Global phase diagram for a Van der Waals model of a binary mixture

D. Furman* and Robert B. Griffiths
Physics Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

(Received 19 October 1977)
The Van der Waals model of a binary mixture in which b is constant and a depends quadratically on the composition possesses a global phase diagram in a space of five thermodynamic fields. The salient features of this phase diagram are worked out and compared with those found previously in a three-component model.

I. INTRODUCTION

The Van der Waals model ${ }^{1}$ of a binary mixture has been studied extensively by Scott and Van Konynenberg. ${ }^{2-4}$ In this paper we shall examine its global phase diagram in the particular case where the volume of close packing b is independent of composition and the Van der Waals parameter a is a quadratic function of composition. Under these conditions the Van der Waals model is very similar to a three-component model which we studied previously ${ }^{5}$ if one of the three components is labeled "vacuum," and the principal purpose of this paper is to point out the similarities between the global phase diagrams of the two systems, as well as some significant differences.

The global phase diagrams are surprisingly similar and the main differences can be accounted for by the fact that the Van der Waals model has a lower symmetry than the three-component model and possesses a stronger singularity near close packing. While we give numerical values for some of the more outstanding singularities (such as tricritical points) in the global phase diagram of the Van der Waals model, our main emphasis, just as in the three-component model, is on the topological properties of the diagram and the different sorts of qualitative behavior possible in different regions of the parameter space.

Our results are in agreement with those of Scott and Van Konynenburg ${ }^{2-4}$ when b is constant (they also considered situations where b depends on composition), with two exceptions. We find that the Van der Waals model possesses a "shield" region of four-phase coexistence which has not been pointed out previously. Also there are regions, so small as to be of little practical importance, near two of the lines of tricritical points where the binary system phase diagrams differ. from those described by Scott and Van Konynenburg. These features have been studied independently by Scott, ${ }^{6}$ who has reached conclusions identical to ours.

Our numerical methods were essentially identical with those we used for the three-component
model, and the final results rather similar. Hence we shall omit details of the former and present a somewhat abbreviated account of the latter, stressing features in which the three-component and Van der Waals models are different.

An outline of the paper is as follows. The Van der Waals model is introduced in Sec. II together with certain variables and some notation used later in the paper. Section III is a discussion of the global phase diagram. Section IIIA describes our method of graphical representation of various features in the phase diagram, and Sec. IIIB describes the principal entities found in the fivedimensional space. Qualitative features of various system phase diagrams (associated with particular binary mixtures) are discussed in Sec. III C. Section IIID contains qualitative information on various manifolds. Our principal conclusions are summarized in Sec. IV.

II. MODEL AND NOTATION

The Van der Waals model of a binary mixture of N_{1} moles of component 1 and N_{2} moles of component 2 is defined by the Helmholtz free energy

$$
\begin{align*}
A= & -N R T \ln (V-N b)-a N^{2} / V+R T N\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right) \\
& +N\left[x_{1} f_{1}(T)+x_{2} f_{2}(T)\right], \tag{2.1}
\end{align*}
$$

where T, V, and R are the temperature, volume, - and gas constant, respectively,

$$
\begin{align*}
& N=N_{1}+N_{2}, \tag{2.2}\\
& x_{1}=N_{1} / N, \quad x_{2}=N_{2} / N=1-x_{1},
\end{align*}
$$

and f_{1} and f_{2} are functions which play no role in phase equilibria. By differentiating (2.1) with respect to V we obtain the well-known Van der Waals equation of state

$$
\begin{equation*}
p=\frac{-\partial A}{\partial V}=\frac{N R T}{V-N b}-\frac{a N^{2}}{V^{2}} \tag{2.3}
\end{equation*}
$$

However, if the mixture a and b are assumed to depend on the mole fractions and x_{2}. We shall assume that b is a constant and a has a quadratic
dependence given by

$$
\begin{equation*}
a=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \tag{2.4}
\end{equation*}
$$

