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The nonrelativistic asymptotic behavior of the third Born amplitude is determined for electron capture from

a hydrogenlike ion or atom by a bare ion incident with a very high velocity. It is assumed that the incident

ion is scattered through only a narrow range of angles, of the order of the electron/proton mass ratio. The
result for the asymptotic form of the amplitude differs from two previous results. However, for the

asymptotic contibution of the amplitude to the forward cross section (i.e., to the. cross section integrated over

the narrow forward cone) I obtain the same result as obtained previously.

I. INTRODUCTION

In this note we examine, within the nonrelativis-
tic framework, the asymptotic form of the third
Born amplitude for the capture of an electron from
a hydrogenlike ion op atom by a bare. ion that is
incident with a very high velocity. We assume that
the incident ion is scattered through only a narrow
range of angles, of the order of the electron/proton
mass ratio. This restriction to scattering into a
narrow forward cone is not unduly severe since
the differential cross section for scattering outside
the 'cone is porportional to the square of the elec-.
tron/proton mass ratio, and is therefore small. '
In effect, we are neglecting corrections of the or-
der of the electron/proton mass ratio. For con-
sistency, we therefore neglect the internuclear
potential, since when corrections of the above or-
der are neglected, the internuclear potential de-
pends only on the coordinate connecting the inci--
dent ion to the center of mass of the target "atom, "
and it cannot then effect the internal state of the
"atom. "

The asymptotic behavior of the fi.rst and second
Born amplitudes has been examined in detail by
Dettmann and I eibfried. "' It is now' well estab-.
'lished that for sufficiently high impact velocities
the contribution from the second Born amplitude to
the forward capture crosS section (i.e. to the cross
section integrated over the narrow forwa, rd cone)
dominates over the contribution from the first Born
amplitude, a result which was first proved in.a re-
markable thesis by Drisko. ' For example, in the
case of ground-state to ground-state capture the
first Born contribution decreases as 1/v" with in-
creasing impact velocity v, whereas the second
Born contribution decreases only as 1/v". The
asymptotic behavior of the third Born amplitude,
and its contribution to the forward capture cross
section, is therefore of considerable interest. The
third Born amplitude was, in fact, examined for

the case of ground-state to ground-state capture
by both Drisko' and Dettmann. ' However, their
expressions for the asymptotic form of this am-
plitude differ significantly. Nevertheless, their
resulting estimates of the asymptotic contribution
of the third Born amplitude to the forward capture
cross section are the same) Now Drisko's anal. —

ysis, while it is reasonably convincing, lacks pro-
per justification and, as Drisko himself states, his
result for the asymptotic contribution of the third
Born amplitude "cannot be completely credited. "
Dettmann's analysis also involves an unjustified
approximation, one which we discuss in detail be-
low. In fact, the outcome of the more rigorous
analysis prese'nted here is that both Drisko's apd
Dettmann's estimates of the asymptotic form of the
third Born amplitude are incorrect. However,
their estimates of the asymptotic contributions of
the third Born amplitude to the forward capture
cross section are correct t

We restrict the discussion of this paper to
ground-state to ground-state capture. However,
the methods used here can be readily generalized
to arbitrary initial and final states.

II. NOTATION

Let m, I„,and M~ denote the masses of the
electron, target nucleus, and incident nucleus,
respectively. We refer to the particles by their
masses. We define the mass ratios

o=M„/(M„+m), P=M, /(M, +m),

and the reduced masses

p.„=mM„/(M„+m), p, s = mMs /(Ms+ m),

v„=Ms(M„+ m)/(M„+ Ms + m),

v, =M„(M, +m)/(M„+M, +m).

