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Channel invariants and SU(3) classification for two-electron atoms
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Previous studies showed the configuration-mixed excitation channel structure of two-electron atoms to be
classified by two quantum numbers K and T. Three new. aspects of the classification are considered here: {i)
K and T are shown to be limiting .cases of two exact invariants for channels in the asymptotic regime

r2& r, .
'

The invariants classify channels for the entir'e isoelectronic series. Sum rules, quantum number

correlation diagrams for isoelectronic series, and perturbation formulas for the invariants are described. (ii)
The K, T spectrum is shown to be contained in a chain SU(4)&SU{3)&SU(2) defined mathematically on
the two-electron channels. Possible physical connection with O(6) quantum numbers for noninteracting

particles in hyperspherical coordinates is discussed. (iii) An empirical link is established between

autoioniiation stability of heliumlike atoms, and unitarity of irreducible representations for a SU(2, 1)
charinel scheme. The noncompact classification aiso includes channels for double ionization.

I. INTRODUCTION

Recent investigations' ' revealed an interesting
group theoretical structure for excitation channels
in two-electron atoms. Double excitation states
are characterized by strong Coulomb configuration
mixings which render the usual independent parti-
cle angular momentum quantum numbers l, and l,
inadequate for classifying channels. For helium-
like atoms where a long-range Coulomb attraction
dominates when r, » r „each exc itation channel
contains a Rydberg series of states. The group
theory provides at the outset a configuration-
mixed, spatially correlated basis which repro-
duces in large pai't mhixings in computed wave
functions. Two integer quantum numbers K, T
were found' to label configuration-mixed channels,
and excitation and decay characteristics of the
Series display some striking regularities when
viewed in the K, T classification. Radiative exci-
tatjon of 'P helium to Rydberg series converging
on the N = 1,2, . . . ionization thresholds, for in-
stance, shows a strong selectivity for channels
having K=K —2, T=1, while excitation to other
channels is substantially weaker. ' Although the
channel structure emerges clearly in theoretical
calculations of energies and wave functions, there
exists at present no detailed explanation for those
results directly —in. terms of group-theoretical
properti. es of the full three-body Hamiltonian.
Rather, the K, T quantum numbers have been de-
duced from group theoretical analysis of approxi-
mate wave functions for the two-electron states.

Sinanoglu and Herrick' and Vfulfmanv showed
independently that mixings of degenerate hydro-
genic configuration wave functions for n, =n, are
well described by group-theoretical diagonaliza-
tion of the operator (b, —b,)', where b is the
Runge-Lenz vector for So(4) symmetry of the hy-

drogen atom. Mixings of degenerate configura-
tions are not well described by (b, b,)' when n,
Wn, . Previous attempts to classify degenerate
mixings using (b, +b,)' had been unsuccessful. ' "
WuUman's classification for fixed n„n, used the
traditional P, Q quantum numb'ers for rotations in
four dimensions. " In contrast the K, T quantum
numbers" were defined to reflect inherent chan, -
nel characteristics of the overall two-electron
spectrum. Isoelectronic series conf iguration-
interaction (CI) computations with nondegenerate
hydrogenic configurations showed, for instance,
an approximate bl.ock diagonalization of the ener-
gy with respect to K and T.' In this sen. se the K, T
classification appears more characteristic of the
two-electron Hamiltonian itself, rather than of de-
generate hydrogenic configurations. The CI Chan-

nel classification remained strong even in the ex-
treme case of H, where a hydrogenic n„n, classi-
fication of states is grossly inaccurate. Some add-
itional insight to the channel structure was subse-
quently offered in a variable-dimensionality model
for two-electron atoms. ' There, K governed con-
figuration mixings exactly in the one-dimensional.
limit.

The hydrogenic CI wave functions did not take
into account screening for the radially more dif-
fuse electron. ' A group-theoretical model classi-
fying channels in the asymptotic regime, where
r, »x„was offered in (I).' K, T quantum numbers
were derived for that model in. the limit of strong
electron-electron coupling. In Sec. II of the pres-
ent paper we again address the problem of classi-
fying the asymptotic channels. K and T are shown
to be merely limiting forms of two exact invari-
ants for asymptotic charinels, valid for the entire
isoelectronic series. %e descry'ibe several proper-
ties of the invariants, including matrix elements,
sum rules; and eigenvalue correlation diagrams.
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Although the classification in Sec. II offers sub-
stantial new insight to the channel structure, it
fails to identify K and T group theoretically as
quantum numbers for irreducible representations
of a continuous group. We therefore explore in
Sec. III a possibility first discussed in (I), that
there might exist an underlying SU(3) channel
classification. Our approach is a phenomenologi-
cal one, and we simp1y define representations of
SU(3) on the channel spectrum. One consequence
of this definition, however, is that the complete
numerology of a E, T type spectrum is then, con-
tained in SU(4) & SU(3) & SU(2). Possible connection
with Dragt's" SU(3) classification of states for
three noninteracting particles is discussed.