To facilitate comparison with the three-component model, we rewrite (2.1) in the form
$\bar{Q}=A b / R T V$

$$
\begin{align*}
& =r_{1} \ln r_{1}+r_{2} \ln r_{2}-\left(r_{1}+r_{2}\right) \ln \left(1-r_{1}-r_{2}\right) \\
& -(R T)^{-1}\left[a_{11} r_{1}^{2}+2 a_{12} r_{1} r_{2}+a_{22} r_{2}^{2}\right]+r_{1} \bar{f}_{1}(T)+r_{2} \bar{f}_{2}(T), \tag{2.5}
\end{align*}
$$

where
$r_{1}=b N_{1} / V, \quad r_{2}=b N_{2} / V$
are dimensionless measures of density, and \bar{Q} is a dimensionless free energy. In addition, let us define a free energy

$$
\begin{equation*}
P_{\sigma}=\bar{a} y z+\bar{b} x z+\bar{c} x y+x \ln x+y \ln y+(z-\sigma) \ln z \tag{2.7}
\end{equation*}
$$

and make the identification

$$
\begin{aligned}
& x=r_{1}, \quad y=r_{2}, \quad z=1-r_{1}-r_{2}=1-x-y, \\
& \bar{a}=a_{22} / R T, \quad \bar{b}=a_{11} / R T, \quad \bar{c}=\left(a_{11}-2 a_{12}+a_{22}\right) / R T
\end{aligned}
$$

When $\sigma=0, P_{0}$ is identical with the dimensionless Gibbs potential \bar{G} which was our starting point for discussing the three component model-see Eq. (2.3) of Ref. 5. When $\sigma=1, P_{1}$ is identical with \bar{Q} in (2.5) if one makes a suitable choice of $\bar{f}_{1}(T)$ and $\bar{f}_{2}(T)$. (As these functions have no effect on phase coexistence, we shall hereafter ignore them.) Thus, the only difference between the three-component model and the Van der Waals model with b constant and a given by (2.4) is that the latter possesses an additional term, $-\ln z$, in the free energy (2.7).
While it is customary to employ "density" variables ${ }^{7}$ such as x_{1} and N / V in constructing phase diagrams of binary mixtures, for our purposes it is satisfactory and a considerable simplification to employ "field" variables which are always identical in coexisting phases. In particular, for drawing phase diagrams we shall employ the normalized "activity" variables (corresponding to ζ_{x}, ζ_{y}, and ζ_{z} of Ref. 1)

$$
\begin{equation*}
\zeta_{1}=\bar{\zeta}^{-1} e^{\nu_{1}}, \quad \zeta_{2}=\bar{\zeta}^{-1} e^{\nu_{2}}, \quad \zeta_{0}=\bar{\zeta}^{-1} e^{-b b / R T}, \tag{2.9}
\end{equation*}
$$

whose sum is equal to one if we let

$$
\begin{equation*}
\bar{\zeta}=e^{\nu_{1}}+e^{\nu_{2}}+e^{-\phi b / R T} . \tag{2.10}
\end{equation*}
$$

Here ν_{1} and ν_{2} are the dimensionless chemical potentials of components 1 and 2 given by the formulas

$$
\begin{align*}
& \nu_{1}=\frac{\mu_{1}}{R T}=\frac{\partial \bar{Q}}{\partial{r_{1}}^{\prime}}=\ln \left(\frac{x}{z}\right)+\frac{1}{z}+\bar{b}(z-x)+(\bar{c}-\bar{a}) y, \tag{2.11}\\
& \nu_{2}=\frac{\mu_{2}}{R T}=\frac{\partial \bar{Q}}{\partial r_{2}}=\ln \left(\frac{y}{z}\right)+\frac{1}{z}+\bar{a}(z-y)+(\bar{c}-\bar{b}) x .
\end{align*}
$$

Since $\overline{\mathbb{Q}}$, and hence the location of coexisting phases, is obviously unaltered if T and the $a_{i j}$ are simultaneously multiplied by the same factor, it is convenient, just as in Ref. 5, to define the temperature by

$$
\begin{equation*}
R T=(|\bar{a}|+|\bar{b}|+|\bar{c}|)^{-1} \tag{2.12}
\end{equation*}
$$

and introduce normalized quantities

$$
\begin{equation*}
\hat{a}=R T \bar{a}, \quad \hat{b}=R T \bar{b}, \quad \hat{c}=R T \bar{c} \tag{2.13}
\end{equation*}
$$

with

$$
\begin{equation*}
|\hat{a}|+|\hat{b}|+|\hat{c}|=1 . \tag{2.14}
\end{equation*}
$$

