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Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of
electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization

yield on the details of the interaction potential of the system is derived. This process promises an extremely

sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence

becomes very weak.

In the last few years there has been a growing
interest in photon absorption by atoms colliding in
an external electromagnetic field. This includes
processes where the frequency of the field is close
to the characteristic frequency of one of the atoms
(optical collision)' "and to the frequency differ-
ence between transitions in both atoms (radiative
collision). ' " " Experimental evidence for laser-
induced collisional transfer has been established
recently in a. number of experiments. ' Optical
collisions have been used extensively in line-.
broadening studies from which potential curves of
the colliding atoms can be extracted, since the
amount of absorption or fluorescence can be re-
lated to the detail of the interaction. In this work
we extend the optical-colli. sion studies by studying
two-photon ionization of the colliding atoms. Be-
cause complete conversion of every absorption
event to an ion pair is possible, " the ionization
channel promises extreme sensitivity since it is
easier to detect a small number of electrons than
a small number of photons. This will allow mea-
surements at the extreme wing where absorp-
tion or fluorescence becomes vanishingly small.
Even single absorption. events can be detected with
ease by gas proportional counters which are sensi-
tive to single electrons. "

The theoretical aspects of line broadening of
many systems have been studied by many re-
searchers. Here we give a semiclassical deriva-
tion of the two-photon ionization of a gas mixture.
The system is approximated by two field-free adia-
batic electronic states and an infinite set of contin-
uum states. The ionization yield is derived for an
arbitrary field strength and for a wide range of
detunings from the isolated atom line. The depen-
dence of the ionization yield on the details of the
interaction is derived; therefore, the ionization
channel can be used as a monitor of the details of
the interaction.

Now we develop a theoretical picture of the two-
photon ionization of the mixture. An impact-pa-
rameter method will be used where the internuclear

coordinates are treated classically and without
acceleration in the motion. That is, R=b+vt and
b v = 0, where b is the impact parameter and e is
the relative velocity of the nuclei. Let us consider
the time-dependent electronic-field Schrodinger
equation'.

i —g(x, R) = (H, ) +H(„)g(x, R),

H, (
——T, + V(x, R), (2)

where x and R stand for electronic and nuclear
coordinates, respectively, ' T, is the electronic
kinetic energy operator; V(x, A) is the electro-
static interaction among electrons and nuclei; and

Hffl is the classical interaction potential between
the molecular system and the laser field. In the
dipole approximation and with a linearly polarized
field amplitude & = E'Ocos'Q)tp Hjq is written
—IU, e, cosset, where p. is the dipole operator and
~ is the frequency of the exciting field. We repre-
sent the system by two field-free adiabatic discrete
electronic states Q;(x,R) and a continuum p, (Fig.
l). We assume (P, (P&)=5;, , where i, j=l, 2, and

c. We will not attempt to include the magnetic sub-
levels in this study in order to simplify the deriva-
tion. Calculations of line broadening where an-
isotropy of the system was included indicated that
the two-level calculation is only 50% off from the
complete calculation. " Therefore,

t

P(x, R) = a, (t)P, ( R) exp —x— a, (R) dt)

+ a(t),d( xR)e xp(--p ta, (R)dt)

+ a, (ge, , t)y, (x, R)

where Q; are the field-free adiabatic discrete elec-
tronic states, so& are the corresponding field-free
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FIG. l. Energy-level diagram showing a restricted
basis of two discrete states and the continuum states.

and y, is introduced phenomenologically to describe
the decay of the intermediate state. Note that in
writing Eqs. (4)-(6) we have neglected scattering
between the continuum states by neglecting the
coupling between them in Eq. (6).

