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Memory effects in the linewidth and line shape near the laser threshold
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A mode-coupling approximation and a continued-fraction representation are used to calculate the memory
kernels of the dynamical field and photon-number correlation functions near a single-mode laser's threshold. -

The resulting, linewidths of field and intensity fluctuations versus pumping are in good agreement with
Risken's numerical calculations as well as with empirical linewidth data-. In addition details of the line shape
are also reported. The deviations from a Lorentzian are appreciable in the proper threshold region.

I. INTRODUCTION

Consider a homogeneously broadened single-
mode laser. It is generally accepted" that it can
be described near its threshold by' a Langevin
equation for the slowly varying field amplitude
&=5,+t 5, = I& le'~ (in the rotating-wave approxi-
mation and after adiabatic elimination of the
atomic variables):

&=r&- pl&l'b+r(t), t»0.
The real parameters y and p are determined by
the laser properties:

y= . (o —o'h )

Here z is the cavity loss, y~ the atomic linewidth,
yll the inversion half-width, 0 the pumping inver. -
sion and in particular a,„,= ay~/g', the threshold
inversion, and g the dipole transition strength.
The quantum noise 1 = I', +i 1, is considered to be
Gaussian with zero mean and second moment

(I (t) I'(t')) =4q~(t- t') .
The noise strength is q=Ng'/4y~, N being the
number of active laser atoms.

The Langevin equation is statistically equivalent'
to the following Fokker-Planck equation for. the
probability distribution p(b, t) for a field strength
b at time t:

&, p(&, t)=l &(~—tel&I')-&~+a&»& )p(&, t),
(4)

The stationary laser Quctuations are governed by
the steady-state solution, ' S,p, (b) = 0:

1 1, 1
p, e~ —— --vlf I'+-Pl&l'

q 2 4

This distribution only depends on the photon inten-
sity blab and not on the field phase p. It is nearly
Gaussian in the field amplitude b far below threshold
(y& 0, I y I» I), it exhibits large fluctuations near
threshold (y = 0), and it shows the typical Landau

/

potential circular valley at I
b I', = y/P far above

threshold (y&0, y» l). This stationary laser dis-
tribution is experimentally well established. 4

By solving the Fokker-Planck equation numer-
ically for all (angular momentum zero) eigen-
values versus y, Risken' calculated an effective
Lorentzian linewidth ~,ff of the photon number
fluctuations and also the linewidth factor A»x(lb I')
of the field fluctuations. A linewidth ~,«has been
measured by Arecchi et al. ' and a linewidth factor
by Gerhardt et al. ' These experiments support
the interpretation of the single-mode laser in
terms of the Fokker-Planck equation (4).

This paper is aimed at understanding the details
of the dynamical correlations near a laser's
threshold not by numerical methods but as far as
possible by an analytical thought approximate
treatment which is applicable for two-mode lasers
and other lasers as we11. The Fokker-Planck
equation (4) is taken for granted. Its steady-state
solution is explicitly known and will be used. The
idea is to use the Zwanzig-Mori ' memory for-
malism to explain the dynamics of a system, once
its statics (steady state) are known.

This memory (projector) representation has been
very successful in equilibrium statistical physics
of N-. particle systems. ' But, while there the
equilibrium properties [like the pair distribution
g(x), etc. ] have to be taken from experiments or
have to be approximated more or less reasonably
(like the triple density correlations), the laser
provides an example where the stationary moments
are explicitly and exactly known. Thi'. s paper'
therefore is also aimed at testing the general
method. It will turn out that all typical features
met in dynamical problems are present in the
laser dynamics as well. The only difference
(which, of course, is an essential simplification)
is the missing wave-number dependence: Because
of the large coherence length of the light field,
the single-mode laser can be treated as spatially
homogeneous (dimensionality zero).

There is another aspect which the laser dynam-
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ics are able to exemplify: It is possible to extend
the memory formalism and its essential idea to
avoid. perturbation expansion, namely, the mode-
coupling approximation, "to nonequil, ibrium statis-
tical physics. Some commonly used concepts have
to be given up (like time-reversal invariance,
Hermiticity of the Liouvillian, etc. ) but essential
features (like projecting onto the slow modes, the
resolvent identity, continued-fraction representa-
tion, spectral function and spectral representa-
tion, etc. ) can well be introduced to understand
physically and calculate explicitly dynamical sta-
tistical fluctuations. of open nonequilibrium sys-
tems in steady states.