We denote the interactions of m with M„and rn
with Ms by W„(r„) and Ws(rs), respectively; the
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where a5= Ii /me' is the Bohr radius of the hydro-
gen atom. We work in the center-of-mass frame of
all three particles. In this frame the initial and
fi.nal wave functions are

I/J i = eXp(i Ki Rel) 4 .(rel)

(f eXp(iKf Re)lj f(X e),

where SK, = v„v, and AK&= v~v&. If E denotes the
total energy of the system in the center-of-mass
frame, we have

(2.2)

E= (h'/2v„)K', + e, = (b2/2v~)Kf+ ef.

We define the momentum-transfer vectors

(2.3)

coordinate system is defi.ned in Fig. 1. Let e,
-Z~e, and -Z~e denote the charges of m, M„, and
M~, respectively. We have

W„(r„)= -Z„e'/r„, W~(r~) = Z-2e2/r~

Initially, m is bound to M„ in the state i, char-
acterized by a wave function itl, (r„), and M~ is in-
cident with a velocity v,. relative to (m+M„); final-
ly m is bound to Me in the state f, characterized
by a wave function. t f(re), and (m+M~) has a, veloc-
ity v& relative to M„. Let e, and e& denote the ini-
tial and final bound-state energies. Assuming i and

f are both ground states, we have, omitting sub-
scripts,

ati.on is'
K "Ir 'KdK,

27T ptl 2/q v~ min

where K „= IPKf -K,.
I

and K =PKf+K,. and
where, omitting the interaction between the nuclei
and keeping only the first three Born terms,

(2.7)

&= ~, + ~2+ ~»

with

&,=e Iw I&,),
(iiIf I

W„G;(E)Wa I pi)

~3 ~3A+ ~3B ~

(illf I
W~Go(E) W~Go(E) Wa I ( )

(2.8)

3/2

f(k) = — d'r exp(-ik r)f(r).
271

(2.9)

When we write a- b, we mean that the relative dif-
ference of a and b is of order 1/u, where v is
equal to v = Iv.

I
or "f= Ivf I. W— hen we write a = b,

we mean that the relative difference of a and b is
of order unity.

i

the definition of V'» should be obvious. Here,
G;(E) is the Green's function for three noninter-
acting particles with total energy E+ig, where q is
positive and infinitesimal.

The Fourier transform of any function f(r) is de-
noted by f(k) where

K= pKf —K, , J= nK; —Kf',

conservation- of energy can also be written as

lt2K2/p —|2'J2/n = 2m(~f —e,),
where K= IKI and J= IJI. Note that

)2J= -mv, IK/P, -.hK= -mvf -&J/n.

(2.4)

(2 5)

(2.6)

&, = -(2v)'[(b'/2 p, „)J' —e,. ]iaaf (K) it, ( —J), (3.1)

d't d'T gf~(pKf —T) W~(Kf —n T —t )G;(E; t, T)

III. PRELIMINARY ANALYSIS

The first two Born terms can be expressed in
the form'

The cross section for the process under consider- x W~(K, —T)$,(t —nK, + nT),

where, for arbitrary E, T, and t,

(3.2)

E+i —O'T'/2v —tt t'/22

and where, omitting the. subscripts,

Fjo. l. Initially rn is bound to M&. The coordinate of
m relative to M& is %& and the coordinate of the incident
nucleus M~ relative to center of mass of the target
"atom" (I+M~) is R&. Finally rn is bound to M&. The
coordinate of rn relative to Mz is 7 ~ and the coordinate
of the center of mass of the outgoing "atom" (m+Mz)
relative to the stripped nucleus M& is R &.

i»-(2v) '/'
~ d'td'Typ(pKf T)

x V~(Ee T; Kf —n T, t) G5(E; t, T)

xWe(K, —T)P,(t —nKi+ n T), (3.5)

21 f2Ze2 23/2(Z/a )5/2
W(k)= „.. . it(k)=

(( / ), '2)2 . (3.4)

The particular third Born term ~» can be ex-
pressed in the form'
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where, for arbitrary E, 7.', q, and t,

V„'(E, T; q, t) = d'p W„(q p—)G+(E;p, T) W„(p —t ).