In Sec. IV the question is raised whether a re-
lated noncompact SU(2, 1) classification for chan-
nels might be more appropriate than SU(3). Earli-
er suggestions for noncompactness have been dis-
puted. " The present analysis establishes an em-
pirical link relating unitarity of irreducible repre-
sentations to the stability of heliumlike atoms
against autoionization.

II. ASYMPTOTIC CHANNELS

Full details for constructing asymptotic chan-
nels appear. in (I). Briefly, configuration channel
states ~N/, /, LM) represent products of hydrogen-
ic states (0 «/, «N- 1) for electron 1 and angular
momentum states (/, = 0, 1, . . . ) for electron 2,
coupled to yield total angular momentum quantum
numbers L, M. Configuration-mixed channels ob-
tain'"" from diagonalization of A=l,'+2~re osox2
in channel subspaces of constant ¹ ~ is a coupling
parameter, equal to 1/Z for the helium isoelec-
tronic sequence. A is an effective total angular
momentum in the coupled radial Schrodinger equa-
tions for large r, . Diagonalization of A decouples .

the asymptotic radial. equations, and eigenvalues
of A thus label possible decay channels for ejection
of a single electron. . The problem of systematical-
ly classifying these eigenvalues is therefore of
some importance. How do we represent A group
theoretically &

An explicit group theoretical construction 'of the
channel invariant A on the configuration channel
basis can be accomplished using generators of the
hydrogenic SO(4) algebra for 1, and a noncompact,
angular O(3, 2) Lie algebra for 2. The projection
r-. (3/2)Nb was used in (I). SO(4) commutation
relations are

[/„/, ]=i/„[/„b,]=ib, , [h„,h„]=i/, .

Construction of the unit vector f' with O(3, 2) gen-
erators for spherical harmonics has been de-
scribed by Herrick and Sinanoglu. ' Thus A is in

fact well-defined group theoretically, and in prin-
ciple one expects to exploit this operator repre-
sentation for classification of two-electron chan-
nels. We establish some general properties of the
physical channel states in the following sections.

A. Exact invariants

In terms of SO(4) the first channel invariant be-
comes I

A=l2+ pb,

with p, = 3%X. Both the total angular momentum
I ='I, +T„and parity II = II,II„commute with A.
The projection of L along the vector R= pr2. 2by

is defined by

W= L.R, (3)

or

W= pT~ f'2 —2b~

when orthogonality ofl, and r„and of1, and b, is
taken into account. One easily verifies using
SO(4) commutation relations that [W, A]=0. W is
therefore a new, second-channel invariant for all
values of p. . There are two distinct ways of label-
ing the physical channels.

The first way has L', L„A, and Wdiagonal.
When W & 0 each eigenvalue of A for 0& p & ~ is
doubly degenerate, due to invariance of A under
either positive or negative rotations about R. The
two eigenvalues of W for these degenerate states .

have equal magnitude, but different sign. Eigen-
values of A for the case W=0 are nondegenerate.
Parity is not conserved in this first classification,
since HWII= —W.

The second classification hs L', L„A, 8",
and II diagonal. In this scheme two degenerate
eigenvalues of A exist for each nonzero value of

one for an even parity state and the other for
an odd parity state. Parity is not a "long-range"
quantum number for two-electron atoms, since
these even and odd parity channels define identical
effective centrifugal potentials for the radial coor-
dinate r, . The existence of TV' as a second chan-
nel invariant thus explains the parity degeneracies
for A found in (I).

Physically, diagonalization of W and A corre-
sponds to a transformation of channel states from
space-fixed (external) coordinates to a rotating
(internal) frame. R is the figure axis about which
angular momentum is conserved. In this way
-eigenvalues of A are analogous to energy levels of
a rigid rotor, with N playing the ro1e here of a
generalized angular momentum quantum number.
In this connection, transformation from channel
states having W diagonal to those states having
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W' diagonal resembles the Wang" transformation
for ordinary asymmetric top wave functions. Di-
agonaIization of A also bears a similarity to solu-
tipn '2 pf the secpnd-prder Dirac equatipn, for
hydrogen.