'7he power of the continued-fraction represen-
tation'- in a nonequilibrium system has been shown

already by Bixon and Zwanzig, "who treated'the
damped anharmonic Duffing oscillator. Even the
lowest (memory-free) approximation agrees quite
well with corresponding computer experiments
and much more elaborate perturbational (direct
interaction) equations. " Bixon and Zwanzig were
able to work out for this one-real-variable sys-
tem the continued fraction for the memory kernel
up to eighthorder, with only moderate improvement
from order to order. I had a similar experience
with the two-real-variable system "laser": mode
coupling seems to give better results then the
continued fraction of some manageable order.

A general outline of the memory method in non-
equilibrium systems as it will be used. in this
paper has been given by Zwanzig. " Lueke" ap-
plied it to explain the dynami. cal correlations of
the Lorenz model, an open system with three real
dynamical variab'les creating its own statistics by
the nonlinear ities.

So far these are the methodological aspects of
the laser example. On the other hand explicit re-
sults may be of interest in themselves, since they
shed some light on the photon dynamics of a laser,
in particular on the importance of memory effects
to reduce the field linewidth. Since the theory is
very easy it is possible to get not only the Lorent-
zian linewidths versus pumping far beyond quasi-
linear theory" but also the laser line shapes them-
selves, showing appreciable deviations from the
Lorentz profile in the proper threshold regime
only. IC is furthermore possible to treat similarly
the multimode laser, which so far could be studied
in quasilinear approximation only. "

The paper is organized as follows; First, dy-
namical variables and correlations are introduced.
Then the general ideas of the memory-projector
formalism are formulated for the laser system.
The equal-time correlations are calculated by
relations which apparently have not been realized
before. Using these one can quantitatively deter-

II. EQUATIONS OF QOTION

Let us introduce reduced variables by

u=(u/~)"I, I= lul'=(~/~)" I~I

t= (Pq}'t' &&time.

The basic equation of motion then reads (t ~ 0):

(6)

&de(u, t)=[-&;(I -I)u;+&~ &(lP(u, t)= &P (-7)

There is only one parameter left, representing
the external pump rate

P=w/(PQ)' =(Y()/&&)' (~ —~th, ) .
The Fokker-Planck (FP) operator 5) defines the.
stationary state by np, (u}=0,

p. (u) "exp(lP luI'- l lu I')

(6')

The FP equation provides a Schrodinger-li:ke
description of the physical process, i.e. , the state
p is time dependent but the physical variables
A(u) are not. It is useful to introduce a Heisen-
berg-like description with time-dependent vari-
ables A(u, t) but time-independent state

u(t)= f d uA(u)p(ut') d'uA, (ii t)p( =, );uu
This is achieved with the adjoint Fokker-Planck
operator ~

d'uA(u) [e ' p(ut 0)] = d'u [e~ 'A(u)]t)(u, o) ~

Since &' determines the time dependence of the
physical variables A(u) as in classical mechanics,
this adjoint operator is henceforth called the Liou-
villian and denoted by . Thus

d'uA~p= d'u ZA p

defines and

A(t)= e~'At, s, A(t)= ZA(t) (10)

mine all dynamical properties solely from the
knowledge of the laser intensity. The high-fre-
quency restoring matrix is discuSsed, which al-
ready describes the intensity fluctuations pretty
well. The field correlations are essentially in-
fluenced by memory effects. The most important
process is the decay of the field into another field
plus a photon mode. Mode coupling and continued-
fraction results are derived and compared. De-
tails of the line shape are determined by solving
the nonlinear coupled equations for the field and
intensity spe. ctral functions. Finally some modi-
fied approximations are discussed, . which have

, .been used in equilibrium many-body systems,
where their effects or defects could not be checked.
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III. DYNAMICAL CORRELATION FUNCTIONS

The macroscopically relevant dynamical vari-
ables are the field u»u2 or u, u~ as well as the
photon number I = ~u ~2. Because of the symmetries
there is only one independent field correlation
function in the steady state, since Q,u, (t)) = (u,u~(t))
and (u,u, (t)) =0. Thus the correlation matrix is
introduced as

C „(t)= (5A, i 6A, (t))

with 5A, =u and 5A, =BI=I —(I). We use

(A lB) fdrop(n)A (n)B,(n) (12)

as an inner product. It is u orthogonal to &I as a
result of the reflection symmetries [(ii), (iii)] of
p, . This is true also for too. Hence C„(t) is
diagonal:

((u iu(t))Cut =I
o

o l tc(t) o l
8

(5fiM(t))j E o c,(t))
The correlation functions C(t) do not contain the
entir'e time-development information but only its
projection on the field or the intensity. Let us
therefore introduce the projection operator P =P~

P2

1 1P —lu)~) ("I+16f)
&( ),)

(6I (14)

The Laplace transform of the correlation matrix is
the resolvent in the P subspace.