Note that these are related to Scott and Van Konynenburg's $\dot{\zeta}$ and Λ parameters ${ }^{2}$ through

$$
\begin{equation*}
\zeta=(\hat{a}-\hat{b}) /(\hat{a}+\hat{b}), \quad \Lambda=\hat{c} /(\hat{a}+\hat{b}) \tag{2.15}
\end{equation*}
$$

in the case where b is constant and \hat{a} and \hat{b} are non-negative (the only case we shall consider).
We shall use the symbol A^{n} to denote n coexisting phases, B a critical point, C a tricritical point, and D a fourth-order critical point. A critical end point (critical phase coexisting with a noncritical phase) is indicated by $B A$, etc. ${ }^{8}$

III. GLOBAL PHASE DIAGRAM

A. Sections, projections, and symmetries

The global phase diagram of the Van der Waals model may be thought of as a set of manifolds (curved lines, surfaces, etc.) of A^{2}, B, C, etc., in a five-dimensional space spanned by the field variables $\bar{a}, \bar{b}, \bar{c}, \nu_{1}$, and ν_{2}. Graphical representation requires the use of projections of this diagram onto spaces of lower dimensionality, or sections of the full diagram holding one or more field variables fixed.
An example of a possible two-dimensional section with \bar{a}, \bar{b}, and \bar{c} held fixed is shown in Fig. 1. One should think of this as a particular binary mixture at a fixed temperature with variable composition and density. Figure 1(a) uses a barycentric representation with weights x, y, and z given by (2.8). Thus the z vertex corresponds to vacuum, the x vertex to pure component 1 at close packing, the $x z$ edge to pure component 1 , etc. The regions of two-phase coexistence show that T is below the critical temperature of pure component 1 and above that of pure component 2 , and the mixture separates into two fluid phases near

FIG. 1. (a) A phase diagram in the composition triangle. (b) The corresponding diagram in the activity triangle.
close packing. Three phase coexistence and a critical point occur at intermediate densities.
The same qualitative information is presented, somewhat more compactly, in the "activity" triangle of Fig. 1(b), with weights ζ_{j} defined in (2.9). The vertices ζ_{0}, ζ_{1}, and ζ_{2} correspond to vacuum and close packing of components 1 and 2 , respectively, the $\zeta_{0} \zeta_{1}$ edge corresponds to pure component 1 , etc.
Figure 2(a) represents a system phase diagram, a three dimensional section of the global phase diagram at fixed \hat{a}, \hat{b}, and \hat{c}. It corresponds to a particular binary mixture in which T, p, and composition are all allowed to vary. [One can think of Fig. 1(b) as a section of Fig. 2(a) at a fixed value of T.] The two-phase coexistence surfaces Σ_{1} and Σ_{2} terminate in critical lines σ_{1} and σ_{2}, respectively, and intersect along a triple line τ which joins σ_{2} at a critical end point.

The system phase diagram can be projected on a p, T plane, Fig. 2(b), which is a common way of presenting information on phase equilibria in binary mixtures. ${ }^{9}$ The lines labeled 1 and 2 are the liquid-vapor coexistence lines of the pure components and correspond to the edges of the Σ_{1} and Σ_{2} surfaces at $\zeta_{2}=0$ and $\zeta_{1}=0$, respectively, in Fig. 1(a). The critical line σ_{1} originating at the critical point of pure component 1 goes to infinite pressure in Fig. 1(b) corresponding to close packing, $\zeta_{0}=0$, in Fig. 1(a). One can also project the system phase diagram in Fig. 1(a)

(a)

(b)

(c)

FIG. 2. (a) A system phase diagram in a triangular prism. (b) The diagram projected on the $P-T$ plane. (c) The critical lines in (a) projected onto the base of the prism.
onto the base of the prism, as shown in Fig. 1(c) where only the critical lines are indicated.