We cannot offer at present a. complete diagonal-
ization of the channel invariants val. id for all val-
ues of p.. However, exact diagonalization for the
strong coupling (p, = ~) limit is described in Sec.
IIB. There then follows in Sec. IIC a partial O(4)
diagonalization for the weak coupling (g = 0) limit.
Explicit representations of A and W in the strong
coupling basis appear in Sec. IID. Additional pro-
perties of A, including sum rules, empirical cor-
relation diagrams for quantum numbers, and
classification of H states are discussed in the re-
ma. ining sections.

INKQLM)= Q INI, QLM&(-)o(2l, + 1)' '
si ko' P -Q

(6)

Here a= —,(N —1), a=&(q —K), and p=~(q+K). The
coefficients in Eqs. (5) and (6) are 3-j symbols.
In terms of T =

I Q I, values for K are K=N T- 1, —
N —T —3, . . . , -N+ T+ 1. Wave functions for
INKQLM) are spatially correlated, having cos&„
=-K/N diagonal in subspaces of constant N

Parity representations are .

IIINKQLM&=( )'INK, -Q, LM&,

rl, jNKQLM&= (-)" 'IN, K, qr M&. .- (6)

When Q = 0 the parity is ( ) . For Q o0, parity-
diagonal states are

INKY'LMII &= (INKQLM&+ INK, -Q, LM&)/~&, (9)

where + gives II = ( )~, and —gives II = (-)~".

B. Strong coupling

For large p the channel invariants become A

pb] 72 and 8 p L f,. Diagonalizat ion is
achieved in two steps, in a way analogous to that
described in (I). First we diagonalize L ~ $', = —Q
in the basis

INI, QLM& = Q INl, l,LM&(2l, + 1)'~'I l I

kq 0 qj
(5)

The eigenvalues are Q = 0, +1, . . , +m. in(L, N —1).
When L &N - 1 the restriction. on the maximum va, l-
ue of Q results from the limit 0 &I, &N 1 for hy-
drogenic states. The second step diagonalizes
b, r, =--K, and corresponds to Stark mixing of
degenerate hydrogenic states" with respect to the
f2 axis

Diagrams of K and T for different values of N ap-
pear in (I), where a parity-diagonal basis similar
to Eq. (9) was used. The T basis suffers from the
disadvantage of inconvenient normalization. factors'
in matrix elements of A for finite p.. A useful re-
sult of the present theory is that eigenvalues of A
can be computed directly in the Q basis.

C. Vfeak coupling

When p, =0 the explicit two-electron coupling in
A vanishes, and the eigenvalues reduce to the or-
dinary form l, (l, + 1) for one electron. However,
for each N and L there may occur severa. l cha, nnels
having the same value of l, . This "accidental de-
generacy" for A is explained in the present theory
by the second invariant, W. When p, = 0 one can
choose either W or l', diagonal. The more natura, l
choice is to diagonalize W=-2b, ~ l„so that weak
coupling states connect smoothly with channel
states for LL(, &0. W mixes configuration channel
states having &l, =+1, but it leaves l, unchanged.
Although the case p. = 0 corresponds to an inde-
pendent pa, rticle limit for A, there rema, ins a re-
sidual "weak" configuration mixing due to W.

We now derive a partial classification of W for
weak coupling channels using an O(4) Lie algebra
generated by L=l, +T, and C=b, + 1,. Irreducible
representations of the rotation group in four di-
mensions are commonly labeled with pairs of in-
tegers (P, q), which specify O(3) subgroup repre
sentations as follows: p ~ I ~

I q I." Bound state
hydrogqnic wave functions for fixed N have the re-
preseritation (N 1,0), w-hile spherical harmonics

,for fixed l, correspond to (I„l,) in O(4). Reduction
of the product" of these two O(4) representations
on the configuration channel basis yields irreduc-
ible representations (N —1+ r, ~), where T is an
integer having all values

max(l', I") & 7 & min(l„L) . (10)

Here I'= In —I2I —a, f"= Ia —LI —a, and a=(N 1)/—
2. Explicit coupled states are

I NTl2LM &
= Q (-) I Nl~l2LM& [(N+ 7)

)& (2$ + 1)]& ~ 2

a+a a a

with c =l, + l, +L —2a —T. The possible values for
l, are max(O, L —N+ 1) &I, &N —1+L for fixed
N, L.