C,i(re) = f di e ' C,i(I), holornorpn in w - 0,
0

&A] 6A~

If the equation of motion (7) described a conser-
vative N-particle system (i.e., S and Z would be

describes its use and justifies its name "Liou-
villi'an. " Z is diferent from S.

2= (P -I)u( 8)+ 8( 8)

Note that because of the last, term SA'0 2ACA in
general. Therefore the product rule does not hold
for 8, acting on dynamical variables.
The dynamical operators S and as well as the,
steady-state distribution p, show the symmetries
under the following operations: (i) permutation of
components, u, =u2; (ii) reflection of either compon-
ent independently, u, =-u„u, fixed; (iii) u,= -u„u~ fixed; and (iv) gauge (rotational)-symme-
try, u=ue' . Both S and 8 do not explicitly de-
pend on time, expressing the. stationarity property
of the laser-light fluctuations.

the Poisson bracket), iR would be Hermitian in the
inner product (12). In open systems far from
equilibrium this is not the case in general. In the
particular case considered here, we even find 2
itself to be Hermitian:

(A)sa) =(ZA )a) . (16)

To prove this, the properties of p, are important:

(A
~

BB)=fd0e p, ArdB = f d'4 (Ilp.A')B .

It is

I)p,» =A~X)p, +p, [-(p -I)u, At,

+ 2(lnp, )(,At, +At(, (, ]

= 0+ p, ZAt = p, (Z A)~.

Consequently, the poles of the resolvent are on
the negative real axis. Hence the single-mode
laser's correlations decay monotonically and
cannot oscillate.

IV. RESOLVENT IDENTITY AND MEMORY-KERNEL
REPRESENTATION

In the P subspace the resolvent (w -2) ' satisfie.
the resolvent identity

P(w —8) ~P[w —2 —Z (w —ke) '2 ] =P, (17)

where Q =1-P, the space of dynamical variables
orthogonal to u, &I and R» ——-PRP, etc. The
(5A,

~

~ ~ 6A&) matrix element of (17) gives

C,&(w)=N, [wN —iQ-K(w)] '„N„&. (18)

This is the memory-kernel representation with

Nu (5A(i 6A~) =C(-y(t=0) (19)
'

the matrix of the stationary equal-time correla-
tions (corresponding to the susceptibility);

iAU (5A)~g-&A))=Cu(t=0), (2o)

the high-frequency restoring matrix, also a sta-
tionary .equal-time mean. Because of Eq. (16),
iQ,

&
is a Hermitian matrix in the single-mode

laser's dynamics. Finally, the memory matrix is

Bo(w) = (0BIIA, 0BOA,)
.I

$P —Z gq
(21)

It has the same resolvent structure in the Q sub-
space as C,~( )whad itself. Iterating the same
procedure with QZ5A„(w —Rz) ', etc., K,~( )whas
a representation analogous to (18). This generates
a continued-fraction representation of the corre-
lation functions of interest.

Since a continued-fraction representation of a
holomorphic function mathematically converges
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(22)

where

QO=QN ~ Ko(u)) =K(w)N '.
Note that the' equation of motion of the matrix C(t)
[or Co(t)] corresponding to Eq. (22) is

s,c(t) = fQoc(f) +
t
dt'K o(t')C(t —t') . (23)

This is a linear equation but with memory Ko(t') .
h

V. EQUAL-TIME CORRELATIONS

AND THE HIGH-FREQUENCY RESTORING MATRIX

OF THE SINGLE-MODE LASER

Both matrices N, ~
and iO, ~

are diagonal because
of reflection symmetry [(ii), (iii)]:

t'(I) 0 'i .. f(u ~Ru)'
N))--~ ) 1 0=

( o ((8r)')j & 0
(24)

(8r ~z 8r) i

From

&u = (P —I)u,
&&I= 2(p -I)I+4,

it is found that

(u
i
Su) =P(I) (I'),

(5I
i
z 3I) = 2p ((5I)') —(I'8I) .