Since transitions from (I), to the continuum obey
the Franck-london principle, we separate the con-
tinuum states into two sets,' the first set is close
to the resonance condition (I5, I

- I5, I)) where I5,'I
is a small quantity, and the second set is that
which is sufficiently far away from resonance
(I6,I~ I5,I). When 6, is large, energy is not con-
served as a result of nonresonant continuum states, '

consequently, intensity-dependent frequency shifts
are introduced in the intermediate discrete level.
The near-resonant continuum states, however,
result in intensity-dependent sink source or decay
of the intermediate discrete level. When 5, is
large, the right-hand side of Eq. (6) oscillates
swiftly, and if the field is a slowly varying function
of time, one can solve Eq. (6) for a, by integrating
over time by parts. '

dt 2h
exp i6(t'-) dt' a» (4)

adiabatic potential energy surfaces, (t), are con-
tinuum states with corresponding zv, energies, t,
is some initial time, and a; and a, are time-de-
pendent amplitudes. Explicit forms for a„a„and
a, are found by solving the equation of motion (1),
given the initial conditions a, (—~) =-1 and a, (-~)
=a, (-~) =0.

In the case where the system is electronically
adiabatic in the absence of the field, we drop terms
containing the nonadiabatic coupling (p, I(t),),
(Q, IQ,), (Q, I Q, ), and ((t), I(I),); and in the rotating
wave approximation the equation of motion (1) be-
comes

C

However, when near-resonant states are consider-
ed, i.e., 5, is small, a, can only be represented
as a full integral:

:i 2@. &o t exp i &, t' dt' a2 t dt .

Substituting expression (8), which is valid for large
16.I (I5.1~ I5.'I), results in an expression for the shift
as an integral over 5,. Substituting expression (9),
which is valid for I6, I

- I5,'I, in Eq. (5) and carrying
out the integration over 5, first with the assump-
tion that p, , is fairly constant for I6, I

~ I5,'I enables
one to easily carry out the integration over time.
This procedure was also used in dealing with the
continuum states in photoionization of isolated
atoms. " The set of equations (4)-(6) reduces to

'+e e, = ( "+ eep ( ( e((')d)), e'
0 Cl

t
+ @- p, 2c exp -i 5, t' dt' a, dry,C

da, /dt = L,a, ,

da, /dt+ 1"(t)a, = L,a, ,

where

I'(t) = y()+is, (e(')) +y, (e(')),

(10)

where

" 'exp i 5 (t')dt' a, , (6)

L, =i '-@- exp -i 5 t' dt'

~ &2l&O)., =e p*' " e*p ( e() ) p) ), (14)

5(t) = (1/K)(w, —w, —kw),

6, (t) = (1/ft) (w, —w, —hI ),

(7a)
'

(7b)

2 2

S = —~' P ~C2d~' =-4e '
C

(15)

p. &&
are the matrix elements of the dipole operator, y, = h)TI e', (t)/4h'] p,', , (16)
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where P in Eq. (15) stands for the principal value.
%e would like to mention that the above handling

of the continuum states results in shifts and decay
which agree with the calculation carried out by
Beers and Armstrong" when the effect of the for-
eign gas is eliminated. The above authors have
treated the two-photon ionization of isolated atoms.

We now proceed to solve Eqs. (10)-(16)for a,
from which. expressions for the photoionization can
be calculated. Since changes in the amplitudes can
only occur at the resonance condition 5(t,) = 0, we
consider times near to and define the quantity A.,:

t I~(t) 1 t

A, =exp dt exp -2 —InL, dt a, , (17)
0 0

following equation'.

(d'/dz' + n + —,
' ——,'z')A, = 0 .

For a general pulse, n, defined in (25), is time
dependent and thus depends on z. Only when n is
time independent does Eq. (26) reduce to a Weber
equation. However, when the pulse is long, then
the smooth peak of the long pulse can serve as a
constant field. "" When n is an integer, Eq. (26)
has bounded solutions at infinity which are repre-
sented in parabolic cylinder functions D„(az) and
D „,(+iz) In . this case, the function g,
becomes real; and, therefore, q is identically
zero. In this limit one can show that the asympto-
tic probability ~a, ~' is given by"

where 7 = t —t, and t, is the time where resonance
occurs, 5(t,) =0. Substituting Eq. (17) in Eqs. (10)
and (11), we obtain

la, (
= (1 —e z'~)e rz-

(27)

(d'/dz'+f (7)) 4, =0, (18)
where

where

f(t) = L,L, ———I'+ —lnL, '1 d
4 dt

1d 1d'
dt 2 dt'

