
PHYSICAL RKVIK% A VOLUME 17, 5 UMBER 1 JAN UAR Y 1g 7S
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%'e define a class of primitive functions which are least distorted from the unsymmetrized function E, a
product of atomic or other group functions, in the limit that the .interactions between the groups have been
turned off. These primitive functions have the property that at least one Schrodinger eigenfunction may be
obtained from them by symmetry projection. It has been shown elsewhere that these functions satisfy a
transformed Schrodinger equation in which the interactions between groups are screened. The screened
potential is regarded as a perturbation and the corresponding Rayleigh-Schrodinger perturbation equations
are derived. It is shown that a number of inequivalent, but equally valid energy expressions may be defined
in terms of the primitive functions. Only when the primitive function is calculated exactly to infinite order
will the different energy expressions all yield the same numerical value. It is suggested that this provides a
check on the accuracy of approximate primitive functions.

I. INTRODUCTION

The relatively small interaction energies be-
tween atoms, molecules, and other electronic
groups should be most easily understood and cal-
culated by use of perturbation methods. .Although
considerable effort has been invested to this end, '
one cannot say that it has proven to be the case.
The fundamental source of difficulty has been the
indistinguishability of electrons. In a series of
papers of which this is the first, we shall focus on
circumventing and turning to our advantage the
problems which arise from electron indistinguish-
ability. By the approach we have adopted we have
gained new insights into exchange perturbation the-
ories as well as new equations.

A principal criticism of the use of perturbation
methods to calculate molecular wave functions and
energies, is that by standard methods perturbation
calculations require the evaluation of the same
sets of integrals as variational calculations, but
are less accurate unless carried to high order. '
The traditional response to this criticism has been
that the perturbation approach offers greater phys-
ical insight into the interaction process. Recently,
however, it ha, s been suggested that the application
of the configuration-interaction method to systems
having more than a few electrons can be made mope
tractable by use of what are'essentially perturba-
tion methods. ' If this proves to be the case, the
criticism we mentioned will no longer be applic-
able.

The exchange symmetry of electrons has been more
a source of confusion thorn a barrier to the develop-
ment of yerturbation theories 0f the interactions
between many electron systems. The basic prob-
lem is that there is no limit to the number of such
theories which might be developed arid, thus, no
chance that one theory can be demonstrated com-

putationally to be the most acct.ate. ' In fact, cal-
culations on H, '(Ref. 5) and H, (Ref. 6) show that one
can expect comparable accuracy from several of the
proposed theories. In a sense, this is a satisfactory
situation. We shall show, however, that it is possible
to develop exchange perturbation theory (EPT) so
that one gains new insights into the theory.

The classic problem of EPT is to develop a
method by which one can accurately calculate the
interaction energy of two atoms at both small and
large nuclear separations. Faced with this prob-
lem. for the first time, the simplest approach is to
ignoI e the electronic exchange symmetry in the
following manner'. Assign electrons l, 3, . . . , N,
to atom a, electrons N, + j., N, +2, . . . , N, +X ~ to
atom b. Let h, be the electronic Hamiltonian of a,
h& that of 5. The molecular electronic Hamiltonian
H can be broken into a zeroth-order Hami. ltonian
II,= h, + h, and a, perturbation V, = II —II,. The
zeroth-order wave function I", a product of one,
eigenfunction of h, and one of A&, does not have
the exchange symmetry characteristic of an eigen-
function of H. One can apply the Rayleigh-Schrod-
inger perturbation theory to. determine the eigen-
functions of II, +A.V,.' This is called the polarjga, -
tion EPT.' When carried to i.finite. order, it
yields I.n the. limit 3 =1 one eigenfunetion of 0- with
the appropriate exchange symmetry for each E'
if the series converges

There are several things wrong with the polariz-
ation EPT. Firstly, it is very inaccurate for H,