(25a)

(25b)

These static moments can be calculated simply by
using the steady-state distribution p, from Eq. (8).
Thus

uniformly" with respect to u, any approximate
calculation of the memory matrix will provide a
uniform approximation of the correlation functions.
Similarly, a continued-fraction of finite order for
K,,(u ) itself uniformly approximates K,, as well as
C,&. This is the mathematical basis of the quality
of the approximate calculations of the memory
effects, given in the following sections.

It is useful to introduce the normalized corre-
lation matrix Co, (t) =C,.„(t)N '&, being Co„(t =0.) =5,.&.

This normalized matrix satisfies (from Eq. (18)

K3 = 2ep K2 = ((6I)s),

K4 = 2&
p K3 = ((5I)4) —3K2,

K, = 2&~K4 = ((&I)') —10K2K, , etc.

In particular,

(27c)

(27d)

(27e)

(1 ~z8I) =o,
whence (2(P -I)I+4)=0, implying the exact rela-
tion

K =2+K (P -K ).
Either from (1 ~2(5I)') =0 or from K, =28~K, one
finds the exact relations

e

Ks= 2K, (1 -K,)+pK, ,

(29)

(3o)

(31)K~ = 2K2(2 -K2) -K3(2K~ -p),
etc. These relations express the time indepen-
dence of the steady state moments, e.g. S,(I)= 0.
They allow the elimination of all higher-order
equal-time correlations in favor of K, (andP)
and apparently have not been realized before.
Hence all steady-state equal-time means are
available' once K,(P) is known.

The high-frequency restoring force can be sim-
plified with the relations (29)-(31):

Q
-I'-''Q,

( 0 -4K')
The corresponding normalized matrix is

*D. -=( " '
)

@=i
-&Or

2e
v n (1+erf ~ p)

Recent measurements" of (I) vs P have confirmed
Eq. (28) for the single-mode laser. Far below
threshold K, = 2/ ~P and far above threshold K, =P.

It may be useful to point out an easy method to
find the higher cumulants, once K, (P) is known.
It is applicable in other physical problems too,
in which p, might not be known explicitly. Note
that

Ko = ln dI exp (-,
'
pr —,'P)— with

with

=-,' Pm+ in(1+ erf—,P) + in' m, (28)

erf x = (2/Mm) exp(-t') dt,

K, = 2a, K, = ((8I)2), (27b)

is the partition function, generating the cumulants

K, =29 K =(I), (27a)

~,„=2/K„~„=4K,/K, . (32)

If one neglects memory effects, the Xo are the bare
widths of a Lorentzian-shaped time correlation
for the field u and photon intensity ~I. X», which
can also be written as 4K, —2P +2K,/K„agrees
with Risken's 1S66 result2 calculated by a varia-
tional procedure for the lowest eigenvalue of the
Fokker-Planck equation and it also agrees exactly
with our' earlier formula, found by Stratonovich's
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decoupling of higher-order correlations. X» vs p
is already rather close to the experimental curve
measured by Arecchi et a/. ' Appreciable devia-
tions are in the proper threshold region. Here the
memory effects are non-negligible.

Xp also agr ees qualitativel y with the expe rimen-
tal findings, ' being =

~ p far below threshold and
-(I) ' above, thus showing the decrease of the
laser linewidth with increasing intensity. How-
ever, the linewidth factor n =X„(I) corresponding
to Xo„ is no=2 below, at, and above threshold. Its
monotonic decrease from 2 below threshold to 1
above threshold due to the reduction of the effec-
tive degrees of freedom (which above threshold
is the phase motion only) is missing. This there-
fore must be a memory effect.

Because of its analogous structure the memory
matrix can be described by similar formulas.
Thus

K;,(w =i(d+q) = —K,',.((u)+ —.K),((o), etc. (38)
1 - 1

2j

VII, THE MEMORY MATRIX
I

Using the reflection symmetry (ii), (iii) one
finds the (u, 5I} elements of K,&(w) to be zero, i.e. ,

( )
(K„(w) 0 ) (9)

Thus there are two separate memory representa-
tions for the field and for the intensity:

,„»VI. SPECTRAL FUNCTION AND SPECTRAL
;REPRESENTATION

C'„(w) = [w+X,„-K'„(w)] ',
C,'(w) = [w+ X» -K,'(w) ] '.