We proceed to solve Eq. (18) by the Landau-
Zener method near the resonance time t, . We
first write f(T) explicitly in terms of the field in-
tensity, detuning, and decay

1 . d . , 1dI'
f(t) =E'+—5 —i—lnE —iI' '+ ——

4 dT 2 dT

1 d2 .d5
+—,— lnE + g —,

2 d7' d7' (20)

where

E = tzzzeo/4tf

Close to t = t, or z'= 0, one can expand 5(T) as
r[d5(0)/d~l and write

g', i d i If (t) =go+ —g, +—' v ———lnE ——
2 4 gx dT g

(21)

1d 1d'
go=E + ——I'+—,lnE,2d7 2dT

(22)

g, = d5(0)/d~. (23)

1 2 -j7f 4lm ——g, ' ~- (24)

n = zg0/g z= q + zP~' (26)

where q and p are real, Eq. (18) reduces to the

Substituting Eqs. (21) (23) in Eq. (18) and with the
following definitions of z and n,

g2
d5 (0)/dz-

' (28)

It is interesting to note that result (27) predicts
a simple and single decay of the population of the
excited state. The decay constant l defined in
Eqs. (12) and (16) involves radiative, collisional,
chemical depletion, as well as intensity-dependent
ioniza. tion. The function p in the constant-field
limit depends only on the field intensity, oscillator
strength of the transition, and the slope of the dif-
ference potential curves of the system. Only when
time variation of the field is included will the func-
tion P depend on the relaxation parameters through
their time variation. We now consider the differ-
ent time scales encountered in this process.
In the process there are six time scales that are
relevant: the time that the single collisional event
stays in resonance is of the order of 10 "sec, the
collision time is -10 "sec, the time between col-
lision at an atmosphere of buffer gas is -10 ' sec,
the lifetime of the level is -10 ' sec, the exciting
pulse width is -10 ' sec. Therefore, during the
time of resonance, 10 -" sec, either the ionization
or the decay is vanishingly small unless the ioniza-
tion rate reaches 10" sec '. Otherwise, after the
initial population, which takes place during the
time of resonance, the system evolves according
to the slower processes.

Equation (27) describes the absorption at one
crossing point where the system is initially in the
ground state. In a single collision there are two
times where the system comes into resonance with
the photon field: when the two atoms, separated
by a distance R, are approachi. ng and departing.
Since during collision not much decay or ionization
takes place unless those rates exceed 10' sec
one can show that after two symmetric resonance



NUN IR H. 5AYFEH 16

times ~a, (' is

[a,['=2(1 —e '"~)e '"~, (29)

into the continuum is given by y, (e2O) [Eq. (16)],
one writes the total probability of ionization (r) as
follows. '

where we have taken the probabilities induced at
the first crossing as initial conditions at the second
crossing.

We discuss now some limiting cases of Eq. (29).
The above calculated probability is valid for both
the weak and strong field cases. For strong fields
where 2vp»1, ~a, ~' goes to zero. Note that after
one crossing [Eq. (27)] ~a, ~' reduces to 1 for
strong fields, which indicates that the first cross-
ing induces complete inversion, while the second
crossing induces complete stimulated emission
which leaves a2 unpopulated. Since the limit of
very weak field ~a, ~' again goes to zero, there
exists an intermediate field where ~a, ~

maximizes.
However, when 2'«1, then ~a, (' becomes linear
in the field intensity. Expanding the exponential
functions in Eq. (29) yields the following:

(30)

Far away in the wing —e.g., when the atoms get
closer to each other, thus resulting in more dis-
tortion of the resonance lines —we expect the slope
of 5 to be large. Therefore, in this regime the
condition 2'«1 holds, ' and the population of the
excited state is linear in the field intensity. This
picture is consistent with the fact that the inverse
of the slope of the potential curve difference is a
measure of the time the system stays in resonance.