'
and H, when the interaction energy is calculated
through third order. " Secondly, the sgm of the
Eeroth- and first-order functions does not. have the
symmetry that an eigenfuncti. on of H should have.
One can rectify this by symmetry-proiecting the

Qm~ - In tIi6.cs~. of Hp -i QQe; obta1Qs 1Q th%8 wa
quite accurate interaction energies. fox'- both- the
1so, and 3Pg„states from the same sum of zeroth-
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and first-order functions. ' For H„one projects
out both a singlet and a triplet Z function each of
which also gives quite accurate interaction ener-
gies. ' The problem with this success is that one
expects a good approximation in these cases only
to the ground-state energyif the expansion con-
verged. " If the expansion does not converge, just-
ification must be found for symmetry projection.
One concludes that if one wants to calculate inter-:
molecular energies by perturbation methods and
understand what one is doing, one must deal care-
fully with electron indistinguishability.

The most popular starting point' for the devel--
opment of perturbation theories incorporating ex-
change is to assert that one seeks to determine a
primitive wave function E, i.e., a function which
is not an eigenfunction of II, but from which one
may obtain by symmetry projection one or more
eigenfunctions of II. The function I' is supposed
to be related to an eigenfunction I" of Il,. The
equation which I satisfies is chosen to guarantee
thai at least one symmetry projection of I" is an
eigenfunction of H. The complementary projec-
tion of E is defined arbitrarily. Thus, an unlim-
ited number of EPT's can be developed. ~

Our first contribution to the EPT problem is to
define E so that it is least distorted from I' in a
very particular sense. The definition may be ap-
plied without reference to the perturbation equa-
tions. Because E is least distorted from I", we
infer that E differs from E' only in ways essential
to the interaction between systems. We assume
this to be true to each order in the perturbation.
By our approach the perturbation is not V, but V,
sn eened by a nonlocal potential.

The starting point for our development of EPT
is a recently demonstrated property of the Schrod-
inger equation. It has been shown"'" that opera-
tors may be added to the Schrodinger Hamiltonian
to obtain an effective Hamiltonian whose eigenfunc-
tions are primitive wave functions. The effective
Hamiltonian can be chosen so that these primitive
wave functions are least distorted from I" . We
call these primitive functions localized wave func-
tions (LW). The LW equations have been solved by
the configuration-interaction method for both H,

'
and H, "'"

In Sec. II we review the properties of the LW
equations and their solutions. An important point
to recognize is that we have a set of distinct LW
equations, all expressible in the same form and
all having eigenfunctions which are least distorted
from I"' under specific constraints. In Sec. III we
derive the perturbation expansion of the LW and
its eigenvalue in a form applicable to all types of
LW's.

The physically interesting energies, the eigen-

values of H, are discussed at length in Sec. IV be-
cause we have more than one expression for them.
This arises from the exchange symmetry and is
common to EPT's. Because there is no unique en-
ergy expression, there is no unique perturbation
expansion of the energy. We argue that this is a
virtue of EPT.

Qur conclusions and the program of research we
are carrying out on EPT's are outlined in the last
section.

II. LOCALIZED VfAVE FUNCTIONS

There is a spectrum of localized-wave-function
(LW) equations. They differ in the degree to which
the interactions between electronic groups are
screened and in the degree to which their solutions
are distorted from a product of atomic or, more
generally, electronic group functions. %e consider
explicitly here two extreme types of LW's. We
first define them, then present the equations from
which they may be determined without knowledge
of the eigenfunctions of H.

Let B be the nonrelativistic Hamiltonian of an
N-electron system in the Born-Oppenheimer ap-
proximation. Let 4„", be an eigenfunction of 8'.
The superscript p, specifies the multiplicity, the
irreducible representation (IB) of the symmetric
group and of the point group to which 4", belongs.
The subscript i specifies the z component of the
total spin and the rows of the IR's to which the
function belongs. The different energy states hav-
ing the same p and i are distinguished by the sub-
script n.