(4o)

(4l)

In conservative N-particle systems the singular-
ities of C,z(w) are on the imaginary axis, since
iX is real. In the laser considered here S itself
is real. Thus C,.&(w) has its singularities on the
negative real axis. In other open systems far from
equilibrium the singularities may be somewhere
in the left half-plane. Nevertheless a spectral
density may be introduced, although not as a dis-
continuity between a C~& and a C~~&. C,&(t) is de-
fined only in forward direction, t~ 0.

Consider a real correlation matrix C,&(t) with
C „.(t —~)- 0. Define

The bare widths X,„,X» are gi, ven by (32), with

»'„(»)= (()Z» q»g (»i»), '1
t6 —~@q

»', (w) =' (Q('()( ~ Q»ill)t (»
~

I!(),
1

SU —g g

(42)

(43)

The u and &I dynamics are coupled, neverthe-
less, since QZu has a component in the two-mode
subspace, -u&I; see Eq. (25a). From Eq. (25b) on
the other hand one concludes that the most im-
portant contribution to Q25I is (5I)', i.e. , the state
with two &I modes.

Cf,((d) =2 dt C,&(t) cos(dt, real, even in &u, VIII. TWO-MODE COUPI. ING

C )~((()) = 2

(33)

dtCO(t) sinat, real, odd in (d.

(34}
Then along the imaginary axis

'~

C,~(w = i(d, +g}=
2 C,".,.((d) + —.C',.,((o) .

The function

(35)

c,",(f) = e f(»t C» ( -)2w'

C(q(w) =
'"

eke C"((d)
2F z co —NU

(35)

is equal to C;,(t) for I ~ 0 and de. fines an even con-
tinuation for t &0. Using C,"; one gets a spectral
representation for the complex correlation func-
tion:

As we have just learned, the most important con-
tributions to the QZ5A, dynamics are two-inode
states. This suggests the following approximation
of the memory kernels K„,K,: Instead of the whole
Q space only the two-mode subspace is considered,
andwithinthis the dynamics of the two modes is
taken as being independent because of the Q-pro-
jected Liouvillian [Zoo instead of Z in (42), (43)].

There are the following six possible two-mode
states:, uu, u~u~, uu~,'u~I, u~&I; &I&I. But uu and
uncut do not contribute to K„or K~ (use reflection
or gauge symmetry). uut is 5I+K, which is pro-
jected out by Q. u&I violates reflection symmetry
in K~ but contributes to K„. u~&I is not gauge in-
variant. (5I)' only overlaps with @S'il So only.
two prr duct states effectively contribute, one
solely in K„, the other one in K~ alone.

Since u&l is orthogonal to (&I)', the two-mode
projector can be written

/

If se —ice+ g one finds the dispersion relation

( )
d(() C(~~((d )

(3V)

P iud) ( )2)
(u5I

i
+

i
(5I) ) (( )4) ((5I)

(44)
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(Q u u51) (Q5t 5I5I) Far below and far above threshold K, =K4= 0. Then
BI= 8(K,/3)'~', i.e. , zero far below and 16/v 6 far
above threshold. The field vertex is outside the
proper thr. eshold regime B„=K,(l -K,/K,')', i.e. ,
B„=2 far above threshold and zero below.

)

FIG. 1. (a) Decay of the amplitude M into an ampli-
tude mode and an intensity mode. (b) The intensity DI

decays into two intensity modes.

The two-mode contribution to K„(w) is

(gc~g)lP(w)=(()W~ulll)
~ ( ~

(util
1

x
5

(u5I
i Qgu).