Just as in Ref. 5, we shall use an "energyspace" projection of the global phase diagram along ν_{1} and ν_{2} onto the three-dimensional space spanned by \bar{a}, \bar{b}, and \bar{c}. In addition, we shall project the energy space along T onto two triangles. The triangle P corresponds to positive \hat{a}, \hat{b}, and \hat{c}, and these quantities are used as barycentric weights at the three vertices. The triangle Q, for $\hat{\mathbf{a}} \geqslant 0, \hat{b} \geqslant 0$, and $\hat{c} \leqslant 0$, has barycentric weights \hat{a}, \hat{b}, and $-\hat{c}$. The triangles are shown, attached to each other along the $\hat{a} \hat{b}$ edge, in Fig. 3. One can also regard either triangle as the base of a prism with vertical axis equal to the temperature.
In our discussion of the three-component model we introduced six additional triangles in which \hat{a} and \hat{b} are allowed to be negative. As these would correspond to a negative Van der Waals a for a pure substance, which seems unphysical, we have omitted them in this paper. The use of triangles facilitates comparison with the three-component model, where they are useful in representing the symmetry, but for the Van der Waals model by itself the coordinates of Scott and Van Konynenburg, (2.15); are equally good and for some purposes preferable.
The normalized free energy (2.5), apart from the factors $\bar{f}_{j}(T) r_{j}$ (which are irrelevant for phase coexistence), is invariant under the simultaneous

FIG. 3. Projection of the global phase diagram on the energy triangles.
interchange of r_{1} with r_{2} and a_{11} with a_{22}. In the notation of (2.7), this corresponds to interchanging x with y and \bar{a} with \bar{b}. Thus, the global phase diagram is symmetric under the simultaneous interchange of \bar{a} with \bar{b} and ν_{1} with ν_{2}, and the threedimensional section $\bar{a}=\bar{b}, \nu_{1}=\nu_{2}$ is a symmetrical section. That the symmetry is lower than that of the three-component model is an immediate consequence of a nonzero σ in (2.7).

B. Principal features of the global phase diagrams

Figure 3 shows a projection of some of the principal features of the global phase diagram of the Van der Waals model on the two energy triangles of physical interest. The "shield" region near the center of the upper (P) triangle is shown on an expanded scale in Fig. 4. The corresponding diagrams for the three-component model are shown, for comparison, in Fig. 5.

The solid lines in Figs. 3 and 4 which are not edges of triangles are projections of lines of tricritical points C. Three of these lines meet at the fourth-order critical point D_{c}, but elsewhere the C lines do not intersect.each other in the global diagram, though they appear to do so in the projection. The C lines are smooth curves in the full five-dimensional space, and the bends in C_{α} and C_{B} in passing from the P to the Q triangle are consequences of the projection.
The dashed line in Fig. 3 is the projection of an A^{4} region bounded by lines of B^{2} and $B A^{2}$ in a manner qualitatively identical to that found in the three-component model (see Fig. 8 of Ref. 5). In Fig. 4 the dashed curves are lines of $B A^{2}$ which bound a two-dimensional surface of A^{4} in a man-

FIG. 4. Center of the upper (P) energy triangle enlarged.

(a)

(b)

FIG. 5. (a) Projection of the global phase diagram of the three-component model on the energy triangles. (b) The center of the upper energy triangle enlarged.
ner which is qualitatively the same as in the three-component model. Note, however, that the shield region in the Van der Waals model, Fig. 4, has a twofold symmetry, reflection about the C_{c} line, in contrast to the threefold symmetry of the three-component model, Fig. 5(b). Also note that the $B A^{2}$ curves do not (in the full five-dimensional space) intersect the C curves except at the tricritical end points $C A$.
The most important qualitative difference between the three-component and Van der Waals models is the absence in the latter of the point D_{b} in Fig. 5 and the joining of the two tricritical curves C_{b} and $C_{b \alpha}$ in Fig. 5 to form a single curve C_{β} in Fig. 3. (By symmetry, a similar change occurs at the left side of the diagram, where D_{a} disappears in the Van der Waals model.) Also, the A^{4} region (dashed line) and $C_{b \alpha}$ curve in Fig. 5 are completely absent in the Van der Waals model.
To understand these differences it is helpful to imagine the continuous changes which take place in the global diagram as σ in (2.7) changes from 0 (Fig. 5) to 1 (Fig. 3). As soon as σ is nonzero the threefold symmetry of the three-component model disappears and with it the point D_{b}. The line $C_{b \alpha}$ and the A^{4} region near the \hat{b} vertex in Fig. 5 persist for very small positive values of σ, but rapidly disappear at zero temperature as σ increases, leaving a diagram which is qualitatively the same as Fig. 3. The sensitivity of the $C_{b \alpha}$ points to variation of σ arises from the fact that they occur at small values of z (i.e., near close packing), and the equations for a tricritical point involve fifth derivatives of (2.7), hence a term σ / z. ${ }^{5}$