In what follows the symmetry projection opera-
tors 8,"; and the related shift operators e& are
used. (Note that we have changed our original no-
tation" by substituting e for P.) These are the ele-
ments of a matric basis for the irreducible repre-
sentations" of the group of operators which com-
mute with H. They have the important property
that

e&) ~u) &pv~ya~)) ~

~p M.p

Note that e~, 4 "& =6„„5;,0 "~ is a consequence of
(&).

Imagine that an N-electron molecule is made up
of groups of electrons: atoms, ions, shells, etc.
Assign each electron to a specific group. Let h,
be the Hamiltonian of group a when all interactions
between groups have been turned off. Let Hy
=Z, h, . Let p, satisfy h, p, =E,Q, Then for E.'
=H, P, and e'=E, E, one has H,E'=e'I'. Let
V, = H —II~.

We define one type of LW in the following man-
ner. Consider the requirement that the N-electron
function G satisfy
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e = &G(H, (G&/&G(G& =extremal. (2) (H, +V, —QV,Q)E=eF

e",P'=e"„,&e"„,~F.& for all p. (4)

We require that (2) be satisfied with E substituted
for G and that (4) be satisfied. Thus, E will differ
from E only in ways essential to satisfying the
constraints (4}. It is also least distorted from E',
although we expect it to be more distorted than G,
since more constraints have been imposed. The
.constraints (4) correspond to those used by Hirsch-
felder and Silbey. " Note that in (4) p ranges over
all possible values, including those which do not
satisfy the Pauli principle.

We have used two symbols, G and E, to distin-
guish the LW which satisfies the constraint (3)
from that which satisfies (4). It is possible to
adopt constraints intermediate in number-to (3)
and (4), e.g., that (4} be satisfied only for the
yhysically allowed p 's. One expects the so-defined
LW to differ xgore from E' than does G, but less
than does E. The perturbation equations that we
develop in this paper are applicable whether one
imposes the constraints (3) or (4), or constraints
of an intermediate degree of severity.

It.has been proven' that, if one solves

(Hi+ V, —QV,Q)G = fG (5a)

for G with

Q =Me,",(G& &G(eI', + I —e,", ,

I- = &G[e~«tG&~O,

(5b)

(5c)

If we impose no constraints on G, we find G=E'.
If, however, we introduce for one p andi the con-
straint

(3)

and require (2) to be satisfied, then G will differ
from I"', but only in ways essential to satisfying
(3). In this sense G is least distorted from F un-
der the constraint (3). Clearly, one could impose
more constraints on G. The constraint (3) is the
least restrictive we have been able to apply in de-
fining an LW. It is essentially the same constraint
that is imposed in the Eisenschitz-London EPT.'

The most restrictive constraint we have imposed
on an LVf, call it E, is that for all p, and i, with ~
independent of i,

for E with

e" = e&&,

j - QM„'e-" (E& & EIe", ('lc)

M„-'= &E)e" jE&,

then for a)1 v and j,
e,",E=4"., &e"., )E&

(Id&

and for each v, a is i~eyeadent of j. The solution
to (7) can be shown"'" to be the same F that was
defined by the condition (2) and the constraints (4).
Note that the sum in (vb) extends over all IR's, in-
cluding those which do net satisfy the Pa/i princi-
ple.

It can be seen by comparing Eqs. (5} and (7),
that these two LVif equations differ only. in the ms,y
in which the projection operator Q is constructed.
For other types of I,W's, there will Qe corres-
ponding Q's. Thus in developing the perturbation
expansions for I.W's we can work with Eq. (5a},
taking. into. consideration that .Q depends on the
perturbation through the LW, but not using the yg,r-
ticular definition of Q given in (5b) or (Ib}. In this
way we obtain perturbation expansions void for a)1,

types of LVf's. They may be special, ized. to a par-
ticular type of LW by using the explicit form for
Q, as will be illustrated in the following two pa-
pers.