We consider now the ionization yield. We first
consider the case where the ionization rate is of
order 10" sec ', thus, appreciable ionization is
achieved before other collisions take place and
before the second crossing. This condition re-
quires power densities of the order of 10"W/cm'
for a photoionization cross section of the order of
10 "cm'. Such high power will induce power
broadening of the order 5 ~10" sec ' which will
tend to wash out the crossing. However„very far
away on the wing, i.e., when the atoms get very
close to each other, the potential curves become
very steep and a slight change in R mill induce a
detuning effect larger than the power broadening.
Therefore, on the extreme far wing and for near
complete ionization and inversion during the col-
lision, one needs to consider only one crossing as
given in Eq. (27).

We next derive the ionization yield. Since the
continuum states were eliminated from the coupled
equations by introducing a shift and a decay of the
excited state, one can use this scheme to calculate
the total ionization probability. From Eq. (11) and
from the result that the decay of the excited ~tate

y'=
yq a2 dI . (31)

Using the asymptotic e .:;pressions calculated for
~ a,(', one finds that

(32)

where v is the pulse width. Saturation of the ion-
ization can be achieved if y, »y, and (y, +y,)r» l.
In this case r reduces to

~=(1 —e '"'). (33)

Ro

0 =4m, 2nbdbP, (34)

where Ao is the internuclear separation where ab-
sorption takes place,

0
2jLg2 dA
4@2 dg 0 (35)

2' A~
4@2 0 (36)

The velocity average can now be carried out.
The result is a thermal rate constant k:

When 2'» 1, y, » yo, and y, r» 1, both states
are saturated and the ionization probability be-
comes one.

If the absorption is weak while the ionization is
nearly saturated, one has to consider both cross.—
ings and the ionization yield mill be twice the yield
in Eq. (32) in the limit of 2sp«1.

Let us consider a situation where the ionization
rate is much smaller than the reciprocal of the
time of resonance. This case typically arises with
power densities of the order 10' W/cm and ioniza-
tion rates of the order 10" sec '. After the ab-
sorption in a single collision takes place, the sys-
tem then evolves according to the slower processes
between collisions. For a typical C, coupling,

0

10 "cm'erg, and at a distance of 10 A, the fre-
quency detunings can reach 10" sec ' which re-
sults in complete dephasing of the interaction.
Therefore, a rate equation treatment is adequate
for the processes between collision. In order to
do so, one has to write an absorption cross section
first by integrating over the impact parameters.
Far on the wing where 2vp«1, ~a, ~' reduces to
4vp as given in Eq. (30); therefore, the cross sec-
tion o is
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k = N(8KT/m p, )' ' o,
where

d—+ 0 I+cr I—+o.I+y —+p I y +a I—+o Ig~ d
dt' ' 'g ' 'dt ' 'g

4@2 dg 0 (38)

Note that k can be written Ic7, where I is the flux
of the light source and 0 is an average cross sec-
tion. Note also that the temperature dependence of
the rate is absent. This result agrees with results
that are derived from statistical theories. In these
theories the statistical distribution of frequencies
is defined by regarding the intensity at frequency
p as proportional to the time interval during which
p is irradiated. This time interval in turn is pro-
portional to the relative volume of configuration
space in which the frequency perturbation is v.
Since our result [Eq. (38)] was derived on the as-
sumption that 2wg«1 in Eq. (29), we predict the
statistical arguments will fail as the intensity of
light increases such that 2m@-0.1. This can be
reached at frequencies close to the line center.
However, one has to be careful since our calcula-
tion requires sharp crossing, as was discussed
after Eq. (30). This in turn requires somewhat
steep potential curves. Therefore, in an interme-
diate region one will find that highe r order s of 2m/

will be important and, therefore, higher powers of
the configuration space become important, result-
ing in temperature-dependent rate constants.