By contrast, the shield region of Fig. 5(b) remains virtually unchanged, aside from a change in symmetry, as σ increases from 0 to 1 . Indeed, we employed this fact to locate features of interest in the shield region of the Van der Waals model. Starting with the known location of $(C A)_{B}$ in the three-component model, $\sigma=0, \sigma$ was increased in small steps. For each new value of σ the location of $(C A)_{B}$ was determined by a numerical perturbation procedure starting with its. position at the previous step.
The lines drawn in Figs. 3 and 4 divide the P and Q triangles into a set of two-dimensional regions which are labeled with subscripts (Q_{r}, etc.) in a manner corresponding to that used for the three-component model. ${ }^{5}$ The relationship to Scott and Van Konynenburg's notation, see in particular Fig. 1 of Ref. 2, is as follows. If we ignore the distinctions due to azeotropy (thus use I to denote both I and I-A), their regions I, II (apart from what we call the shield region), and V correspond to Q_{γ}, P_{γ}, and $Q_{a r}$, respectively, whereas regions III and IV together make up P_{β}. [Note that positive ζ, (2.15), and hence Fig. 1 of Ref. 2, corresponds to the left half of Fig. 3. We shall, however, use the notation I, II, etc. to denote the corresponding regions on either side of the symmetry axis.] One finds qualitatively different types of system phase diagrams in the different regions, as discussed below.
Quantitative values for various features are given in Table I.

C. Generic system phase diagrams

Associated with each point in the projection in Fig. 3 is a corresponding system phase diagram. Figure 6 shows a number of system phase diagrams associated with different points indicated (by square, etc.) in part (a) of the figure. All of these system diagrams, as well as those in Figs. 8 and 10, are schematic, drawn so as to indicate the topological structure rather than numerical magnitudes. All the diagrams in Fig. 6 are qualitatively the same as the corresponding diagrams in the three-component model. The greek letters labeling the critical end points in Figs. 6(b)-6(d) follow the same convention as Ref. 5. The labels in Figs. 6(e), 6(g), and 6(h) are different for reasons discussed below.
The system diagrams for points near the \hat{c} vertex of the P triangle are qualitatively the same as in the three-component model. For this reason, and also because $\hat{c}>\frac{1}{2}$ corresponds to a negative, and hence, presumably, and unphysical value for a_{12} in (2.4), we shall not discuss them.

On the other hand, the system diagrams for points in the P triangle near the C_{β} tricritical

FIG. 6. System phase diagrams corresponding to the energy points shown in (a) are drawn schematically in (b) $-(\mathrm{h})$.
line (and, by symmetry, those near C_{α}) differ from the corresponding three-component diagrams in some important respects. These can best be understood in terms of the behavior of the critical-end-point ($B A$) manifolds near the C_{β} line. Figure 7 shows three cuts or sections through the energy-space projection of the global phase diagram, regarded as a prism with a vertical T axis above a triangular base, indicated by C_{0}, C_{1}, and C_{2} in Fig. 7(a).

The section C_{0} is shown in Fig. 7(b), with α and β the corresponding $B A$ manifolds. Because the cusp at the tricritical point is vertical or parallel to the T axis, a consequence of the symmetry of the global diagram, a given system phase diagram occurring at a fixed value of \hat{b} (as well as \hat{a} and \hat{c}) contains at most one critical end point, either one of type α or type β.
However, in the section C_{1} shown in Fig. 7(c), there is not (in contrast to the three-component model) a corresponding symmetry, and the cusp is not vertical, but tilts slightly to the right, in the direction of the arrow in Fig. 7(a). The tilt is relatively small, but persists all the way from

FIG. 7. For the three cuts labeled C_{0}, C_{1}, and C_{2} in (a) the locations of the critical-end-point manifolds are shown in (b), (c), and (d), respectively. Cut C_{0} is at $\hat{c}=0.39957, C_{1}$ is at $\hat{b}=0.568090931$, and C_{2} is at $\hat{c}=0.080040875$. Note that in (b), (c), and (d), increasing values of the abscissa correspond to the directions indicated by the arrowheads in (a).
the point $(C A)_{\beta}$ in Fig. 4 to the place where C_{β} intersects the geometrical mean curve

$$
\begin{equation*}
a_{12}=\left(a_{11} a_{22}\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

(the inscribed circle in Fig. 9), where the cusp is vertical. ${ }^{6}$ Still closer to the $\hat{a} \hat{b}$ edge of the P triangle, the tilt is in the opposite direction, as shown by the section C_{2} in Fig. 7(d).