1
u5I lu5I

u5I)

u~I + u&I

(u5I Iud)
(u&I lexp(S«t)u5I)dt exp avt—

OO j

dt exp(-u)t)C„'(t)C,'(t). (45)
dp

/

The mode-coupling approximation now reads

K„(w) = B„ I 'C'„(u), )CO~(.u —u),).
2'tl'z

(46)

The memory strength. B„is a steady-state equal-
time mean, which can be calculated exactly from
~s:

(QW Iud)(u&I I QW) (K,K, +K, -K2/K, )'
(u&I lu5I)(ulu) (K,K, +K,)K,

4(K,' -K,)'
K,'[2P+ (p —K,)'K,]

'

Analogously one finds a two-mode decay of the in-
tensity mode [(see Fig. 1(b)) and

It is represented by the graph Fig. 1(a). The dy-
namics are now factorized, but n'ot the static ver-
tices like (QLu ~u&I), etc. , thus retaining the exact
equal-time correlations,

IX. LASER LINEVfIDTHS IN THE LORENTZIAN
APPROXIMATION

If the shape of the field as well a.s the intensity
correlation function is considered to be nearly
Lorentzian, the only parameters are the linewidths
X„and Xl. They have to be determined from Eqs.
(40) and (41) together with (46) and (48):

1 1
u)+&„u) tl).,„—B„/(u)+l).„+&,) '

1 = 1
u)+XI u)+Xo, —(B21/4)/(u)+2l(, )

The poles on the left-hand side and on the
right-hand side shall coincide, so =-X„andav =-Xi,
respectively:

l).„=Xo„-B„/ )(i,

X,=X„-(-.'X„)(1—[1-(B,/X„)']' '].
(51a)

(51b)

Thus X„can be found once Xi has been calculated.
A,i is that solution of a quadratic equation which co-
incides with X,i far below threshold, where the
nonlinearities are small and so there are no mem-
ory effects. (The existence of spurious solutions
of the severely nonlinear mode coupling integral
equations is a known effect', in numerical pro-
cedures one may have to switch on the memory
strength slowly from zero to its proper magnitude'
in order to avoid spurious solutions. )

Using the static cumulants" K„.. . , K4, Xp Apl
were calculated [see Eq (32)] as. well as B„,B,

with

Bl (QZ5I 15I )(5I I QZ5I)
4 (5I I 5I)(5I' I 5I')

(48)
-12

-8
0-

-4
Again, this memory strength can be expressed
in terms of the equal-time cumulants:

4(2K2+ K» —K3/K2)
I =

[K2(K»+ 3K ) 3]

8(2K,' —K,K,)
K3 i2 [4K, +K2+ K,(p —2K') ] i (48)

I

-8 -2 ~ =P
8

FIG. 2. Linewidth of photon number fluctuations. Full
curve: mode-coupling approximation; dotted curve: con-
tinued-fraction results; dashed curve: Bisken's X~~ . 0,
experimental values by Arecchi et al.
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-2
P=3 X.qC~ (u)/X~)

. -,2.0

~ ~

~ ~ ~
A'»» m

~ ~ ~ ~

-8
I I

-4 -2

FIG. 3. Linewidth factor o. =A,„(I) from mode-coupling
theory {solid curve) and continued-fraction {dotted curve)
compared with brisken's curve {dashed), Mandel and
Nguyen Dinh's results, and experimental data {0)by
Gerhardt et al.

[see Eqs. (47) and (49)] versus pumping p and from
(51) the Lorentzian linewidth. The results (Figs.
2 and 3} agree rather well with Risken's' computer
curves and with the experimental values. '" For
comparison the approximate linewidth factor given
by Mandel and Nguyen Dinh" is indicated too.

X. LINE SHAPE

-3.0 -2.0
I ~

-l 0 0

~»»
%»»»»

I ~
' I » I

l.0 2.0 3.0 e/Xz

FIG. 4.- Intensity fluctuation line shape for P = 3.
Dotted line: Lorentzian; das hed-dotted line: first
iteration; full line: second iteration; and dashed line:
the memory spectral function.

Inserting Eqs. (46) and (48) for the memory ker-
nels into Eqs. (40) and (41) one gets two coupled
equations for the normalized relaxation functions
Co(m), Cio(ur). The Lorentzian approximations to
these are Eqs. (50}, yielding the linewidths

One can, of course, solve the coupled equa-
tions without further approximation and get the
line shape within the two-mode coupling approxima-
tion of the memory.

Starting with some Cz"'(u&) (in fact, the Lorentzian
was chosen) first determine

B ™
d(g)EoII(+) I I gott(+ )Cot)(~ + ) (52)

4 „2m'

P=3 X„C„'(tolX„)
-'2.0

~ ~

The imaginary part of K~ is the dispersion inte-
gral,

~ ( )
" d(Og IPg ((0~)

2W Q) &
—(d

From Eg. (41) then

2Xoi —IP, "((u)

(53)

Iterating this scheme yields the spectral function
for the intensity correlations. The input is the
known static vertices BI,X» and the Lorentzian
width Xi for different pumping 'rates P. Some nu-
merical results are shown in Fig. 4.