The G, e, and Q used in gqs. (5) could be la-
beled by p, and i since they depend on them. The
E, e, and Q used in Eqs. (7) do not depend on these
labels. A lg,bel could be attached which woMd link
G or F to the grog'- or various excite&-st@Re
E"s. %e prefer to rem. embe-r that such labeI-s
should be used, rather than clutter up the eqqg, -
tions.

The eigenvalue g which appears in Eq. (5a) is
neither the electrocute energy nor the iaiergction
energy To calcul. ate these energies one uses (6)
or (8). They imply that

A Pa

IIe~«G = 8"e,".,G. (9)

It follows fro.m. ibis and H = 8,+ V„ that

then

~I', G =@~,&e~, ~G& .
The solution to (5) is the same G which was de-
fined by (2) and (3)." Note that e~~G is proportion-
al to one eigenfunction of H only if v= p and j= i,
where p, and i are used iri (5b).

One can prove" that if one solves

The interaction energy might thus be cal,g~3&ted
without having to calculate sepgrgte$y E" @&4e .

In both of the LW equations (5a) and (Ta), the
combination V, - Q VQ occurs. The interpretation
of QV,Q is thy, t it is a nonlocal potential wretch
screens V,." The definition-of Q by ('Tc), is, asa
consequence of (8), equivalent to
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q = g Ic".&(4:I, (7c') From Eq (.15) it follows that

@(here each 4" is a normalized linear combination
of the 4",, the coefficients having been chosen to
satisfy (2). The Q defined by (5b) is equivalent to

Q = i@„",& (e"„,i
+ I —e,", . (5b')

III. PERTURBATION EXPANSION
FOR LOCALIZED WAVE FUNCTIONS

One can see that the latter Q is more nearly equal
to the identity operator than is the former, and
therefore, when the latter is used in V, —QV,Q,
the resultant potential more nearly vanishes. The
screened potential V, —QV,Q distorts E into G or

It is a weaker perturbation than V„ the per-
turbation usually considered in developing EPT's. .

A detailed study of LW's will be published in due
course by one of us.

(1 Q(o})G(n) Q(1) G(o-1} q(2) G(n-2) .. . q(o) E (o)

(17)

H ~o &O~o
1 (18)
0 —() (19a)

(H, —e')G ' = -(1 —Q ))oV,E', (19b)

e ' = -(G '}
i (I —Q ')V, iE'& = (G '

i H, —e'i G '
&

This relationship is used in simplifying expres-
sions for some of the e "~.

The derivation from (16) of the hierarchy of per-
turbation equations is straightforward. Alternative
expressions for the c" can be derived from Eq.
(2). The intermediate normalization condition
(E'iG("}&=0 for n) 1 has been used. The first few
equations are

G(A) Eo+)tG&i) +}(.2G( }+

6(}(.)=E' +A,E. +}(.f +'''
Q(})= q'"+~q("+}'q(')+ ~ ~ ~ .

(12)

(13)

(14)

The equations determining the G" and ~" follow
from (11), whereas the Q(") are determined by
Eqs. (5b) and (5c) or related equations, e.g. , by
(7b) -(7d).

Whether one defines Q(A) by (5b)-(5c) or (7b)-
(7d), Q(A) is a projection operator which satisfies

Q (}(.)G (Z) = G (Z) .
This permits the simplification of (ll) to

(H, + x[1 —Q(X)]V,jG(}(.) =&(}(.)G(}).

(15)

(16)

We apply the Rayleigh-Schrodinger perturbation
theory to the solution of the LW equation by re-
garding V, —QV,Q as a perturbation to H, . The
effect of the perturbation is to distort I"' into G.
[Note that from this point on, unless otherwise
noted, we use G for both the I W defined by (2) and

(3), and that defined by (2) and (4).] Because G is
least distorted from F', we expect that to each or-
der in the perturbation, G will contain only those
contributions essential to converting I" into a func-
tion from which at least one eigenfunction of H may
be symmetry-projected.