(3.6)

and Ws(T'+ K) vary very slowly over this region
since K and J' each exceed mv/2k. Therefore to
obtain the asymptotic form of F, it is legitimate to
set t'= T'=0 in 8'„and W~. We then obtain

))' (J)))' (K)I d'('d'T'gq(-T')

In order to obtain the asymptotic form of ~, for
high v, we first obtain the asymptotic form of E„
briefly repeating the analysis of Dettmann and
Leibfried. "' We change the variables of integra-
tion to t' and T' where D+D~ Q

ei (D +Dg )s ds

x G;(E; t, T)p, (t ).
If we approximate Go by 1/(D+ D, ) and use

(3.10)

(3.11)

Go(E; t, .T) =1/(D+D, +D,), (3.8a)

where D is constant, D, is linear, and D, is quad-
ratic in t' and T'.

T'= T —pK&, t'=t —aK, +aT=t+aT'+aK. (3.7)

In terms of these new variables we have

the integral over t ' and T' becomes a product of
two Fourier transforms which can be evaluated
immediately to give

-i(2v)'W„(J) Ws(K)
'

ds e'v'pp ( Tos—)(t);(-tos)
0

SRD = q a~v~2 —n + e~+ zq2m

Dj = -T' ' T' —t' 't'
h2

D TI2 (t f Tl)2

O'P - k'a-
2p„ m

(3.8b)

(3.8c)

(3.8d)

(3.8e)

(3.12)

With (t), and (t)& defined by Eq (2.1.) the integration
over s is trivial to perform; we obtain, with t,
=

~
t,' and T,'=

~
T,',

ao(J&)' D+iZ„t,'/a, +i ZsT,'/a,

We now proceed. to evaluate V'» in the asymptotic
limit. From Eqs. (3.5) and (3.7) we have

. Using Eq. (2.6) to solve Eq. (2.5) for either J or
X, we see that if-,'mv'»

~e&
—e,. ) then SK& —,mv, . and

SJ&2mv&, and therefore T,' and t,', defined in Eq.
(3.8e), are each of order v. If follows that unless
T' and t '.are simultaneously perpendicular, or
almost perpendicular, to T,' and t,', respectively,
DI is a factor of order v larger than D„and there-
fore, D, can be neglected in Eq. (3.8a) for G;. (The
region of integration where D, cannot be neglected
in comparison with D, is ef order 1/v' and is in-
significant to the leading term in the asymptotic
expansion of 9',.) For "most" values of K, D is a
factor of order v larger than D, . However for
K=K„where IzE:,-mv&, we have D=iq and D, can-
not be neglected in comparison with D; we there-
fore retain D, . Note that v', is largest when E
equals the "critical" value E, since then G, is of
order 1/v, rather than 1/v'. Physically this cor-
responds to the fact that when K=X, the electron
and incoming nucleus have roughly the same final
velocity and hence they can become bound

Changing variables in Eq. {3.2) we have

Es~=(2&) J,
d t'd T'P*(—T')V'(ET K —aT t)

x«;(E;t, T)W (T'+K)(t),(t') . (3.14)

As before, we set T'=0 in Ws(T'+K), since this
function varies very slowly in the region T'=0
where (t)z(-T') is non-negligible. Dettmann' also
assumed that V„' is slowly varying in the region
t'= T'=0 and he set the arguments t and T equal
to -aK and PKg, respectively, which is equivalent
to setting t '= T'= 0; it is this step which is un-
justified, as we now show.