An analogous iteration gives the spectral func-

-3.0 -2.0 -l.0 0. l.0 2.0 3.0 ta) fk
FIG. 5. Spectral line shape of field fluctuations for

P= 3. Dotted line: Lorentz profile; full line: first
iteration; dashed line: memory spectral function.
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tion of the field itself:
+ OO

(55)

is the memory kernel spectral function. K„"(&o) is
the dispersion integral of it.

Co"( )= . 2Xou ~u
[(g + —,'K'„'((g) ] '+ P.o„-—;K„"(~)]' '

The input now is B„,Xo„,X„ I orentzian, and Ci"(&o)
as calculated before. Figure 5 shows that in spite
of the large memory contribution the deviations of
the spectral lineshape are = 10% only.

It should be remarked that Co'"(&u) and Cz"(a}
just found from mode coupling agree very well with
the spectral functions according to the continued
fraction of first order for K„z (c.f. Sec. XII).

P, [c.f. Eq. (44) ] changes and consequently that of
BI: substitute K4+ 2K', instead of K4+ 3K', in form-
ula (49). This again leads to an increase of the
memory strength, resulting in linewidths that are
too small. [Even asymptotically: one finds B~=8,
so a reduction of Xz of 2.1% (p = 10) or 3.5% (p = 8).]

(iii) An argument in favor of 6[(6I)'] is that it is
orthogonal to 1; an argument against it is that it
already contains two-mode correlations (K,), so
that its dynamics hardly should factorize. Thus
one expects the failure of another reasonable two-
mode state, Q6[(6I)']. It is orthogonal to 1,u, 6I.
From (25b) and (29) one concludes that

q6[(6I)']=-,'q26I.- (5V}

Hence this state has full overlap with Q6I, yielding
the maximum possible memory strength

XI. 'COMMENTS ON MODIFIED APPROXIMATIONS
(QS6I I QZ6IP"

(6I I ac)
(58)

There are some ad hoc assumptions in the two-
mode coupling approximation which cannot be
checked systematically. It seems useful to con-
sider reasonable modifications.

(i) One might factorize the two-mode projector's
normalization

((M)'
~

(6I)') = ((M)')((6r)')

in Eq. (44). This amounts to using K', instead of

3K,'+K, in the denominator of (49). This reduction
increases the memory strength B, so much that X,
from Eq. (51b) becomes complex in the proper
threshold region, disqualifying this simple factor-
ization of the equal-time correlations.

One might prefer ((M)'
~

(M)') = 2K', . The argument
is more consistent with the natural dynamical fac-
torization

(6I6I
i
6I(f)6I(f))= 2C, (t)C,(t) .

This also increases the memory strength Bi,
yielding too small a linewidth (e.g. , Xi= 3.84 if
p=2; 4.03 if p=3; =30%too small).

There is, of course, an ambiguity in any factor-
ization. (Statically even 3K,' is reasonable, while

dynamically 2K', is to be preferred. ) I have cir-
cumvented this by factorizing the normaEized dy

namical correlation but taking into account all re-
maining equal time correlations exac&Ey, although

thiq amounts to a different treatment of the two-
mode state's normalization denominators [e.g. , in

Eq. (45) compared with Eq. (47)].
(ii) There is some ambiguity in the definition of

the two-mode states, too. I used the simple prod-
uct state (6I)'. Another reasonable state would be
6[(6I)']=(6I)' —((6I}'). It has the same overlap
(vertex} with Q26I as (6I)' itself. [By the way,
6(u6I) =u6I. ] Therefore only the denominator of

Note that it represents the exact high-frequency
limit of the memory kernel.

BI is systematically larger than B„
Bi 2 3K2+K4 (59)

thus Xi is systematically too small. In the proper
threshold region Xz even gets complex (e.g. , at
p=3) far above threshold, Bz=8, so the linewidth
coincides with that of (ii). Analogously Qu6I
(= -QZu) yields an increase in the field memory
strength B„corrresponding to a linewidth factor
which is systematically too small:

(60)

XII. CONTINUED FRACTION OF THE MEMORY KERNELS

A systematic way to calculate the memory ef-
fects is to repeat the procedure of Sec. IV and to
deduce a representation of K„/go) with the same
structure as Eq. (18) provides for the correlation
itself. This yields a continued-fraction represen-
tation of K„,(w). It is free of the ambiguities of
the 'mode-coupling approximation, but soon gets
rather elaborate.