We introduce an expansion parameter A. into the
LW equation:

(H + X[V —Q(}()V Q(A)]] G(X) = f (A)G(A) . (11)

Note that G, Q, and c now depend on A, . Only for
}(.=1 can e,";G(A)-be an eigenfunction of H, a point
discussed at length in Sec. IV. We assume that
G(}(), e(A), and Q(X) are analytic functions of A. for
I} I

- 1, t.e.,

o)G(o) (g(o) + Q(i) V )Eo (1 Q(o))V G(x)

(20b)

~"=2 Re(-«" I(1 - q")V, IG"&

(G( )
i
q( ) V IEo&].

= 2 Re(G ')
i H, —e

i

G('
& (21)

~(4) (G(2)
i H . ~oiG(o)& + ~(o)(G(i) iG(i))

+2 Ref-(G' i(l —q )V, iG'&

+(G('Iq("V, IG("&+ &G"lq" V, IE'&&. (22)

Note that (15) and (16) imply that e(}() is real. Al-
so, we need I"' and G ' to evaluate c~'; and I"'',

G ', and G(' to evaluate c '. We have been unable
to eliminate G' from our expressions for c '. lt
appears that if we know G through order n, we can
calculate e only through n+2 order.

The LW EPT equations given above do not involve
the ambiguities in order" which are a common
characteristic of EPT's. This is because not even
in the limit A. = 1 does ,H+[}(,V—Q (A) V,q(}()] com-
mute with eI', Use of the. relation [H„e,";]
= [e,",, H, ] in our equations does not alter the order
of a term because V, is not by itself the perturba-
tion.

IV. ENERGY EXPRESSIONS

Although there is no ambiguity in the orders
for the perturbation expansion of an LW, there is
no unique expansion of the electronic energy. This
is notalonedue to [H„e,",. ] = [e,",, V,]." It is be-
cause it is quite easy to write down inequivalent
expressions for E"„asa function of ~. We have no
reason to prefer one of these expressions to all
others.
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Inequivalent expressions for E" in LW EPT can
exist because of the noncommutation of H, + ~V,
and e,"; for ~w 1"and because one is pot compelled
in the LW EPT to identify any term in Eq (.16)
with Z„". There is no term in the L% equation it-
self which depends only on -E"„. One can obtain E~
from G(l) because it has been proven" that e,",G(l)
is an eigenfunction of II=H, +V,. For A. 1,
eI', G(A) is not an eigenfunction of H, +AV, . If we
want E„" as a function of A., we have to define it.

In the other EPT's that have been based on prim-
itive functions, ' an energy E"(A) has been defined
by

eI' [H„+AV. , —E~(A)]c(A)=0

such that

EP(I) = EP

(23a)

(23b)

This definition is identical to (25) for one-dimen-
sional irreducible representations.

We show in the following two papers that E"(A)
as defined by (25) has the following properties:

EP (0) = go

EP(l) = EP

(26a)

(26b)

dz" (A) = E~ '~= &F'[e~ [Fo& '&Fo[e,",V, [F-'&,
- X. =o

where E" ' is the Heitler-London correction toHL
f. as an approximation to E„". If E"(A) were the
only function we could define which satisfied
(26a)-(26c), we would argue that E"(A) is the

We show below that our G(A) satisfies (23a) if
E"(A) is appropriately defined. In the limit that
A = 1, (23a) implies that eI',.G(l) is an eigenfunction
of H, +V,. We can use Eqs. (23) to define E"(A) in
the LW EPT, but it is only one of many possible .
definitions.

To derive (23a) for LW's, operate on Eq. (16)
from the left withe~&; to obtain

e~„.(H, + Av, )G(A) = eI', [~(A) A+@(A)v, ]G(A) . (24)

When Q(A) is defined by Eqs. -(5b) and (5c),

e";;4(A) = &G(A))e~&;(G(A)&
' e",;~G(A)& &G(A)(e~q, .

