three-component model apart from complica-
tions which arise due to the tilting of the PA cusps
along the C~ and C curves. Figure 10, which
contains five critical end points (and is, of
course, schematic), shows one of these compli-
cations. It refers to a point very near the C~ line
in the P~„region of Fig. 4.

D. Qualitative descriptions of various manifolds

Points of different types (C, BA, etc.) iri the
global phase diagram lie on various distinct

FIG. 10. Schematic system phase diagram in the
shield region P&~ very near &8.

these joins the -type BA and disappears at a tri-
critical point, leaving only a single y-type BA,
Fig. 6(c).

The region where three critical end points occur
is labeled IV by Scott and Van Konynenburg. ' 4 Its

, ,extent is indicated, approximately, by the shaded
region in Fig. 9. At the base of the triangle it
does not extend all the way to the b vertex, but
only up toe

smooth manifolds (curves, surfaces, etc.). We
shall say that two manifolds related to each other
by symmetry (as C and Cz, Fig. 3) belong to the
same class. Table II lists one manifold from each
class, with the exception of A' and B, and indi-
cates the manifolds lying on its boundary. Here
(e) indicates an intersection of the manifolds with
a boundary of the phase diagram at finite tem-
perature and (n) one at zero temperature.

The connectivity of different manifolds in the
upper portion of the P triangle, including the
shield region, is identical to that in the three-
component model Similarly, the connectivity
in the Q triangle in both models is identical,
apart from the Ab edge.

The qualitative differences between the models
are as follows. The point D, and the manifolds
C„and (A~), associated with it in the 5 corner of
the upper (P) triangle, Fig. 5(a), are completely
absent in the Van der Waals model. Furthermore,
the C, and C» tricritical curves, which- are dis-
tinct manifolds in the three-component model
(Fig. 5) become a single manifold, labeled C~ in
Fig. 3, in the Van der Waals model. Likewise
the (BA)», (BA)», and (A'),„manifolds, which
terminate at the C,„curve in the three-compon-
ent model, iri the Van der Waals model become
continuous extensions of the (BA)„' (BA)„, and
(A'), manifolds, and have been labeled according-
ly. By symmetry, the C, and C,„ lines in the
three-component model become a single C line
in the Van der Waals model, and (BA),„, (BA)„„
and (A'),„become part of (BA)8, (BA)„, and (A'), .

The energy-space projection of the (BA)„mani-
fold has some peculiarities which deserve com-
ment. In the P„region it lies above (in T) the
A' region at a given a, b, and c. In the shaded
regions in Fig. 9 (Scott and Van Konynenburg's
IV) it doubles over so that it projects down twice
on the P triangle; see Fig. 7(d). The lower
branch, along with the entire manifold in the P„
region, goes to zero temperature along the ab-
edge of the P triangle. In the Q» region, on the
other hand, the (BA)„manifold lies below (in T)
the A' region, and for b greater than the value in
(3.2), it goes to zero temperature along the Ab

edge of the Q triangle, whereas for slightly small-
er b values it passes into the P triangle at, a finite
temperature to become the upper branch of the
(BA)„manifold in region IV. Analogous comments
apply, by symmetry, to the (BA)„manifold in the
Q,„region.

In the shield region the connectivity of the dif-
ferent manifolds in the Van der Waals model is
precisely the same as in the three-component
model. To supplement the description in Ref.
5, we include Fig. 11 which shows a section of the
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TABLE H. Manifolds and their boundaries. A rep-
resentative example from each dlass of manifolds, with

'

the exception of B and A, is listed in the first column,
fo1.lowed by its dimensionality d and the numbers of
manifolds in the class. The last column gives the mani-
folds of dimension d-1 lying on its boundary. For d=2
the manifolds are listed in order proceeding continuously
along the edge of the boundary. All manifolds at zero
temperature are labeled (n) and manifolds which termi-
nate on the edges of the energy triangle at finite tem-
perature are labeled {e).
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energy space as indicated in part (a) of the figure.
Note that the BA manifolds, the solid lines in Fig.
11(b), only intersect at the BA' and C points in
the full phase diagram. The other apparent inter-
sections in the figure are a result of the projec-
tion.

IV. CONCLUSION
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'The principal qualitative differences between the
three-component and Van der Waals models are
associated with changes near the 8 and 5 vertices
of the I' triangle. The disappearance of the D
points arises from a lower symmetry in the Van
der Waals case. Perhaps more interesting is
the vanishing of all the complicated structure
associated with the A4 regions near the a and 5
vertices of the three-component model. This is
related, we feel, to the fact that Van der %aals
model has a strong divergence of the pressure
near close packing, in contrast to the relatively
mild logarithmic divergence in the three compon-
ent case. Presumably the Van der Waals behavior
is the more realistic for real systems.

It is rather interesting that the shield region is
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FIG. 11.Location of the critical-end-point manifolds in the temperature and b plane are shown in (b) for the cut indi-
cated in (a) at c =0.314 866 7788, which crosses the shield region. Increasing values of the abscissa in (b) correspond
to the direction indicated by the arrowhead in (a).

present in both models. Presumably it also per-
sists in at least certain cases in which the Van
der Waals b depends on composition. As we point-
ed out previously, ' it is not altogether obvious
that such a region can actually exist in real sys-
tems, and hence an experimental search for it
might prove worthwhile.

In addition to basic changes in the topological
structure of the global phase diagrams, certain
differences between the Van der Waals and three-
component models can be traced back to changes
in symmetry, e.g. , the appearance of the type-IV
regions discussed in Sec. IIIC is related to the

orientation of the BA cusp at a C point in relation
to the temperature axis. It is our opinion that
these differences are much less fundamental",
in that any reasonable application of the three-
component model to real systems cannot presume
that the latter will have the symmetry of the for-
mer.
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