With the absorption rate (38), one can write the
rate equations describing the two-photon ionization.
I.et n„n„and n, be the populations of the ground
state, excited state, and the number of atoms ion-
ized, respectively, and N0 be the initial population
of the ground state. Then one writes

0=2 x 8 ox dx,
0

k is the rate of absorption, p. is the reduced mass
of the system, T is the temperature, K is
Boltzmann's constant, x= (p/2KT)'I'v, v is the rel-
ative speed, and N is the foreign gas density. This
results in

o,I—' ' ——o,ryo n, =0. (42)

Note that o,-I is not equal to the isolated pair ion-
ization rate y, eo [Eq. (31)] because here ionization
takes place during collisions. During collision,
quantum substates are mixed. It is taken here
that cr, includes the degeneracy of the excited state.
Equation (42) can easily be shown to have the
following solution'.

n, = [Noo', I/(f f,)] (e —~&' —e ~~'),

where

and

fi=~-» f.=~+&

~ =-,'[o.r(1+g,/a, ) +o,r+r.],

p =(l[r.+o. r(rr, /Ir„)+o, I o.r. ]'—
+O I (g'i/8'o)+O Iro)

(44)

(45)

(46)

Therefore, the ionization yield can be derived from
Eq. (41):

0
(47)

where 7 is the pulse length. Substituting Eq. (43)
in Eq. (47), we get

N0g, I 1 —g &" 1 g 2.

2 1' 1 2
(48)

Let us again consider the case where the ioniza-
tion is saturated while the laser is tuned on the far
wing. This case is of interest because the ioniza-
tion line shape reduces to the absorption line shape
and, therefore, the analysis becomes simpler.
When y, «o, I »o, I; one can show that f, reduces
to o, I and f, reduces to o,r. Thus,

dn0 gg- - = -0 In0+ (r,I—n, + y0n, ,dt '
go

(39)
N, =N, [1—(o,. e ""—o, e "'-')/(o, . —o.)], (49)

which. reduces when cr;»cr, and cr, IT»1 to

dn~ g~+y,n, =O',In, —v, I—n, —g,In, ,
Ro

dn~' =g,In, ,

(40)

where o„o'& are the absorption and ionization
cross sections, respectively, I is the photon. flux,'

g„g, are the g factors of the ground and excited
states, respectively, ' and y, is a spontaneous de-
cay of the excited state. Or one may write

N =No(1 —e o&~~) . (50)

N, /No =o, I 7. (51)

Expressions (48) and (50) describe the ionization
yield of the gas mixture for arbitrary degree of
saturation of the ionization and for complete ion-
ization, respectively. The latter expression is the
absorption of the system since saturation of the
ionization is achieved. Gn the far wing and when

cr, I7 «1, the absorption yield is
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(52)

For interaction potential of the type c,/ft', 5 = c,/
kR'; therefore, the absorption goes like 5 ' '.

2 2 Z/24+& I"u 2 &e
~ -3/2

3 4h' ' h
(53)

At a particular intensity, log(N, /N, ) vs log 5 is a
straight line with slope ——,

' and intercept that de-
pends on c, and the other parameters, therefore,
an accurate measurement of the slope and inter-
cept determines the interaction force. For inter-
action potential of type b/It', the absorption goes
like 5 ':

A' BNp p» 26
4@2 0 (54)

The slope of log(N, /N, ) vs logd for 5/8' is 2.

Equation (51) shows linear dependence on buffer-
gas pressure and on the light intensity. The depen-
dence on the detuning enters in 0, . Substituting for
o, the velocity averaged cross section (38), we get

Note that at higher buffer-gas pressures, cr, IT
can become greater than unity, ' therefore, satura-
tion of the absorption can take place even in the
wing. Closer to the line center, saturation of the
absorption can be achie ved easily.

In conclusion, we have derived expressions for
two-photon ionization of a gas mixture in both
regimes. ' the ionization during collision where
dephasing does not take place and ionization be-
tween collisions where dephasing does take place.
In both, the dependence of the ionization yield on
the details of the interaction of the colliding sys-
tem is derived. The temperature dependence is
also derived, and deviation from the results of
stati sti cal theor ies are deri ved.

Since saturation of the ionization is attainable
with available dye lasers, this derivation is of
interest to studies of line broadening", ' and the
two-photon ionization process provides a sensitive
method for monitoring the broadening process
since detecting a small number of electrons is
easier than detecting the same number of ab-
sorbed or emitted photons.
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