Thus, (24) is equivalent to (23a) if we set

Z (A) = e(A)+ A&c(A) ~e", ~G(A)&-'(G(A) )e[',V, ~c(A)& .

(25)

In a similar manner, when Q(A) is defined by Eqs.
(7b) —(71), one can show that (23a) is satisfied when
E" (A) is defined by

l

E"(A) =~(A)+A(F(A)le" IF(A)&
' &F(A)le" V, IF(A)&.

unique energy function that one wants.
We can define other E"(A)'s which satisfy (26a)-

(26c). The conditions (26a)-(26c) are not very dif-
ficult to satisfy. It is equivalent to asking how

many smooth curves f(x) can be drawn which inter-
sect at x = 0 and x = 1, and which have the same
slope at x =0. There are an unlimited number of
such curves.

We derive other expressions for E"(A) with the
help of

lim(H, +AV,)eI', G(A) = IimeI', (H, +AV, )G(A)

= E& lime,", G(A).
k=i

(27)

This E"(A) satisfies Eqs. (26a)-(26c). We do not
consider this definition further because it is un-
necessarily complicated.

One could argue that "'E"(A) should be preferred
because for A. = 1 it is the expectation value of II,
+AV, calculated with eI', G(A). The argument, of
course, is that for a first-order error in G(l) one
can expect the error in "'E"(A) to be second order
However, if we want to have an'E" (A) which is an
expectation value for A. &1, we should use

~z" (A) = «(A) le.";(H,+ Av, ) el; lc(A)&

x&c(A)le,";Ic(A)& '- (31)

Three E(A)'s which satisfy (26a)-(26c) (see papers
II and III) are

'z" (A) = &F'j(H, + Av, ) e~, ]G(A)&. (F'[eI', )G(A)&-', (28)

"E"(A) = &F'lel;(H, +Av, )lc(A)& &F'le,";lc(A)& ',
' E~(A) = &c(A)[(H, + Av, ) e~, [c(A)& &G(A)(eI', [G(A)& '.

(30)

It follows from (23a) that "E"(A) must be identical
to the E~(A) defined in (25). By the same reason-
ing, if we had defined a fourth E" (A) to be

&G(A) le";i(H, + A V,) I G(A)& &G(A) le~&; I G(A)&
'

it would have been identical to "E(A). Since we are
interested in E"(A) in the limit A. = 1, it appears to
be a matter of personal preference whether one
uses (28), (29), (30), or some other expression as
the definition of E"(A). The common tie between
these expressions is that they all satisfy (26a) and
(26b).

We can easily invent more complicated expres-
sions for E"(A), e.g. , by starting from

lim e "~'""~eI',G(A) =e"„G(1)e
1=1.

A definition based on this identity is

E"(A) = ln[ &F'~e"&' ""&e,",
( G(A)& &F'~e~« ~G(A)& '] .
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In papers II and III we show that ~E" (A) w '"E"(A)
and that E~(A) satisfies neither (26a) nor (26c).
We do not believe that' E"(X) is an improvement
over the energy expressions defined in (28)-(30).

It occurred to us that one might define a unique
E" (A) by modifying our approach to EPT. Why not
introduce an operator 8(A) such that 8(A)G(h) is an
eigenfunction of H, + A.V„and then develop the
whole perturbation theory from

(32)

We want 8(0) = 1 and 8(l) = e&, , but for intermediate
values of X we shall have to use (32) to determine
8(A). However, (32) is the only equation we have
from which to determine G(A.), 8(A.), and E(A).
Since G(A) and 8(A) occur in this equation in the
combination 8(X)G(A.), we might as well substitute
4 (A.) =8(A.)G(X) and just determine 4 (A). If we do

this, we are back to using the polarization EPT.
We explained in Sec. I why the polarization EPT
was unsatisfactory.