V~ can be evaluated exactly; in fact, V'„has
already been evaluated by Dalitz' for certain ranges
of its arguments. Extending Dalitz's expression
to cover the entire range of arguments we obtain,
with q —=Kf —nT,

V~(E, T;q, t)

47l'Z~e 2 p ~
fq-t/

d't' d' T' (t)t( —T') W„(t '+ J)

x Go(E; t, T) Ws(T'+ K)(t)q(t '). (3.9)
Jp

1
t2+ (k' —q')u'+ 2ik ~q —t ~u

The main contribution to this integral comes from
the region t '= T' =0 since (II),(t ') and @&(—T') de-
crease rapidly outside this region. Now W„(t'+ J) where

(3.15a)
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(3.15b)

h 3(k' —q3) h ' 1 n3
Tf2

2/A 2 VA PA

k'= (2//A/h')(E+ iq —h 'T'/2vg.

The integral over u can be evaluated in closed
form, but this is not necessary for our purpose.
With regard to the denominator of the integrand
in Eq. (3.15a), note that

D+D&=0. Now if %=K„we have D=ig; and if t'
and T' are both near zero, D, is very small. In
this case the integral has a near singularity, and
its value depends strongly on the sign of D, .
Therefore if K=X„which is the value of K for
which V'» is largest, V'„varies rapidly in the
vicinity of t '= T'= 0; therefore t ' and T' cannot
both be set to zero.

-=-(a+ b T") . (3.16)

Since a and b are of the same order of magnitude,
the term in T" cannot be neglected, and it is not
legitimate to set T' equal to zero; a more serious
objection to setting t' and T' (both) to zero will
be given in a moment. Since q - t = -J - t', we set
t'=0 in the term Iq —tI which occurs in the de-
nominator both inside and outside the integral of
Eq. (3.15a). We set T=PK& in Eq. (3.15b); after
neglecting &&+ ig in comparison with 2 p Av& we ob-
tain k= pAv&/h, No.te that k' —t' is simply
(2l/A/h3)(D+ D, + D,); as before we neglect D,.
With these approximations we have

IV. ASYMPTOTIC FORM OF THE THlRD BORN TERM

A. Amplitude

In Eq. (3.14) we approximate G;(E; t, T) by
1/(D+D, ), we approximate V'A by the right-hand
side of Eq. (3.17), and we define

X=D+D, —(a+bT")u'+ihJv&u,

7 -=D+D

and use the Feynman identity

4 Z2 4 XY ., [I'+(X—Y)z]'

followed by the identity

(4 1)

f
00 1x du

D+D, -(a+ bT")u'+ ihJv&u
'

(3.17)

This integral has a logarithmic singularity when

1 8 00

[Y+ (X Y)z]' ~ d~ ~j[Y+(X Y)g]g (4.2)

to combine the denominators of G; and V'A in Eq.
(3.14), yielding

2Z2 Z 1
d'T' du sds J dz

7T hJ Jo 0
d t'&j&&(-T') exp (i(D —t,' t' —T,' ~ T'

+ [ -(a+ bT")u'+ih Jv/u]z)s)y, (t'); (4.3)

25/ 2Z7/ 2Z 6
t&l A B

3A 3/ 2gag
3 i4g(-T')

(C' 4AB)'"
-C+ (C3 —4AB)'/'

4AB) /

where

we have set T' = 0 in Ws(T'+ K) in Eq. (3.14) and
we have used Eq. (3.4) to substitute for Ws(K).
The integral over t in Eq. (4.3) is just a Fourier
transform, and can be evaluated immediately.
With p,. defined by Eq. (2.1) it is straightforward
to perform the integration over z, s, and u (in that
order) to give

for large v we have
I
c'I ~~ 14AB

I
and

1 -C+ (C —4AB)
(C3 4AB)&/3 C (C3 4AB)~/3

1
in[A(P +Q3TI3)], (4.5a,)

zMvy

P'=(a /' hJ&)v, Q'=(blh'J v&).

Inserting the right-hand side of Eq. (4.5a) into Eq.
(4.4a) and using Eq. (3.4) to substitute for P&, we
can perform the angular integration (the angular
dependence is contained in A) without great dif-
ficulty to give

A = D —T,' T'+i(z„la,)t,',
B= -(a+bT"), C=ikJv& .