Using O(4) Casimir invariants" L'+ C' =P(P+ 2)
+q' and L ~ C=q(p+ 1), we can rewrite W as

W= [I,(l, +1)+L(L+1) 2T(N+ T)]—l,'. —(l2)

The portion in brackets is constant for O(4) states,
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but l,' is not diagonal in the ~Nrl, LM) basis. Thus
the O(4) classification of W is only an approximate
one. Nevertheless, v describes. the degeneracy of
A, via Eq. (10). WhenN»L and N»l„Eq. (12)
becomes W--2%7. 7. is similar to the strong
coupling quantum number Q in this limit.

The O(4) channels resemble states defined by
Nikitin and Ostrovsky' for hydrogenic configura-
tions. When n, »n, and I.»n„b, ~ l, becomes di-
agonal in their basis in a way similar to Eq. (12)
here. They offered no physical justification for
diagonalization of b, ~ 1» however. Diagonalization
for this operator is predicted in our channel clas-
sification at p=0. Moreover, the invariant W

applies to the entire isoelectronic sequence.

jo+ ko+ Jo= 0, (13)

which has the form of a conservation law. Thus
n+ piy=0, and hence y=-Q, This completes the
construction of physical channel numbers in the
SU(2) states.

Evaluation of matrix elements verifies the fol-
lowing representation of channel invariants

A - (j + k+ J)2+ p(jo- k,), (14)

W- pJ', —2(j —k) ~ J. (15)

In this way j+ k, j —k, and J represent versions
of l„b„and I., respectively; in a rotating frame
consistent with Eq. (6). We leave for future study
the question whether these representations —in-
cluding nonphysical values of y 4-Q—can be ex-

D. SU(2) construction for A, W

Both A and W mix zero-order strong coupling
states having different values of K and Q. The ex-
plicit evaluation of matrix elements is omitted
here. Instead, we offer a simple model which re-
produces those results. The model involves three
mutually commuting SU(2) angular momentum
"particles" j, k, and J. By imposing suitable con-
straints on these particles, we generate represent-
ations of the channel invariants.

The product basis ja, kp, Jy) for j, k, and J has
(2j+1)(2k+1) '(2J+1 substates. o.', P, and y are
eigenvalues of diagonal components j„k„and J„
respectively. Quantum numbers N, K, Q, and L
for the physical channels are embedded in this
product space and are specified in part by the re-
strictions j=k=a, J=L, and o". = &(Q-K), p
=-, (Q+K). The requirement j=k originates with
the SU(2) x SU(2) decomposition of SO(4) for hy-
drogen. The third particle J describes the total
orbital angular momentum. The particles are not
independent for physical channels. In order to
t„ompletely specify states requires the additional
constraint

ploited in a more useful manner.
One consequence of the representations is that

perturbation formulas for A and 8" can be gener-
ated in orderly fashion by taking advantage of
SU(2) commutation relations and the simple form
of the zero-order eigenvalues A, = —pÃ and W,
= —pQ. Second-order expansiens are

A = —pK+ s[2I, (L+ 1)+N' —1 —K' —3Q']

—(K/4 p) [8I.(L + 1)+N' —1 —K' —15Q2]+ ~ ~ ~

W= -Q(p+ 2K+ tL '[2I.(I, + 1) +N' —1

—IP 3Q']—+ ~ ~ ~ } (17)

Note that the second-order term in W' is propor-
tional to the first-order term in A, and the expan-
sion suggests W~Q. Eigenvalues are even func-
tions of p, singe both A and W remain invariant
under the simultaneous inversions r,-—7, and

Two more symmetrical invariants are

B,= ~[A 2a(a+1) —L(L+1)+ W].

In the present representation

B,= k ~ (j + 2J—go'),

B =j (k+2J+ p,o),

(18)

(19)

(20)

E. Sqm rules forA

Although operators yielding K, T quantum num-
bers directly have been found only in the strong
coupling limit, K and T also label eigenvalues of
A in the intermediate coupling range 0 & p& ~.
Values of K End T can. be found by comparison of
eigenvalues with Eq. (16). Henceforth we regard
K and T as quantum numbers for exact channel in-
variants.