The consequences of this tilting for system phase diagrams can be inferred from Fig. 7(d), which is similar to Fig. 3 of Ref. 2. For a fixed \hat{c} corres-

(a).

(b)

FIG. 8. Schematic system phase diagrams for systems having three critical end points, corresponding to appropriate portions of the cuts C_{1} and C_{2} in Fig. 7(a), are shown in (a) and (b), respectively.
ponding to the section C_{2} and for large values of \hat{b}, say the C_{2} arrowhead in Fig. 7(a), there is only a single critical end point of α type, as in Fig. 6 (b). This behavior persists as \hat{b} decreases until it reaches the value $\hat{b}_{\text {max }}$ in Fig. 7(d), where two new γ-type $B A$ points appear, as shown in Fig. 8(b). After a further small decrease of \hat{b}, one of

FIG. 9. Shaded region indicates, approximately, the extent of type-IV behavior as determined by Scott and Van Konynenburg. The additional, very narrow, regions where three critical end points arise are indicated schematically by the dots next to the C_{α} and C_{β} tricritical lines.

FIG. 10. Schematic system phase diagram in the shield region $P_{\gamma \alpha}$ very near C_{β}.
these joins the α-type $B A$ and disappears at a tricritical point, leaving only a single γ-type $B A$, Fig. 6(c).

The region where three critical end points occur is labeled IV by Scott and Van Konynenburg. ${ }^{2-4}$ Its extent is indicated, approximately, by the shaded region in Fig. 9. At the base of the triangle it does not extend all the way to the \hat{b} vertex, but only up to ${ }^{6}$

$$
\begin{equation*}
\hat{b}=\frac{1}{2}(1+1 / \sqrt{2}) \tag{3.2}
\end{equation*}
$$

(or $\zeta=-1 / \sqrt{2}$ in the notation of Ref. 2).
By a completely analogous argument based on Fig. 7(c), one can see that just to the left of the C_{B} curve inside the inscribed circle in Fig. 9 there will be another small region, indicated schematically by dots, where system phase diagrams possess three critical end points: two of α type and one of γ, as in Fig. 8(a). The extent of this region is extremely small, as is evident from the scale on the inset in Fig. 7(c), and thus it is not surprising that it was overlooked by Scott and Van Konynenburg (though later found by Scott ${ }^{6}$).

The system phase diagrams for points in the shield region, Fig. 4, are identical with those in the three-component model apart from complications which arise due to the tilting of the $B A$ cusps along the C_{β} and C_{α} curves. Figure 10 , which contains five critical end points (and is, of course, schematic), shows one of these complications. It refers to a point very near the C_{β} line in the $P_{\alpha \gamma}$ region of Fig. 4.

D. Qualitative descriptions of various manifolds

Points of different types ($C, B A$, etc.) in the global phase diagram lie on various distinct
smooth manifolds (curves, surfaces, etc.). We shall say that two manifolds related to each other by symmetry (as C_{α} and C_{β}, Fig. 3) belong to the same class. Table II lists one manifold from each class, with the exception of A^{2} and B, and indicates the manifolds lying on its boundary. Here (e) indicates an intersection of the manifolds with a boundary of the phase diagram at finite temperature and (n) one at zero temperature.

The connectivity of different manifolds in the upper portion of the P triangle, including the shield region, is identical to that in the threecomponent model. Similarly, the connectivity in the Q triangle in both models is identical, apart from the $\hat{a} \hat{b}$ edge.

The qualitative differences between the models are as follows. The point D_{b} and the manifolds $C_{b \alpha}$ and $\left(A^{4}\right)_{b}$ associated with it in the \hat{b} corner of the upper (P) triangle, Fig. 5(a), are completely absent in the Van der Waals model. Furthermore, the C_{b} and $C_{b r}$ tricritical curves, which are distinct manifolds in the three-component model (Fig. 5) become a single manifold, labeled C_{B} in Fig. 3, in the Van der Waals model. Likewise the $(B A)_{b \gamma},(B A)_{b \gamma}$, and $\left(A^{3}\right)_{b \gamma}$ manifolds, which terminate at the $C_{b r}$ curve in the three-component model, in the Van der Waals model become continuous extensions of the $(B A)_{\alpha},(B A)_{\gamma}$, and $\left(A^{3}\right)_{\text {I }}$ manifolds, and have been labeled accordingly. By symmetry, the C_{a} and $C_{a \gamma}$ lines in the three-component model become a single C_{α} line in the Van der Waals model, and $(B A)_{a r},(B A)_{\gamma a}$, and $\left(A^{3}\right)_{a r}$ become part of $(B A)_{\beta},(B A)_{\gamma}$, and $\left(A^{3}\right)_{I}$.