(4.4b)

(4.4c)
i 2'(ZAZs)'/'e'

3A a4(J~)2 @TI ( 1+ 2 (4.6a)

Since the quantities C and AB are both of order v' where
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a~' D+i(Z„+ Ze)e'K '

E,„—i(Z„e'/hv) SF'„

(4.13')

(4.14)

(4.15)2 Re(r, v',*„)- 2(z~e'/hv)
I ~a I' lmS.

Let us change variables from K to y, where y is
defined by

with S defined by Eq. (4.10b). Evidently, looking
at Eq. (4.14), the leading contribution from 9;„to
o comes frOm the interference of V'3A with K„
that is, from the term

K= (mv/h)(1 + @'y/mvao)' ', (4.16)

and insert Eq. (4.15) into Eq. (4.11), using Eq.
(4.10c) with D = -hyv/2ao. Neglecting corrections
of order y/v, we obtain

j.
+2q 3A 2 2

& mo/2h

2Re(1', V f„)KdK

2 NAZB
1 4

y y'+ 4(z~+ Z~)' y'+ 4(z~ —Ze)'

y Zey y'+ 4(Z„+ZB)'
x -Z,(Z. -Z,)tan' 2(Z+Z) '2' l" 16Z'

'
A B B

I

2 ZA+ZB 2
(4.1V)

27~2Z6Z5 e2 12"- Z Z'I (-:)
A+ & V

(4.18)

We now briefly discuss the results of Dettmann
and Drisko. Dettmann's expression for the asymp-
totic form of K,„is'

i (Z„e'/hv) [ l—n(2hv/Zee') +-in/2] &, .

This expression differs significantly from the
right-hand side of Eq. (4.14) and yet it yields the
correct estimate of o2». The reason for this co-
incidence is not hard to see. The real part of S
does not contribute to cr2 3A to leading order, and

the only term in the imaginary part of S which con-
tributes is the last term of Eq. (4.10c), namely
2m. Dettmann's expression corresponds to re-
placing ReS by —ln(2hv/Zee') and ImS by 2v, and

so the correct result is obtained. Drisko's ex-
pression for the asymptotic form of T'3A is'

i(Qe'/hv) [in(E+i -Zee'K) + c]q', ,

where c is seal and independent of K. We need not

specify c any further, other than to note that c does
not diverge more rapidly than lnv as v ~. Dris-
ko's expression corresponds to replacing ImS by
tan '[y/2(Z„+ Ze)]+ qv; the arctangent term is odd
in y and does not contribute to o, ,A and the correct

Only the last term in the integrand (that is, the
term in 2v) contributes to the integral over y since
the remainder of the integrand is odd in y. We
therefore obtain

- 0.0241o~K, (4.19)

where o~K is the Brinkman-Kramers cross sec-
tion, which has the a'symptotic form

o,„-(2"/5) Z„'Z,'(e'/hv) "(va',). (4.20)

The contributions to o from E, and &2 can be cal-
culated to order (e'/hv)" without difficulty. The
result can be found, for example, in Ref. 3. Add-
ing this result to o» we find that to order (e'/hv)"
the contribution fro'm the first three Born terms to
the forward capture cross section c is

o.- [0.319+5vhv2 "/(Z„+ Za) e']oaK. (4.21)

However this result is probably not an accurate
estimate of a unless hv/e'& 20, When hv/e' = 20,
relativistic corrections probably amount to 5' or
less." The relative contribution of the third Born
term is seen to be very small.
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result is obtained.
We can evaluate the leading contribution to o

from &3B in a fashion similar to the above. The re-
sult differs from the right-hand side of Eq. (4.18)
only in that A and B are interchanged. The lead-
ing contribution to 0 from W3 is therefore o23,
where

o 27v2Z5 Z5 (e2/hv)12(va2)
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