For fixed N and L, , the sum of eigenvalues of A.

is a quantity independent of g. That is, Tr(A) is
constant. Tr(A) is also constant within fixed-pari-
ty subspaces, so that two trace invariants, exist
for fixed N, I.. Theory from previous sections
says, however, that eigenvalues of A for' states
having 7'& 1 are identical for both II= (-)~ and ll
= (-)~". By difference, we thus establish that the
sum of eigenvalues of A for c'hannels having T= 0
is a quantity indePendent of p, . The precise value
of the sum can be calculated in the strong coupling
repr esentation.

First define the general sum

with o=. (1, 0, 0) for the vector convention k
= (ko, k„k,). Eigenvalues of B, for p. are identical
to eigenvalues of I3 for —p, since the condition

j=k for physical channels renders j and k identical
particles under exchange.
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~„(NTL) = gA,

from which !
& (NTL) = (N T)-[L(I + 1)+ g (N' —1 —3T')

(21)
-3- 5

L=2

4'

a' (NOL) =N[N 1+ 3I.—(L+ 1)]/3 (23)

--'(N T)—2+ —)6 6

follows upon substitution of Eq. (16) for A.
o„(NTL) is found in some cases to be a slowly
varying function of p. . The sum is independent'of
p, when T= 0 as noted above. It is also p, indepen-
dent when T= i, L, =1 since the only possible values
for T are 0 and 1 when L = 1. Thus

2

i . I I

2, -

FIG. 2. Correlation diagrams forN=4 arid L=2, 3
illustratirig values of 1z for differentK, T channels. 4
=lz(E2+1) when p, =0, andA --pKwhen p, -~.

e„(N11)=N(N' —1)/3.

Note also that v„(Nll) =o„(NOO).

F. Correlation diagrams for A

It is useful to construct comme/ation diagrams
connecting eigenvalues of A in the strong and weak
coupling limits. Without exact eigenfunctions for
invariants these diagrams are difficult to con-
struct from first principles. We therefore report
some empirical correlation. rules for the weak
coupling quantum number /, in terms of K and T.
The rules were formulated from computed eigen-
values of A. for N «3, and have been verified for
N=4 channels. For fixed N, T,. and Lwe define a
cutoff value of K as follows:

L =2,N=4. General rules for fixed N and L are
as follows:

(1) Con'struct the K, T channel diagram so that
K=N- 1, lies at the lower left corner.

(2) Fill in the values max(,0 L—N+ 1) «l,
«L+N- 1 in increasing order alon. g the boundary
defined by the maximum value of T for K=N —1,
N —2, . . . ,1-¹The lower right vertex of the
diagram always has /, =L.

(3) For each value of I, in step (2), fill .in values
. l,'=l, —1,l, —2, . . . in order along the diagonal.

having K+ T constant. The smallest value of l,'
lies a,t T=O.

Complete correlation diagrams for N= 4 and L
=2, 3 appear in Fig. 2. Eigenvalues A =/, (f,+ 1) at
p=0 satisfy the sum rule Eq. (23). For large
p, , A —~+L(L+ 1)+ ~(N' —1 —K' —3T').

K =2L —T-N+ 1.
We find that

/2=I —K, if K «Kc

= (N —1—K+ T)/2, if K~K .
For I.= 0 this yields f, = ~ (N 1 —K); —and when
L «N- 1,l =L -K.

There-is a simple graphical construction for
l, in Eq. (26), illustrated in Fig. 1 for the case

(2)

(25)

(26)

hl

~ 20 ——

~ io-
UJ

K

-I — ~

+l - ~

5~
3

0 2

~ 3
2

- IO

I I

I 2
T

FIG. 1. Graphical construction for E 2 values on the
X, T channel spectrum for%=4, L =2, according to
rules (1)-(3) in Sec. IIIF. The complete diagram ap-
pears in Fig'. 2.

l.O

FIG. 3. Eigenvalues of A for. the caseÃ=4, I-=2 foi
different values of the coupling parameter A. . The iso-
electronic sequence H, He, Li+, ... has A. =1, 2, 3, ... .
Curves are labeled with X,T channel quantum numbers
as Kz. Note the level crossing of 10 and 12 at A =0.286.
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forth by an index q, equal to 0 or 1, with

(28)
/

Furthermore, we shall restrict attention to inter-
nal —or energy —channel quantum numbers, and
thus M is henceforth set equal to zero. For fixed
N and q, 4(KTL), or simply 4', denotes channels.

x 4(K+1, 7+1,L +1), (29)

where only shifted quantum numbers are indicated,
and I, =I, + iI, C, = C, +i C„D,= D, + iD, . Commuta-
tion relations (Appendix) for the eight operators
generate an 'SU(3) algebra on the two-, electron
channels. I„ I;, and I, generate an SU(2) subalge-
bra having I'=I,'+I,'+I,'=I(I+ 1), with I
= —,(N —1, —T). Within each SU(3) multiplet