The energy-space projection of the $(B A)_{\gamma}$ manifold has some peculiarities which deserve comment. In the P_{γ} region it lies above (in T) the A^{3} region at a given \hat{a}, \hat{b}, and \hat{c}. In the shaded regions in Fig. 9 (Scott and Van Konynenburg's IV) it doubles over so that it projects down twice on the P triangle; see Fig. 7(d). The lower branch, along with the entire manifold in the P_{γ} region, goes to zero temperature along the $\hat{a} \hat{b}^{r}$ edge of the P triangle. In the $Q_{b r}$ region, on the other hand, the $(B A)_{\gamma}$ manifold lies below (in T) the A^{3} region, and for \hat{b} greater than the value in (3.2), it goes to zero temperature along the $\hat{a} \hat{b}$ edge of the Q triangle, whereas for slightly smaller \hat{b} values it passes into the \dot{P} triangle at a finite temperature to become the upper branch of the $(B A)_{\gamma}$ manifold in region IV. Analogous comments apply, by symmetry, to the $(B A)_{\gamma}$ manifold in the $Q_{a r}$ region.

In the shield region the connectivity of the different manifolds in the Van der Waals model is precisely the same as in the three-component model. To supplement the description in Ref. 5 , we include Fig. 11 which shows a section of the
TABLE I. Numerical values for selected entities. The first column gives the dimension d of the manifold indicated in the second column. The energy para-
meters $\bar{a}, \bar{b}, \bar{c}$ and the composition x and y of representative points are listed in the remaining columns. In the case of a compound entity x and y refer to the critical phase, and x^{\prime} and y^{\prime}, and $x^{\prime \prime}$ and $y^{\prime \prime}$, to coexisting phases. (The notation $0.1873+1$ means 0.1873×10^{1}, etc.)

TABLE II. Manifolds and their boundaries. A representative example from each class of manifolds, with the exception of B and A^{2}, is listed in the first column, followed by its dimensionality d and the numbers of manifolds in the class. The last column gives the manifolds of dimension $d-1$ lying on its boundary. For $d=2$ the manifolds are listed in order proceeding continuously along the edge of the boundary. All manifolds at zero temperature are labeled (n) and manifolds which terminate on the edges of the energy triangle at finite temperature are labeled (e).

Manifold	d	s	Boundary
D_{c}	0	1	
(CA) ${ }_{\gamma}$	0	1.	
$(C A)_{\beta}$	0	2	
C_{c}	1	1	$D_{c},(C A)_{\gamma}$
C_{B}	1	2	$(C A)_{B}$, (e)
$C_{c \beta}$	1	2	D_{c}, (e)
$\left(B A^{2}\right)_{\alpha \beta}$	1	1	$(C A)_{\alpha},(C A)_{\beta}$
$\left(B A^{2}\right)_{\alpha \gamma}$	1	2	$\left(C A_{\alpha},(C A)_{\gamma}\right.$
$\left(B^{2}\right)_{c}$	1	1	$D_{c},(\mathrm{n})$
$\left(B A^{2}\right)_{c}$	1	1	D_{c}, (n)
$(B A)_{C B}$	2	2	$\left(B^{2}\right)_{c}, C_{C B},(\mathrm{e})$
$(B A)_{B C}$	2	2	$\left(B A^{2}\right)_{c}, C_{c B}$, (e)
$(B A)_{\gamma}$	2	1	$\begin{aligned} & \left(B A^{2}\right)_{\alpha \gamma},\left(B A^{2}\right)_{\beta \gamma}, C_{\beta}, \\ & C_{\alpha},(\mathrm{n}) \end{aligned}$
$(B A)_{B}$	2	2	$\begin{gathered} \left(B^{2}\right)_{c}, C_{c},\left(B A^{2}\right)_{\gamma \beta}, \\ \left(B A^{2}\right)_{\alpha \beta}, C_{\alpha},(\mathrm{e}) \end{gathered}$
$\left(A^{4}\right)_{\text {I }}$	$\dot{2}$	1	$\left(B A^{2}\right)_{\alpha \beta},\left(B A^{2}\right)_{\beta \gamma},\left(B A^{2}\right)_{\alpha \gamma}$
$\left(A^{4}\right)_{c}$	2	1	$\left(B^{2}\right)_{c},\left(B A^{2}\right)_{c}$
- $\left(A^{3}\right)_{c \beta}$	3	2	$(B A)_{c \beta},(B A)_{B C},\left(A^{4}\right)_{c}$
$\left(A^{3}\right)_{\text {I }}$	3	1	$\begin{gathered} (B A)_{\alpha},(B A)_{\beta},(B A)_{r}, \\ \left(A^{4}\right)_{c},\left(A^{4}\right)_{\mathrm{I}},(\mathrm{n}) \end{gathered}$