It is possible that the E"(A) defined in (28)-(31)
only look-like different functions. In the following
two papers we show in fact that "'E"(A) = "E"(A),
but that 'E" (A), "E"(4), and E"(I) are unequal for
A. &1 because they have different expansions in pow-
ers of A. .

Since there is no unique, preferred expression
for E(A), one can attach no special significance to
the coefficients in the power-series expansions of
'E" (A), "E"(A), and ~E"(A). We believe that one
should not expand these expressions in power ser-
ies in A, . Firstly, A. is not a small, physically
meaningful parameter. We are interested only in
A. = 1. Secondly, what one is essentially doing in
developing these expansions, is approximating the
normalizing effect of (E'~e~, ~G(A)) or (G(A) ~e,";~G(A)).

Why introduce an unnecessary approximation into
the energy expressions?

We suggest that one use F'+A, G~' + ~ ~ ~ +A"G "~ in
'E" (&), "E"(A), and ~E"(A). One then has approxi-
mate expressions for these energies which are of
the form of one polynomial in A, divided by a sec-
ond. This, of course, is just the sort of approxi-
mation that one gets by applying the method of
Pade approximants to a power-series expansion,
a procedure that has been applied to EPT energy
expressions. "

We suggest also that. it is an advantage to have
two or more distinct expressions for E" (A) which
ar'e equal for A. = 1 only if the expansion of G.(A) is
summed to infinite order. One can readily verify
that with G(1) approximated by F +d'~+ ~ ~ ~ +Gi",
one has ~E"(1)= "'E"(1)= uE" (1)c ~Z" (1). Thus, .

using this approximation, if "E"(1) is quite differ-
ent from 'E" (1), we know that we have not carried
our calculations to sufficiently high order. Unfor-

tunately, if the approximate 'E" (1) and 'E" (1) are
equal, we cannot be sure that we have an accurate
approximation to the energy.

V. DISCUSSION

The EPT outlined in this paper is based on the
use of a primitive function G which is defined so
that it is least distorted from E', a product of the
wave functions for noninteracting atoms (ions,
groups). Such functions should be particularly
amenable to calculation by perturbation methods
since they differ from E' only in ways essential to
satisfying the constraint e,";G=@„";(4"„;~G).The
least-distortion requirement does not, however,
exhaust the options available. One can develop
EPT s in which the primitive functions satisfy the
Least-distortion requirement, but are consistent
with other quite distinct requirements. This point
will be clarified in the following two papers.

We have made the customary assumption that the
zeroth-order Hamiltonian 8, is the sum of atomic
Hamiltonians. This may not be a practical choice
for systems containing atoms other than hydrogen
since we do not generally know the eigenfunctions
of H, . Work is in progress here on the application
of the theory to diatomic systems such as I iH and

He, using configuration-interaction methods. This
should show us how practical the usual choice of

H, is.
A more practical approach would be to make 0,

the sum of approximate atomic Hamiltonians in
which electron correlation has been omitted, e.g. ,
each atomic Hamiltonian could be a sum of the
one-electron Fock operators for the atom. A more
sophisticated approach would be to use the non-
orthogonal group-function Hamiltonians proposed
elsewhere. " In this case the only contribution to
the first-order primitive function will be from dis-
persion interactions between the atoms. Investiga-
tions along these lines have also been initiated here,

The role of the numerical studies that we have
carried out and will carry out is to provide further
insight into the properties of the- two extreme
forms of I.W EPT: one based on. the constraint
(3), the other on (4). In previous calculations"
only the first-order functions have been evaluated,
the idea being that it is not practical to go beyond
first order. However, if one uses a configuration-
interaction approach to the perturbation expansion,
it is quite easy to go beyond first order. By going
beyond first order, one can see if the expansions
are convergent in a practical sense.

Our calculations should not be expected to show
that one EPT is better. than another. For this pur-
pose other criteria have to be used. '2' We shall
consider such criteria in the following papers in
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arguing that one type of L%' EPT is to be preferred
for some problems, another type for other problems.
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