I=O, ~, l, . . . , g(N-1 —q))

(30)

Properties of SU(3) defined in this way are sum-
marized by de Smart" and Carruthers. " The first
Casimir invar iant, I '+ C', + C', + D', + D', + F', ba, s
eigenvalues [(N —q)(N- q+ 1) —2]/3. The related
irreducible representations are all of the type
D(N —1 —q, 0), with each "triangle" multiplet con-
taining &(N —q)(N —q+1) distinct channels. For II
=(-)~ the multiplicities are 1,3, 6, 10, . . . for
N= 1,2, 3, 4, . . . , respectively. When II= (-)~' the
channel multipl. icities are 1,3, 6, . . . for N
= 2, 3, 4, . . . . The connection between these multi-
plicities and the K, T classification was cited in
0)"

For fixed N and q the full spectrum of channel
quantu~ numbers K, T, and L contains an infinite
number of identical SU(3) multiplets, since L in-
creases without bound. To distinguish between
them we therefore define an additional label d,
which is the maximum value of L appearing in a
multiplet. Comparison with Eq. (2V) shows that
d = Ã —1, N, N+ 1, . . . . Since the generators C,
and D, define T and L to change in the same sense,
the value of L within a multiplet is L = d -Ã+ 1+ T.

A. Definition of representations

Eight operators Io Ii I F C C Dx an
D, which connect different K, T, L channels are de-
fined as follows:

I,C = &El,
I 4'= p[(N —T +K —1)(N —TaK+ 1)]' '4(K+2),
Fy= (12) '~'[N —1 —3T+ 2q]4',

C,4 = ~[(N T+K+ l)(2T —2q+ 1+1)]'~'
x 4 (K+ 1, T ~ 1,L w 1),

D,4=-, [(N —T K+1)(2T —2q+1+1)]' '

The smallest value of L in a multiplet is L „
= d —(N —1 —q}.

Consider, for example, the simplest nontrivial
case N= 2, q = 0. In helium the channels contain
configuration-mixed Rydberg series 2snL,
2~(L —1), and 2~(L+ 1). In the present classifi-
cation values of L for each SU(3) triplet of chan-
nels are: 0, 1 for d=1; 1,2 for d=2; 2, 3 for d=3,
and so forth.

The other quantum numbers are accessible via the
diagonal operators I„F, and I', and thus

E=2IO, T=N —1 —2I, L=d —2I,
q = W3E —3I + (N —1), II = (—)

(32)

Note that d+ 1 plays the role of a generalized
principal quantum number in Eq. (31). For fixed
d and q, N —1 is then an associated generalized
angular momentum quantum number '[cf. Sec. II-A]
labeling different SU(3) multiplets. Together these
SU(3) multiplets make up a single irreducible rep-
resentation of SU(4). SU(4) irreducible represen-
tations have been described by Amati et a/. 27 Here
the total number. of channels contained in each
SU(4) "superinultiplet" is (d —q+ l)(d —q+ 2)(d —q
+ 3)/6. For instance, the SU(3) multiplicities
contained in either of the representations d= 3,
q= 0 or d= 4, q= 1 are 1+ 3+ 6+ 10= 20. The entire
spectrum'of internal channels N, K, T, L is in turn
contained im infinite sequences of SU(4) represen-
tations: d=0, 1, 2, . . . for q=0; and d=1, 2, 3. . .
for q= 1.

The SU(4) interchannel transitions which change
N include possible decay transitions from N, = d+1
to final, lower channels N&—- 1,2, . . . , N, —1. K and
T have been used in previous work for devising ap-
proximate propensity rules for both excitation and
decay processes. '&' It is possible that a more
comprehensive description of those processes
might, be formulated with SU(4).

C. Correlation diagrams: SU(3) ~ SU{2)

The correlation diagrams of Sec. II-F have a,

more symmetrical form when viewed in the SU(3}
multiplet scheme. We illustrate the case N= 4, d
= 3 in Fig. 5. Note in particular the constancy of
l, along diagonals of the multiplet for which K —T
is fixed. This behavior is characteristic of Eq.