energy space as indicated in part (a) of the figure. Note that the $B A$ manifolds, the solid lines in Fig. 11(b), only intersect at the $B A^{2}$ and C points in the full phase diagram. The other apparent intersections in the figure are a result of the projection.

IV. CONCLUSION

The principal qualitative differences between the three-component and Van der Waals models are associated with changes near the \hat{a} and \hat{b} vertices of the P triangle. The disappearance of the D points arises from a lower symmetry in the Van der Waals case. Perhaps more interesting is the vanishing of all the complicated structure associated with the A^{4} regions near the \hat{a} and \hat{b} vertices of the three-component model. This is related, we feel, to the fact that Van der Waals model has a strong divergence of the pressure near close packing, in contrast to the relatively mild logarithmic divergence in the three component case. Presumably the Van der Waals behavior is the more realistic for real systems.
It is rather interesting that the shield region is

FIG. 11. Location of the critical-end-point manifolds in the temperature and \hat{b} plane are shown in (b) for the cut indicated in (a) at $\hat{c}=0.3148667788$, which crosses the shield region. Increasing values of the abscissa in (b) correspond to the direction indicated by the arrowhead in (a).
present in both models. Presumably it also persists in at least certain cases in which the Van der Waals b depends on composition. As we pointed out previously, ${ }^{5}$ it is not altogether obvious that such a region can actually exist in real systems, and hence an experimental search for it might prove worthwhile.

In addition to basic changes in the topological structure of the global phase diagrams, certain differences between the Van der Waals and threecomponent models can be traced back to changes in symmetry, e.g., the appearance of the type-IV regions discussed in Sec. IIIC is related to the
orientation of the $B A$ cusp at a C point in relation to the temperature axis. It is our opinion that these differences are much less "fundamental", in that any reasonable application of the threecomponent model to real systems cannot presume that the latter will have the symmetry of the former.

ACKNOWLEDGMENTS

We have benefited from conversations with Professor J. C. Wheeler and Professor R. L. Scott. This research was supported by NSF Grant No. 76-23071.
*Present address: Bell Laboratories, Murray Hill, N. J. 07974.
${ }^{1}$ J. D. van der Waals, Die Kontinuität des Gas Förmigen und Fluissigen Zustandes (Barth, Leipzig, 1899).
${ }^{2}$ R. L. Scott and P. H. van Konynenburg, Discuss. Faraday Soc. 49, 87 (1970).
${ }^{3}$ R. L. Scott, Ber Bunsenges. Phys. Chem. 76, 296 (1972).
${ }^{4}$ P. H. Van Konyṇenburg, Critical Lines and Phase Equilibria in Binary Mixtures, Ph.D. dissertation,
(UCLA, 1968) (unpublished).
${ }^{5}$ D. Furman, S. Dattagupta, and R. B. Griffiths, Phys. Rev. B 15, 441 (1977).
${ }^{6}$ R. L. Scott (private communication).
${ }^{7}$ The notation is that of R. B. Griffiths and J. C.
Wheeler, Phys. Rev. A 2 , 1047 (1970).
${ }^{8}$ R. B. Griffiths, Phys. Rev. B 12, 345 (1975).
${ }^{9}$ See, for example, J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1959), Sec. 6.4.