Let us consider the first step only, It qualita-
tively gives correct linewidths which, of course,
is not surprising for the intensity fluctuations,
since for these the memory effects altogether are
moderate only. But also the lowest-order con-
tinued fraction of the field- memory kernel already
reduces the linewidth factor n from 2 below thres-
hold to 1 far above; n vs p quantitatively differs
only slightly from the mode-coupling results.

The continued fraction of the field memory ker-
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nel K„(w) and the intensity kernel Kgw} is found by
comparing

K(w) =(1/w)(qZ6A ~1+goo/w

with
+(& /w)'+ "~ ~qz6A) (61)

K(w) =
w —b —[c/(w —~ ~ )]

asymptotically for ze-~. One gets

a=(QS6AiQP6A), real, positive,

ab = (QZ 6A
~
SQR6A), etc.

(62}

(63a)

(63b)

The Lorentmian linewidth is found as in the form-
ulas (50) by determining the poles from

a N-X+ A — =0.
~ o ~

In lowest order, c=0, one gets

b+ Xo 4a/N
2 (b+ Xo)2

(64)

Xo is diminished by the memory effects -a, since
b(0 (as Z is real'with negative spectrum). a is
equal to zero in the linear regime below threshold.
X is always real (as it should because Z is Hermi-
tian), for the radicand is always larger than 1.

a. Field amplitude memory

Putting 6A =u one finds [with relations (30), (29)]

a„=(@Su
i
QCu) = 2K, -2K, /K, . (65)

Far below threshold K, =EP» so a„= 0. Far above
threshold a„-2p, indicating an increasing memory
of the field decay with increased pumping.

While a„originally depends on the triple cumu-.
lant K„ the kernel's restoririg force b„even con-
tains K~. One finds a lengthy expression which by
repeated, application of the again useful relations
(31), (30), and (29) can be reduced to

5„=-4 (PK, +2+K,)/a„+K, /K, .

y =2/p p [(1+2/p2)&I2 1]=1/p. (6V)

Indeed, the memory contribution reduces the bare
linewidth factor from 2 to 1. The precise form of
at vsp is given in Fig. 3.

(66)

Far above threshold one gets b„--2P. Together
with N„=K, -P and X,„=2/K, - 2/P the spectral line-

.width for p» 1 is

b. Intensity memory

Putting 6A = 6I from (63a} one gets

ar= 4(2K2+ K4 —K3/K2)

= 8(2K', K,—K,}/K,

= 8(PK, +4) —16K,/K, . (68)

One has to use repeatedly the relations (29)-(31) to
reduce the higher cumulants to the lower ones, un-
til finally K,(p) is needed only. The asymptotic
memory strength is a,-0 far below threshold and

a~-32 far above it.
albl according to (63b) is a lengthy expression, con-

taining cumulants up toK, . From Eg. (31)one finds

K, =K4(P 2K')+ 6—K3(1 —K2) . (69)
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A tedious but straightforward calculation yields

5 q
= -32(2K~K2+ K~)/a q+ 2Ks/K~

= -32(2K, +PK,)/a, + 2P+ 4K, (l -K,)/K, . (VO)

Asymptotically b~=-4p far above threshold. To-
gether with X»= 2p and ÃI=K, = 2, expression (64}
yields A.,=19.230 for p=10, 15.056 for P=8, etc. ,
being a bit smaller than the mode-coupling line-
width (about 1%); within the proper threshold re-
gime it is slightly. above (see Fig. 2).

We conclude that already the lowest-order con-
tinued fraction for the memory, which is free of
any ambiguities, yields quite satisfactory results
throughout the laser threshold, where the nonli-
nearities are quite essential. It has already been
noted that the line-shape details of the continued-
fraction approximation agree very closely with
those of.the. mode-coupling approximation.

In conclusion it may be stated that the laser dy-
namics are quite well understood, if only the in-
tensity (I) vs pumping p is known (which implies
the exact knowledge of all steady-state cumulants).
The statics has to be used exactly to get a dynam-
ics which already contains renormalized vertices
and propagators. "'
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