B. SU(4) ~ SU{3)

The 'SU(3) model requires two quantum numbers
N and d in order to determine K, T, L, and TI for
each channel. The relationship between N and d is
rewritten as follows:

d+1=1,2, . . . ; N —1=0,l, . . . , d. (31)
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(26). SU(3) generators connecting states along
these diagonals a,re D„D„and D, —= 2(~3& —I,),
which generate an SU(2) subalgebra. The SU(2)
states are labeled by the diagonal component Dp
= 2(N —1 —K —3T+ 2q). It would be premature to
conclude that SU(3) & SU(2) explains the correla-
tion diagrams for all channels, since applicability
of Eq. (26) has not been demonstrated for N&4.
We have found for N —4, however, that D com-
mutes with the channel invariant A in the weak
coupling limit. The relationship between SU(2)
and W js not fully understood. W mixes con-
figuration channel states having hl, = 0, +2.

FIG. 5. Correlation diagram illustrating values of
E2 for the SU(3) multipletN=4, &=3, @=0. The total
angular momentum quantum number is L =T for channels
in this multiplet. Contrasting diagrams for constant L
channels appeared in Fig. 2.

for all values of r has yet been offered. An ex-
planation for the SU(3) characteristics of the chan-
nels may possibly be found in a theoretical de-
scription of Coulomb interactions within the hyper-
spherical framework. We note, for instance, the
connection between the O(6) and SU(4) Lie alge-
bras. " It seems plausible that a single noninvari-
ance group describes the two-electron channels,
but in different ways depending on the value of r.
At small values of r the channels show charac-
teristics of O(6), while at large values of x the
channels exhibit characteristics of SU(4) & SU(3).
Detailed analysis of hyperspherical symmetry
breaking via Coulomb interactions will shed more
light on this possibility.

1V. NONCOMPACTNKSS

The question has been raised whether' or not"
noncompact versions of two-electron classifica-
tions might have physical relevance. At the Lie
algebra level the distinction between the compact
versus noncompact algebras is trivial, involving
only factors of i in generators. At the group level
the distinction is nontrivial. Spatial rotations
about the s axis, for instance, are described by-
exp(in'. L,), which is a periodic. function of the angle

When n-i~, however, the same operator is
,
either exponentially increasing or decreasing de-
pending on the sign of a. 'We demonstrate below
in two different ways importance for noncompact-
ness to the two-electron interaction.

D. Hyperspherical coordinates

In 1965 Dragt" deduced an SU(3) classification
of states for three noninteracting particles, re-
lated to O(6) invariance for the kinetic energy in
hyperspherical coordinates. " Those SU(3) sta, tes
do not account for Coulomb interactions, however,
and are therefore different from the SU(3) model
proposed herein. It is thus of considerable inter-
est that computations of atomic energies using
hyperspherical coordinates have revealed an "ap-
proximate separability" for the two electron-
wave functions. ""' Channels are labeled using
potential energy curves along the hyperspherical
radial coordinate v= (x,'+r,')' '. In the limit r

0, 0(6) quantum numbers apply. For larger val-
ues of x, where the Coulomb interaction mixes
states, a'K, T classification seems more appro-
priate. '

The connection-between the different channel
quantum numbers for large x and small r is a
problem which is similar to the correlation of the
asymptotic invariant A between the strong and
weak coupling limits. No single classification of
the hyperspherical potential energy curves valid

A. Hydrogenic states

Consider the Hamiltonian

E= (2)P'+ x/fI

where R= r, —r, and P = -is/8R. X is a coupling
parameter, with X&0 for a repulsive interaction.
Both the relative angular momentum 2 = R& P and
the Runge-Lenz vector

t2= P(R P) R(I 2+&/R)

(33)

(34)

commute with E, and

X'= 2Z(S'+ 1) . (35)

Z and the energy-normalized 8(2E) ' ' generate
an SO(3, 1) algebra, which in the present case is
fundamental to thy Coulomb repulsion of two par-
ticles. Solving Eq. (35) for E yields a group theo-
retical representation of matrix elements of 1/r»,
since, the kinetic energy portion of E can easily be
evaluated. For two-electron product wave func-
tions consisting of bound state hydrogenic orbitals
for 1 and 2 having principal quantum numbers N
and n, respectively, diagonal matrix elements for
the Coulomb repulsion thus become
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(Nn 1/r» Nn} = -(N '+ n ~}(8X) ~

9' x'1
+ Nn g2 Nn 2X" .

+
J

(36)

Equation (30) contains two distinct group theo-
retica1. parts. On the one hand are ' and 8',
which describe exact symmetry properties of E.
On the other hand, there is inherent SO(4) sym-
metry for the bound hydrogenic wave functions.
Hence the classification of 1/r» in this basis nat-
urally involves SO(4). Note, however, that such a
classification fails to recognize the underlying
symmetry of the electron-electron repulsion.

This simple model is not intended to suggest
SO(3, 1) classification for two-electron states.
Rather, it illustrates by example that invariance
properties of hydrogenic orbitals can be mislead-
ing with regard to properties of the Coulomb repul-
sion.

B. SU(2, 1) channels?

The SU(3) model proposed in Sec. III contains the
correct numerology for classifying internal quan-
tum numbers for single-ionization channels of
two-electron atoms. %e offer evidence that a re-
lated SU(2, 1) classification of channels might be
more appropriate. The SU(3} representations25
are finite dimensional and unitary. In SU(2, 1),
however, the corresponding finite irreducible rep-
resentations fall into two classes: (i) one dimen-
sional, unitary, a.nd (ii} multidimensional, non-
unitary. For helium the one-dimensional channel .

representations occur only for X= 1,K= T= q= 0,
which contains the (1snL}L singly excited states;
and .for N = 2, K = 0, T = q = 1, which contains (2PnL) L
doubly excited states. The important physical
connection to note is that none of the states in
these unitary SU(2, 1) channels decays via Coulomb
autoionization. In marked contrast, all other
channels for finite N belong to nonunitary repre-
sentations in an SU(2, 1) scheme. These are the
configuration-mixed double excitation channej. s,
which contain autoionizing states for helium. "'

Thus a noncompact classification appears to
provide a natural distinction between stationary
(bound) states and autoionizing (decaying) states,
via the respective unitarity or nonunitarity of the
channel representation. This connection seems to
be more than coincidental, in view of well-known
properties" of the time evolution operator for
bound and decaying states. The question whether
autoionization stability of energy levels in helium
is in fact governed by the Lie algebra of a noncom-
pact group may also have importance to problems"
of classical nonergodicity.

There is an additional feature of noncompact

W= Q W~q(h~ hq), (39)

with W&&= W&& and

W~~= W~o= W23=0,

W, 2
= Wo, = (1 —~2) 2' ~ /6,

W„= W„= -(1+~2)2'"/6.
(40)

V. CONCLUSION

Three primary conclusions have been reached.
(1) In the asymptotic regime the K, T classifica-

tion for excitation channels is a direct consequence
of the invariants A and W'.

(2) Numerology of internal K, T, L type quantum
numbers for single-ionization thresholds is con-
tained in SU(4) & SU(3) & SU(2).

(3) In view of (a) stability characteristics of heli-
umlike systems against Coulomb autoionization,
and (b) double-ionization channels, it seems more
appropriate to classify channels with SU(2, 1) in-
stead of SU(3).

It remains for future work to recast these con-
clusions together with answers to questions raised
herein, in the form of a general theory for two-
electron spectra including radiative and autoioniza-
tion transitions.
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channel classification which seems to make it
more appropriate for the physical states. Namely,
that there also exist infinite-dimensional, unitary
representations for a noncompact group. The in-
finite-dimensional representations of SU(2, 1) thus
offer one possibility for classification of channels
for two-electron escape. The threshold for this
double ionization commences in the limit N

Finally, it is perhaps noteworthy that the asymp-
totic channel invariants have a more symmetrical
form when constructed with the following vector
operator s:

'ho= 2L+ lx, h~ =12,

h, = (2 '~')(v 2 b, + pr, ), h, = (2 'I')(v 2 b, pr, ) . .

(3'I)
The first channel invariant thus becomes

(38)

a form which admits SU(2, 1) invariance under lin-
ear combinations of the h, . W, however, is not
left invariant under these SU(2, 1) transforma-
tions, since
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APPENDIX: CHANNEL SU(3)

Nonvanishing commutation relations for the op-
erators defined in Eq. (29) are

[I„~,]=+I„[E,C,) =+-.'W3C„

[I„C,] = +&C, , [E,D,] = +&WSD, ,

[I„D,] =+-,'D„[l„l] =2I„
[C„C']=~3E+I, , [D„D ] =v 3E —I, ,

[I,C,]=D„[C,I,] =D,
[I„D,] = C„[D,I ] = C,
[C„D ] = I„[D„C] = I

which generate an SU(3) algebra. In de Swart's
notation for SU(3) generators, "C,=If'„D,= I.„
and F =M.
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